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OBJECTIVE—Adiponectin receptor-1 (AdipoR1) expression in
skeletal muscle has been suggested to play an important role
in insulin resistance and diabetes. We aimed at evaluating the
presence of novel AdiopR1 splice variants in human muscle and
their regulation under physiological and pathophysiological states.

RESEARCH DESIGN AND METHODS—AdipoR1 59UTR
mRNA transcripts, predicted from bioinformatics data, were eval-
uated in fetal and adult human tissues. Expression and function
of the identified transcripts were assessed in cultured human
skeletal muscle cells and in muscle biopsies obtained from indi-
viduals with normal glucose tolerance (NGT) and type 2 diabetes
(n = 49).

RESULTS—Screening of potential AdipoR1 59UTR splice variants
revealed a novel highly abundant muscle transcript (R1T3) in ad-
dition to the previously described transcript (R1T1). Unlike R1T1,
R1T3 expression was significantly increased during fetal develop-
ment and myogenesis, paralleled with increased AdipoR1 protein
expression. The 59UTR of R1T3 was found to contain upstream
open reading frames that repress translation of downstream cod-
ing sequences. Conversely, AdipoR1 39UTR was associated with
enhanced translation efficiency during myoblast-myotube differen-
tiation. A marked reduction in muscle expression of R1T3, R1T1,
and R1T3-to-R1T1 ratio was observed in individuals with type 2
diabetes compared with expression levels of NGT subjects, paral-
leled with decreased expression of the differentiation marker myo-
genin. Among NGT subjects, R1T3 expression was positively
correlated with insulin sensitivity.

CONCLUSIONS—These results indicate that AdipoR1 receptor
expression in human skeletal muscle is subjected to posttran-
scriptional regulation, including alternative splicing and trans-
lational control. These mechanisms play an important role during
myogenesis and may be important for whole-body insulin
sensitivity. Diabetes 60:936–946, 2011

A
diponectin, an adipocyte-derived abundant
plasma protein (1), gained recognition as a po-
tential mechanistic link between obesity, insulin
resistance, and diabetes (2). Low serum levels

of adiponectin are found in obesity and diabetes (3,4),

whereas improvement in insulin sensitivity in obese and
diabetic patients, following thiazolidenediones treatment,
correlates with a marked increase in adiponectin levels
(5,6). The insulin-sensitizing effects of adiponectin are
mediated by inhibition of hepatic glucose production and
by stimulation of muscle fatty acid oxidation and glucose
transport (7–9).

Adiponectin biological effects may depend not only on
the relative circulating concentrations of the hormone but
also on the expression level and function of its receptors
(2). Thus, decreased expression (10–13) or impaired func-
tion of the receptors or their downstream effectors (13–16)
in obesity and diabetes may lead to reduction in adipo-
nectin bioactivity and in insulin sensitivity (2,11,13). Recent
studies have demonstrated that improvement in insulin
sensitivity following chronic exercise in obese subjects
with type 2 diabetes is associated with enhanced AdipoRs
mRNA expression in skeletal muscle and adipose tissue
(17–20) and cannot be fully explained by changes in cir-
culating adiponectin levels (17). Taken together, these
findings underline the potential importance of human
AdipoRs in the pathophysiology of insulin resistance
and diabetes. Nevertheless, assessment of the differen-
tial mRNA expression of AdipoRs yielded contradicting
results. When measured in skeletal muscles, mRNA ex-
pression of AdipoR1 (the predominant receptor in this
tissue) was found to be lower in subjects with normal
glucose tolerance (NGT) than in subjects with impaired
glucose tolerance or type 2 diabetes (18). In addition,
AdipoR1 expression was found to be upregulated in adi-
pose tissue but downregulated in skeletal muscle following
treatment of type 2 diabetic patients with rosiglitazone
(21). By contrast, treatment of individuals with type 2 di-
abetes with pioglitazone resulted in increased mRNA
levels for AdipoR1 and -2 in skeletal muscle biopsies, as-
sociated with increased whole-body insulin sensitivity
(22). Moreover, reduced AdipoR1 mRNA expression was
found to exist in muscles of subjects with a positive fam-
ily history of diabetes (12). Nevertheless, several other
reports did not demonstrate any significant changes in
AdipoR1 mRNA or protein expression in primary human
myotubes (14,23) or muscle biopsies from NGT versus
type 2 diabetic patients (24,25). These conflicting results
highlight the need for further studies to elucidate the
regulation of AdipoR1.

