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Abstract 

Background:  The induction of ferroptosis and pyroptosis has been highlighted as a novel approach to decide cancer 
cell fate. However, few studies have systematically explored the role of combining these two novel cell death modali-
ties in hepatocellular carcinoma  (HCC).

Methods:  Ferroptosis-related genes (FRGs) and pyroptosis-related genes (PRGs) were retrieved and downloaded 
from FerrDb and GeneCards database, respectively. A prognostic classifier integrating with prognostic differentially 
expressed FRGs and PRGs was constructed by the least absolute shrinkage and selection operator (LASSO) algorithm 
in the TCGA-LIHC dataset and verified using the ICGC (LIRI-JP) dataset.

Results:  A total of 194 differentially expressed FRGs and PRGs were identified and named as differentially expressed 
genes (DEGs) and, out of them 79 were found dramatically correlated with prognosis in HCC. Based on 13 key DEGs 
with prognostic value, a novel expression signature was constructed and used to stratify HCC patients into 2 groups. 
Kaplan–Meier analysis demonstrated that high-risk patients had a more dismal prognosis. Receiver operating char-
acteristic curve (ROC) and multivariate Cox analysis confirmed its predictive power and independent characteristic. 
Immune profile analysis demonstrated that high-risk group had prominent upregulation of immunosuppressive cells, 
including macrophages, Th2_cells and Treg. The correlation analysis between this signature and immunosuppres-
sive molecules, Immunophenoscore (IPS) and chemotherapeutic efficacy demonstrated that low-risk group had a 
higher  IC50 of cisplatin, mitomycin and doxorubicin and negatively related with CTLA4, HAVCR2, LAG3, PDCD1, TIGIT 
and ICIs treatment represented by CTLA4-/PD-1-, CTLA4 + /PD-1-, CTLA4-/PD-1 + .
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Background
Hepatocellular carcinoma (HCC) is a prevalent malig-
nancy worldwide which is characterized by increasing 
incidence and unfavorable prognosis [1, 2]. Although 
early-stage HCC patients could receive liver resec-
tion, transplantation and radiofrequency ablation, many 
patients still suffer from  tumor recurrence  [3]. As a 
novel therapeutic approach, immunotherapies based 
on immune checkpoint inhibitors (ICIs) have benefited 
HCC patients in many clinical trials [4]. For unresectable 
HCC patients, the therapeutic efficacy of atezolizumab 
plus bevacizumab for overall survival (OS) is superior to 
that of sorafenib [5]. However, some HCC patients who 
receive ICIs treatment, such as nivolumab and pembroli-
zumab fail to show significant improvement in OS [6, 7], 
which might be due to tumors’ innate resistance to apop-
tosis [8]. Thus, inducing novel modalities of cell death 
has become a promising target of antitumor therapeutic 
strategy. Ferroptosis and pyroptosis are such essential 
biological processes in HCC [9–11].

As an iron-dependent type of regulated cell death, fer-
roptosis is characterized by accumulation of lipid peroxi-
dation to lethal levels [12]. Currently, genes identified to 
regulate this novel form of cell death could be classified 
into 3 categories: drivers of ferroptosis (DOF), suppres-
sors of ferroptosis (SOF) and others, which could either 
drive or suppress ferroptosis based on the context [13, 
14]. Pyroptosis is a lytic form of regulated cell death char-
acterized by release of many proinflammatory mediators. 
There are 2 major methods by which dead cells could 
activate pyroptosis: GSDMD-dependent manner regu-
lated by caspase1/4/5/11 and GSDME-dependent man-
ner regulated by caspase 3 [15–19].

Accumulating evidence has identified the induction of 
ferroptosis and pyroptosis as a novel approach by which 
CD8 + T cells could inhibit tumor growth. For instance, 
CD8 + T cells could release IFN-γ to downregulate 
SLC7A11 expression, resulting in lipid ROS accumula-
tion and tumor cell ferroptosis [20]. The activation of fer-
roptosis further promotes antitumor immunity. Besides, 
CD8 + T cells could release GzmA (GSDMB-cleaving 
enzyme) and GzmB (GSDME-cleaving enzyme) to induce 
pyroptosis. Induced tumor cell pyroptosis could activate 
IL-1β, which is derived from macrophages and required 
for antitumor immunity [8]. The induction of ferroptosis 

and pyroptosis could enhance anticancer immunity and 
suppress tumor growth, suggesting a favorable progno-
sis for HCC patients. However, few studies have system-
atically discussed the possibility of combining these 2 cell 
death modalities in HCC.

Thus, our study focuses on the comprehensive analy-
sis of a combined ferroptosis-related genes (FRGs) and 
pyroptosis related genes (PRGs) for HCC with regard to 
prognosis, clinicopathological feature, chemotherapeutic 
efficacy, tumor-infiltrating immune cells and immuno-
suppressive molecules.

Materials and methods
Acquisition of data, FRGs and PRGs
Gene expression profiling and survival data of 365 HCC 
patients were obtained from The Cancer Genome Atlas 
liver hepatocellular carcinoma (TCGA-LIHC) data-
set [21, 22]. The scale method provided by R “limma” 
package was used to normalize  gene expression values. 
Another 231 HCC patients with valid RNA-seq data 
and survival data from the ICGC (LIRI-JP) dataset were 
downloaded (Table 1). Gene expression values after read 
count normalization were used.

Then, 173 FRGs and 120 PRGs were retrieved from the 
FerrDb and GeneCards website, respectively.

Generation of differentially expressed genes (DEGs) 
with prognostic value
DEGs between HCC samples and normal ones were 
identified by R “limma” package in the TCGA dataset and 
false discovery rate (FDR) < 0.05 was set as the threshold. 
Then, DEGs were subjected to univariate Cox analysis to 
screen out FRGs and PRGs with prognostic value and P 
value < 0.05 was regarded as statistical difference. Venn 
diagram was plotted in which the interaction between 
DEGs and prognosis-related genes was displayed. Corre-
lation analysis among these prognosis-related DEGs was 
conducted and an interaction network was analyzed in 
the STRING database to identify hub genes [23].

Construction of a combined ferroptosis and pyroptosis 
signature and assessment of its clinical utility
The least absolute shrinkage and selection operator 
(LASSO) algorithm with tenfold cross-validation, which 
could minimize the risk of overfitting was used to shrink 

Conclusions:  In this research, a novel expression signature was identified based on FRGs and PRGs in HCC, and this 
signature could be used to predict prognosis and select patients potentially benefiting from immunotherapies and 
chemotherapy.
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and select variables [24]. Some genes with a regression 
coefficient of non-zero were identified as the optimal 
predictors for OS and incorporated into this novel sig-
nature, whose risk score was calculated according to the 
normalized gene expression value and its corresponding 
regression coefficient. The median risk score was then 

used as the cutoff value to divide HCC patients into 2 
groups. The difference of clinicopathological features 
between high- and low-risk group was analyzed by Wil-
coxon signed-rank test. The relationship between clinico-
pathological parameters and risk score was investigated 
by Chi-square test.

Estimation of chemotherapeutic efficacy, ICIs‑related 
molecules and Immunophenoscore (IPS) with this 
signature
To assess whether this signature was associated with the 
half inhibitory concentration  IC50  of common antitu-
mor drugs and chemotherapeutic efficacy, we applied 
“pRRophetic” package in R. By constructing the ridge 
regression model based on Genomics of Drug Sensitiv-
ity in Cancer (GDSC) (www.​cance​rrxge​ne.​org/) cell line 
expression spectrum and TCGA gene expression profiles, 
the package could apply pRRophetic algorithm to predict 
drug IC50. Wilcoxon signed-rank test was implemented 
to compare the difference of IC50 between different risk 
groups. To investigate the relationship between this com-
bined ferroptosis and pyroptosis signature and immu-
nosuppressive molecules, we explored the difference of 
CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT expres-
sion between high- and low-risk group using R “limma” 
package and applied “ggpubr” package to transform the 
results into a visual violin plot. As a superior biomarker 
to predict response of anti-PD-1 and CTLA-4 therapies, 
IPS could calculate the determinants of tumor immuno-
genicity and depict the cancer antigenomes and intra-
tumoral immune profiles. This scoring scheme derived 
from a panel of immune-related genes, which belong to 
four classes: suppressor cells, effector cells, immunomod-
ulators or checkpoints, and MHC-related molecules. By 
averaging the samplewise Z scores of the four classes 
within the respective category, the sum of the weighted 
averaged Z score was calculated as the IPS.