In addition to transcriptional alterations, posttran-
scriptional mechanisms have a profound role in protein
expression regulation. Alternative mRNA splicing is an
important mechanism for generating posttranscriptional
modulations and structural and functional diversity of
proteins (26,27). Another important mechanism is trans-
lational regulation of gene expression, which predominantly
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takes place through untranslated regions (UTRs) located at
the 59 and 39 ends of the mRNA (28).

In the current study, we have evaluated transcriptional
and posttranscriptional regulation of AdipoR1 gene ex-
pression in human skeletal muscle and assessed the po-
tential significance of novel muscle AdipoR1 59UTR splice
variants in subjects with NGT or type 2 diabetes.

RESEARCH DESIGN AND METHODS

Database-searching for splice variants of AdipoR1. The LEADS platform
(Compugen, Tel-Aviv, Israel) for clustering and assembly of genomic
sequences, cDNAs, and expressed sequence tags (29) was used to search
public databases for predicted splice variants of human AdipoR1. The tran-
scripts R1T1–R1T4 are schematically depicted in Fig. 1A.
Cell cultures. Primary human skeletal muscle cells (h-SkMcs) derived from
two healthy Caucasian donors (male aged 47 years and female aged 25 years,
respectively) were purchased from PromoCell (Heidelberg, Germany). Cells
were grown according to manufacturers’ instructions and differentiated by
changing the growth medium to h-SkMc differentiation medium (PromoCell)
supplemented for 10 days. For siRNA experiments, 48 h prior to differentiation
induction h-SkMcs were transfected with 100 nmol/L of the following siRNAs:
siGENOME SMARTpool AdipoR1-siRNA, siGENOME nontargeted (NT)-
siRNA, and R1T3-siRNA (sense, UAUGAUGACAUGAUCUCCAUU, antisense,
59-PUGGAGAUCAUGUCAUCAUAUU) using DharmaFECT1 transfection re-
agent (Dharmacon, Lafayette, CO). Human embroyonic kidney (HEK)293 and
C2C12 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% FBS. C2C12 myoblast differentiation was induced
by incubating an 85% confluent culture in DMEM with 2% horse serum for
4 days.
RNA isolation and RT-PCR analysis. Total RNA was isolated from cells with
a GenElute Mammalian Total RNA Miniprep kit (Sigma, St. Louis, MO) and
treated with DNase (Ambion, Austin, TX) to eliminate genomic DNA con-
tamination. Total RNA samples from human, monkey, and mouse tissues (all
male) were purchased from BioChain (Hayward, CA). First-strand cDNA was
synthesized from 1 mg total RNA using 2.5 units of Super AMV Reverse
Transcriptase (CHIMERx, Madison, WI), 10 pmol dT15, and 30 units of RNasin
(Promega, Madison, WI) in 20 mL reaction buffer. cDNA was amplified by PCR
using ReddyMix PCR Master Mix (Thermo-Scientific, Waltham, MA) in the
presence of 250 nmol/L primers. Primers sequences and PCR conditions are
detailed in Supplementary Table 1. To ensure quality and purity of cDNA
samples, RT-PCR with or without reverse transcriptase was performed for the
b-actin cDNA; no PCR products were observed in the negative controls. 59-
rapid amplification of cDNA ends (59-RACE) was performed as described in
the Supplementary Data.
Quantitative real-time PCR analysis. Gene expression levels were de-
termined using an ABI-Prism 7000 instrument (Applied Biosystems, Carlsbad,
CA). cDNA was amplified using SYBR Green PCR Master Mix (Applied Bio-
systems) supplemented with 250 nmol/L specific primers. Primer sequences
and quantitative PCR (qPCR) conditions are detailed in Supplementary Table 2.
For 18S rRNA level determination, cDNA synthesis was performed in the
presence of 50 pmol random hexamer primers, and the resulting cDNA was
assayed using a TaqMan gene expression assay (Hs99999901-s1; Applied
Biosystems). Target gene expression levels were normalized to mRNA levels
of TATA-binding protein (TBP), and results were analyzed using the 22(ΔCt)