Validation of this combined ferroptosis and pyroptosis 
related signature
The Kaplan–Meier analysis was conducted to analyze 
the difference of OS between risk groups. R software was 
used to visualize the distribution of risk score and sur-
vival outcome of each HCC patient. R “timeROC” pack-
age was used to calculate area under the curve (AUC) 
of 1-, 2-, 3-year receiver operating characteristic curve 
(ROC) to evaluate the predictive ability of this novel sig-
nature. Principal component analysis (PCA) and t-SNE 
analysis were conducted to explore whether this signa-
ture could differentiate HCC patients between different 
risk groups. Uni- and multi variate Cox analyses were 

Table 1  Baseline characteristics of HCC patients involved in this 
research

HCC hepatocellular carcinoma, TCGA​ The Cancer Genome Atlas, LIHC liver 
hepatocellular carcinoma, ICGC​ International Cancer Genome Consortium

Characteristics TCGA-LIHC dataset
(N = 365)

ICGC-LINC-JP dataset
(N = 231)

Age
   ≤ 60 173 (47.4) 49 (21.2%)

   > 60 192 (52.6) 182 (78.8%)

Gender
  Male 246 (67.4%) 170 (73.6%)

  Female 119 (32.6) 61 (26.4%)

Grade
  G1-2 230 (63.0%) NA

  G3-4 130 (35.6%) NA

  Unknown 5 (1.4%) NA

T stage
  T1-2 271 (74.2%) NA

  T3-4 91 (24.9%) NA

  Unknown 3 (0.8%) NA

N stage
  N0 248 (67.9%) NA

  N1 4 (1.1%) NA

  Unknown 113 (31.0%) NA

M stage
  M0 263 (72.1%) NA

  M1 3 (0.8%) NA

  Unknown 99 (27.1%) NA

Stage
  Stage I-II 254 (69.6%) 141 (61.0%)

  Stage III-IV 87 (23.8%) 90 (39.0%)

  Unknown 24 (6.6%) 0 (0%)

Child_Pugh class
  A 216 (59.2%) NA

  B 21 (5.8%) NA

  C 1 (0.2%) NA

  Unknown 127 (34.8%) NA

Cirrhosis
  No 132 (36.2%) NA

  Yes 77 (21.1) NA

  Unknown 156 (42.7%) NA

Survival status
  Alive 235 (64.4%) 189 (81.8%)

  Deceased 130 (35.6%) 42 (18.2%)

http://www.cancerrxgene.org/
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conducted to confirm whether this signature could serve 
as an independent predictor for HCC prognosis.

Functional enrichment analysis and immune profile 
analysis
DEGs between different risk groups were screened 
out by R “limma” package and we set FDR < 0.05 and 
|log2 fold change > 1| as the threshold. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis [25–27] were then performed to 
understand the biological function and pathways of 
these DEGs by using “clusterProfiler” R package. To 
explore the immune infiltration profiles between differ-
ent risk groups, we conducted single-sample gene set 
enrichment analysis (ssGSEA) to calculate the score of 
16 immune-cell features and 13 immune-function char-
acteristics [28].

Results
Identification of prognostic DEGs
A total of 194 DEGs between 374 HCC samples and 
50 normal ones were screened out and out of them 79 
were identified associated with OS in the univariate Cox 
analysis (Fig.  1). The protein–protein interaction (PPI) 
network among these prognostic DEGs were presented 
in Fig. 2a, in which there were 79 nodes and 230 edges. 
Genes with the top 15 degree of interaction were iden-
tified as hub genes (Fig.  2b). The correlation among 79 
prognostic DEGs was displayed in Fig. 2c.

Construction of a combined ferroptosis and pyroptosis 
signature
Based on the expression profiles of 79 prognostic DEGs 
mentioned above, we conducted LASSO regression 
analysis to develop a novel signature, in which a total 
of 13 genes were identified as the optimal variables. 
Among them ATG3, FTL3, G6PD, HILPDA, NRAS, 
PRDX6, SLC1A5, SLC7A11 were FRGs, SQSTM1 par-
ticipated in both ferroptosis and pyroptosis, and the 
remaining 4 genes (GLMN, LRPPRC, MKI67, UBE2D2) 
were PRGs. The risk score for this novel signature was: 
[ATG3 expression * (0.0599818988151381)] + [FLT3 
expression * (-0.321132320389413)] + [G6PD expres-
sion * (0.0881814324303116)] + [GLMN expres-
sion * (0.130781902193193)] + [HILPDA expression 
* (0.119282064768739)] + [LRPPRC expres-
sion * (0.00792886569542188)] + [MKI67  expres-
sion * (0.0165502840606549)] + [NRAS  expression 
* (0.0916391974243284)] + [PRDX6 expression * 
(0.114398632925529)] + [SLC1A5 expression * (0.052121
1560497305)] + [SLC7A11 expression * (0.0616722848553423)] + [SQSTM1 
expression * (0.00940765304518399)] + [UBE2D2 

expression * (0.04686256927426)]. The median risk score 
was then used as the cutoff value to stratify HCC sam-
ples into 2 groups, in which there were 182 high- and 183 
low-risk cases in the TCGA dataset.

Evaluation of the clinical utility of this novel signature
Kaplan–Meier analysis indicated that high-risk group 
had a more dismal OS (Fig.  3a, P < 0.001). Consistently, 
as was shown in Fig.  3b, low-risk patients had a lower 
probability to suffer from earlier death compared with 
those high-risk counterparts. PCA and t-SNE analysis 
demonstrated that HCC samples in different risk groups 
were easily distinguished (Fig. 3c and d). Uni- and multi- 
variate Cox analyses confirmed that this signature could 
predict prognosis independent of clinicopathological 
parameters (Fig. 3e and f ). The AUC of 1-, 2-, 3-year ROC 
for this signature was 0.811, 0.743 and 0.721 (Fig. 3g) and 
the AUC of this signature was higher than that of clin-
icopathological indicators (Fig.  3h). Besides, Wilcoxon 
signed rank test and Chi-square test showed that clin-
icopathological features (Fig. 4a), including tumor grade 
(Fig. 4b), clinical stage (Fig. 4c) and T stage (Fig. 4d) were 
different between risk groups.

Exploration of the relationship between this signature 
and chemotherapeutic efficacy, immunosuppressive 
molecules and IPS
By evaluating the role of this signature in predicting the 
efficacy of common chemotherapeutics, immunosup-
pressive molecules and IPS, we discovered that low-risk 
group had a higher IC50 of cisplatin, mitomycin and dox-
orubicin (Fig. 5a) and was negatively related with CTLA4, 
HAVCR2, LAG3, PDCD1, TIGIT (Fig. 5b) and ICIs treat-
ment represented by CTLA4-/PD-1-, CTLA4 + /PD-1-, 
CTLA4-/PD-1 + (Fig. 5c).

Verification of this combined ferroptosis and pyroptosis 
signature and construction of a nomogram
To assess the predictive ability of this novel signature, 
ICGC dataset was used as external validation. By calcu-
lating the risk score of each HCC sample based on the 
same formula derived from TCGA dataset, we stratified 
them into high- or low- risk group according to the cut-
off median value  (Fig. 6a). Patients with low risk were 
less susceptible to earlier death and had favorable OS by 
comparison with those high-risk counterparts (Fig.  6b 
and c). The AUC of 1-, 2-, 3-year ROC for this signa-
ture in the ICGC dataset was 0.750, 0.728 and 0.715 
(Fig.  6d). PCA and t-SNE analysis demonstrated that 
high- and low-risk HCC samples were scattered in two 
directions (Fig.  6e and f ). Uni- and multi-variate Cox 
analysis confirmed that this signature could predict OS 
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Fig. 1  Identification of DEGs with prognostic value in the TCGA-LIHC dataset a. The Venn diagram presented DEGs associated with OS in the 
univariate Cox regression analysis. b. The heatmap showing 79 prognostic DEGs c. The forest plot displayed the relationship between 79 prognostic 
DEGs and OS in the univariate Cox regression analysis
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Fig. 2  PPI network and correlation analysis of 79 prognostic DEGs. a The PPI network among candidate genes obtained from the STRING database. 
b Hub genes with the top 15 degree of interaction. c The correlation analysis of candidate genes
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Fig. 3  Construction of a combined ferroptosis and pyroptosis signature in the TCGA-LIHC dataset. a The Kaplan–Meier curve survival analysis. b 
The risk score curve plot and scatter plot of high- and low- risk HCC patients. c PCA plot of the TCGA dataset. d t-SNE analysis of the TCGA dataset. e 
Univariate Cox analysis of OS in the TCGA dataset. f Multivariate Cox analysis of OS in the TCGA dataset. g AUC of 1, 2, 3-year ROC used to assess the 
predictive ability of this signature. h AUC of this signature and clinicopathological parameters
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Fig. 4  The relationship between clinicopathological features of this novel signature Clinical characteristics (a), including tumor grade (b), clinical 
stage (c) and T stage (d) were significantly associated with the risk and risk score
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Fig. 5  The relationship between this signature and chemotherapeutic efficacy and ICIs-related molecules. a Low-risk group had a higher IC50 of 
cisplatin, doxorubicin and mitomycin. b High-risk group was positively related with CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT. c Low-risk group was 
negatively related with ICIs treatment represented by CTLA4-/PD-1-, CTLA4 + /PD-1-, CTLA4-/PD-1 + 
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Fig. 6  Validation of this novel signature in the ICGC (LIRI-JP) dataset. a The risk score curve plot in the ICGC dataset. b The risk score scatter plot of 
high- and low- risk HCC patients. c The Kaplan–Meier curve survival analysis. d AUC of 1-, 2-, 3-year ROC used to assess performance of this signature 
in predictive ability in the ICGC dataset. e PCA plot of the ICGC dataset. f t-SNE analysis of the ICGC dataset. g Univariate Cox analysis of OS in the 
ICGC dataset. h Multivariate Cox analysis of OS in the ICGC dataset
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independent of clinicopathological parameters (Fig.  6g 
and h). To provide a quantitative approach by which 
clinicians could predict probability of survival in HCC 
patients, we developed a nomogram by integrating of 
this novel prognostic signature and clinicopathological 
characteristics, including age, albumin, total bilirubin, 
prothrombin time, Child_Pugh classification, histologic 
grade, TNM stage and liver cirrhosis (Fig. 7a). The pre-
dictive accuracy of this nomogram was validated by its 
discrimination and calibration performance (Fig. 7b and 
c).