method (ΔCtsample = Cttarget gene 2 Ctreference gene). When human muscle bi-
opsies were used, gene expression levels were normalized to b-actin mRNA
levels. To account for between runs, one skeletal muscle cDNA sample was
analyzed in each run as a calibrator and relative quantification of gene ex-
pression was performed by analyzing the qPCR data using the 22(ΔΔCt) method
(ΔΔCt = ΔCtsample 2 ΔCtcalibrator). Mouse AdipoR1 levels were normalized to
18S rRNA levels, and relative quantification of gene expression was performed
by data analysis using the 22(ΔΔCt) method.
Immunoblot analysis. Protein extracts from cells and tissues were prepared
by solubilization with extraction buffer (50 mmol/L Tris-HCl pH 7.4, 1% NP-40,
0.25% sodium deoxycholate, 150 mmol/L NaCl, 1 mmol/L EGTA, 1 mmol/L
Na3VO4, 1 mmol/L NaF, protease inhibitor cocktail [1:1000], and phosphatase
inhibitor cocktail 1 and 2 [1:100]) at 4°C. Supernatants (12,000 g) were re-
solved by SDS-PAGE and immunoblotted with the following antibodies:
AdipoR1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Abcam,
Cambridge, MA), myosin heavy chain (MyHC) (Millipore, Lake Placid, NY),
myogenin (Santa Cruz, CA), tubulin (Sigma), and actin (MP Biomedicals,
CA).
Reporter assays. The distinct AdipoR1–59UTRs and AdipoR1–39UTR were
cloned into pGL3-promoter vector (see Supplementary Data). Chimeric re-
porter gene (firefly luciferase) constructs were mixed with an expression

vector for Renilla luciferase (pRL-TK; Promega) in a 50:1 mass ratio, and the
two plasmids were cotransfected into cells using Lipofectamine 2000 (Invi-
trogen, CA). Cells were harvested 24 h after transfection (HEK293 and C2C12
myoblasts) or incubated with C2C12 differentiation medium for another 4 days
(C2C12 myotubes). Cell lysates were analyzed for firefly and Renilla luciferase
activity levels using the Dual-Luciferase Assay System (Promega). Firefly lu-
ciferase mRNA levels were quantified by qPCR and normalized to Renilla
mRNA levels. Relative quantification of gene expression was performed by
analyzing data using the 22(ΔΔCt) method.
Human studies. The study population consisted of 49 Caucasian men: 29 with
NGT and 20 with overt type 2 diabetes. Patients with malignant diseases, al-
cohol or drug abuse, or diabetic retinopathy or nephropathy or any acute or
chronic inflammatory disease were excluded from the study. The study was
approved by the ethics committee of the University of Leipzig (Leipzig, Ger-
many), and all study participants gave written informed consent. Blood samples
and skeletal muscle samples were collected between 0800 and 1000 h after an
overnight fast. Plasma insulin, glucose, leptin, and adiponectin concentrations
were determined as previously described (18). Insulin sensitivity was assessed
with the euglycemic-hyperinsulinemic clamp method as previously described
(18). Skeletal muscle biopsies were obtained under local anesthesia from the
right vastus lateralis muscle and were immediately snap-frozen in liquid ni-
trogen. mRNA expression levels in muscle samples were determined by qPCR
as described above.
Statistical analyses. Statistical analyses were conducted using SPSS (version
14; SPSS, Chicago, IL). Variables were tested for normal distribution using the
Kolmogorov-Smirnov and Shapiro-Wilk tests. Data are expressed as means 6
SD or median (interquartile range). Comparison of AdipoR1 transcripts levels
between different tissues was performed using one-way ANOVA. Comparison
of descriptive characteristics between the NGT and type 2 diabetes groups
was conducted using Student t test or Mann-Whitney U test (for normally and
non–normally distributed variables, respectively). We calculated Spearman
correlation coefficients between variables to examine associations of adipo-
nectin and its receptors with anthropometric and metabolic parameters.
Analyses were stratified according to the presence or absence of the diagnosis
of diabetes. Univariate and multivariate linear regression models produced
crude and age- and BMI-adjusted odds ratios for R1T1/actin and R1T3/actin
levels (after log transformation) and R1T3-to-R1T1 ratio among subjects with
NGT and type 2 diabetes. P , 0.05 was considered significant, and 0.05 , P ,
0.10 was considered representative of a trend.