Functional analysis and immune cell infiltration
To explore the biological function and pathways associ-
ated with this signature, we performed GO and KEGG 
analysis based on DEGs between high- and low-risk 
group. In both TCGA and ICGC dataset,  GO terms for 
biological process were organelle fission, nuclear division 
and sister chromatid segregation; for cellular component 
were mainly associated with chromosome, such as spin-
dle, condensed chromosome, centromeric region (Fig. 8a 
and b). Besides, the KEGG results revealed that these 
DEGs mainly participated in cell cycle, PI3K-Akt signal-
ing pathway and cellular senescence (Fig. 8c and d).

To further investigate the relationship between this sig-
nature and immune profiles, we performed ssGSEA to 
calculate the score of immune-cell features and immune-
function characteristics. The score of macrophages, 
Th2_cells and Treg was higher in high-risk group, while 
neutrophils and NK cells earned a higher score in low-
risk group (Fig.  9a and b). Besides, MHC_class_I and 
Type_II_IFN_Response was mainly enriched in high- and 
low-risk group, respectively (Fig. 9c and d).

Discussion
As two novel cell death modalities, mounting evidence 
has demonstrated that ferroptosis and pyroptosis are inti-
mately related with tumor progression [29–31]. However, 
few studies have thoroughly explored the role of combing 
these 2 novel cell death modalities in HCC. In the pre-
sent research, we systematically investigated the expres-
sion and prognostic significance of 173 FRGs and 120 
PRGs in HCC. To our surprise, most of the FRGs (75.2%) 
and PRGs (59.2%) were found differentially expressed 
between HCC samples and normal ones, and approxi-
mately 40% of them were associated with survival in the 
univariate Cox analysis. These findings significantly dem-
onstrated the potential role of ferroptosis and pyroptosis 
in HCC and the possibility of constructing a prognostic 
expression signature from the perspective of these 2 cell 
death modalities.