RESULTS

Identification of human AdipoR1 59UTR splice
variants. The human AdipoR1 gene consists of eight
exons (E1–E8) (Fig. 1A) and seven introns, and the 59UTR
includes exon 1 and part of exon 2 (8). Using the LEADS
Human Transcriptosome Database, four predicted 59UTR
splice variants that encode the AdipoR1 protein were
identified (Fig. 1A and Supplementary Table 4). R1T1
corresponds to the published transcript (8), whereas the
other potential transcripts result from alternative 59 start
(R1T2), alternative additional 59 exon (R1T3), or both
(R1T4), the latter of which has been reported in the public
domain (NM_001127687). RT-PCR analysis revealed the
expression of the known R1T1 transcript in addition to the
novel suggested R1T2 and R1T3 transcripts, but not of
R1T4, in the various tissues assessed (Fig. 1B). To further
analyze the transcription start sites of the newly identified
transcripts and assess the existence of potential additional
AdipoR1 transcripts, we performed 59-RACE using two of
the main adiponectin target tissues: liver and skeletal
muscle (Fig. 1C). Whereas the liver exhibited a single 59-
RACE product identified by sequence analysis as R1T1,
two major products, corresponding to R1T1 and R1T3,
were detected in skeletal muscle. The transcription start
site was identical for both transcripts, indicating that they
are not derived from alternative promoter usage but from
differential splicing. The 59-RACE analysis and additional
qPCR analysis demonstrated relatively low abundance of
R1T2 (data not shown). Therefore, we further character-
ized the expression of R1T1 and RIT3 under physiological
and pathological conditions.
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FIG. 1. Identification and tissue distribution of human AdipoR1 59UTR splice variants. A: Schematic representations of four predicted transcripts
of AdipoR1. The noncoding and coding regions of AdipoR1 transcripts are represented by white and black boxes, respectively. The spotted boxes
represent the putative novel exons. The arrows indicate the locations of primers used in the RT-PCR analysis. B: RT-PCR analysis using transcript-
specific primers in various human tissues. C: Electrophoresis results of 59-RACE PCR products from liver and skeletal muscle. 59-RACE analysis
was performed as described in the Supplementary Data. Molecular weight markers are shown in the far left lane. D: qPCR analysis of R1T1 and
R1T3 mRNA expression in various human male tissues normalized to TBP. Each sample was measured in triplicates. Data are expressed as the
means 6 SD of the various tissues (n ‡ 2). E: Semiquantitative RT-PCR analysis of R1T1 and R1T3 expression in human tissues was performed
using primers designed from exon 1 and exon 2 of AdipoR1 mRNA, which simultaneously detect both transcripts. F: Western blot analysis of
AdipoR1 protein expression in human tissues. Equal amounts (50 mg) of protein lysates were resolved by means of 10% SDS-PAGE and were
subjected to Western immunoblotting using anti-AdipoR1 antibody. Anti-GAPDH and anti-actin antibodies were used as loading controls.
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Tissue distribution of R1T1 and R1T3. qPCR analysis
was conducted to estimate the relative distribution of the
two transcripts in various human tissues relevant to adi-
ponectin biological activities (liver, skeletal muscle, and
adipose tissue, insulin sensitizing effects; artery and vein,
antiatherogenic effects; and hypothalamus, food intake
regulation) (7,30,31). According to this analysis, R1T1 is
abundant in most of the studied tissues, whereas R1T3 is
highly expressed in skeletal muscle (Fig. 1D). Similarly,
PCR analysis using primers designed from exons 1 and 2 of
AdipoR1, which simultaneously detects both transcripts,
demonstrated that R1T3 is the muscle predominant tran-
script (Fig. 1E). These findings indicate that the alterna-
tively spliced variants of AdipoR1 are expressed in a
tissue-specific manner.