A total of 13 genes were finally incorporated into this 
novel signature. ATG3, a major autophagy regulator, 

could promote ferroptosis via degradation of ferritin and 
accumulation of iron [32]. FLT3 inhibitor could prevent 
lipid peroxidation to protect cells against oxidative glu-
tamate toxicity, which involves  3 cell death modalities: 
apoptosis, ferroptosis and necroptosis [33]. G6PD has 
been considered as a critical pacesetter of pentose phos-
phate pathway that prevents erastin-induced ferroptosis 
when it was knocked down [12]. HIF-2a-HILPDA could 
selectively enrich polyunsaturated fatty acids and acts as 
a central driver of a ferroptotic cell death [34]. In HL-60/
NRASQ61L cells, HMGB1 knockdown could decrease 
erastin-induced ferroptosis via RAS-JNK/p38 signaling 
[35]. PRDX6, an essential family member of nonselenium 
peroxidases, could protect cells against ferroptotic pro-
cess and serve as a potential target to enhance antitumor 
activity of ferroptosis-based chemotherapeutics [36]. 
SLC1A5, which mediates uptake of neutral amino acids, 
has been reported to cause ferroptotic cell death when it 
is suppressed by miR-137 [37]. SLC7A11 is a mechanistic 
determinant which promotes tumoral lipid oxidation and 
ferroptosis when it is synergistically suppressed by immu-
notherapy and radiotherapy [10]. SQSTM1 is passively 
released in the context of GSDMD-mediated pyroptosis 
and found to mediate various biological processes, espe-
cially autophagy and ferroptosis [38, 39]. Downregula-
tion of GLMN levels could activate inflammasome and 
pyroptotic cell death of macrophages [40]. Tetherin could 
prevent T cell pyroptosis by interacting with LRPPRC 
and preventing the formation of LRPPRC-Bcl-2-Beclin 
1 ternary complex [41]. MKI67, a well-known marker of 
proliferation, was found involved in caspase-3-mediated 
apoptosis and caspase-1-mediated pyroptosis of CD4 
T cells in HIV [42]. Knockdown of UBE2D2, a member 
of ubiquitin-conjugating enzymes, could significantly 
reduce SQSTM1 recruitment, which is passively released 
in the context of GSDMD-mediated pyroptosis [43].

Recent studies have confirmed that ferroptosis and 
pyroptosis are significantly associated with antitumor 
activity. Tumor cells undergoing ferroptosis and pyrop-
tosis could recruit tumor-suppressed immune cells 
and enhance antitumor immunity. To investigate the 
immune-cell characteristics and immune-function fea-
tures of this signature, we performed ssGSEA based on 
DEGs between different risk groups. The results showed 
that high-risk group of both datasets earned higher scores 
of macrophages, Th2_cells and Treg, which are thought 
to promote tumor growth and invasion and tightly asso-
ciated with dismal prognosis [44–47]. MHC_class_I, 
a major antigen presenting process, was also enriched 
in high-risk group. It is possibly because the pore for-
mation with the pyroptotic cellular plasma membrane 
could release immune stimulants, which could attract 
activated dendritic cells and thus, promote anti-tumor 
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Fig. 7  Construction of a nomogram for predicting survival outcome. a Nomogram integrating of this novel ferroptosis and pyroptosis-related gene 
signature and clinicopathological features. b AUC of time-dependent ROC curves for nomogram. c Calibration plot of nomogram
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Fig. 8  Representative results of GO and KEGG analyses. The most significant GO enrichment and KEGG pathways in the TCGA dataset (a, c) and 
ICGC dataset (b, d) were displayed
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Fig. 9  Comparison of the ssGSEA score between different risk groups in the TCGA dataset and ICGC dataset. The score of 16 immune cells (a, b) and 
13 immune-related functions and pathways (c, d) were displayed in boxplots. Adjusted P values were showed as: ns, not significant; *, P < 0.05; **, 
P < 0.01; ***, P < 0.001
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T cell activity [48]. Besides, cells undergoing ferroptosis 
could attract dendritic cells by releasing lipid mediators 
[49]. The scores of NK_cells and Type_II_IFN_Response 
were higher in low-risk group by the fact that type II IFN 
is mainly released by NK cells [50], which are major com-
ponents of immune defense against tumorigenesis [51].

Several shortcomings should be acknowledged in our 
study. First, this combined ferroptosis and pyroptosis 
signature was constructed and verified using public data-
set. Real-world dataset is required to assess its accuracy 
and efficacy. Second, the molecular mechanisms between 
genes identified by this signature and tumor immunity in 
HCC are not elucidated. Future experimental studies are 
needed to address this problem.

Conclusions
In conclusion, a combined ferroptosis and pyroptosis 
signature was constructed for HCC, which was tightly 
associated with prognosis, clinicopathological features, 
immune profiles, chemotherapeutic efficacy and immu-
nosuppressive molecules. The molecular mechanisms 
between this signature and tumor immunity are largely 
unknown and require further experimental investigation.
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