When AdipoR1 protein expression was assessed, a sig-
nificantly higher protein level of AdipoR1 could be ob-
served in skeletal muscle compared with other adiponectin
target tissues including liver and brain (Fig. 1F). In-
terestingly, differences in AdipoR1 mobility on SDS-PAGE
were detected between the various tissues, suggesting
that AdipoR1 may undergo tissue-specific posttranslational
modifications.
Expression of R1T3 in mammals. The R1T3 transcript
results from an insertion of a 67-bp exon (exon 1c) (Fig. 1A)
between exons 1 and 2 in the 59UTR of AdipoR1 mRNA. To
examine whether this additional exon is conserved among
other species, we screened the public databases. The ge-
nomic organization of exon 1c was identified primates
(macaque and chimpanzee) and Laurasiatheria (dog and
horse) but not in rodents (such as mouse) (Supplementary
Fig. 1A). Indeed, similar to the observation in human

tissues (Fig. 1E), a high level of the Macaca-Mulatta R1T3
homolog could be detected in skeletal muscle but not in
liver, brain, or heart (Supplementary Fig. 1B and C). An
R1T3 mouse homolog could not be detected in the mouse
tissues assessed, and the faint band observed in mouse
muscle (Supplementary Fig. 1B) was found to represent an
AdipoR1 transcript, resulting from insertion of an alter-
native exon distinct from human 1c exon (Supplementary
Table 4).
Developmental regulation of R1T1 and R1T3 tran-
scripts. Because alternative splicing is often developmen-
tally regulated, we next evaluated the expression pattern
of AdipoR1 transcripts during embryogenesis. As demon-
strated in Fig. 2A and B, the predominant transcript in
skeletal muscle during embryo development is R1T1,
whereas R1T3, the main transcript in adult muscle, was
detected at low levels only in the mature, 38-week-old fetus.
Correspondingly, protein expression of AdipoR1 was low
during embryogenesis and increased significantly in adult
skeletal muscle (Fig. 2C).
Regulation of R1T1 and R1T3 transcripts during
muscle differentiation. To assess whether expression of
R1T1 and R1T3 transcripts is subjected to differentiation-
dependent modulation, we next compared the frequency of
R1T1 and R1T3 and AdipoR1 protein expression in primary
culture of human skeletal muscle cells (h-SkMcs) before
and following differentiation. RT-PCR and Western blot
analyses demonstrated that, similar to embryo development,
differentiation of myoblasts to myotubes was associated
with robust increase in R1T3 expression (Fig. 3A and B) and
a marked increase in AdipoR1 protein expression (Fig. 3C).
The increase in R1T3 transcript and in AdipoR1 protein

FIG. 2. Developmental regulation of R1T1 and R1T3 transcripts. A: qPCR analysis of R1T1 and R1T3 mRNA expression normalized to TBP in fetal
and adult human tissues. Each sample was measured in triplicate. Data are expressed as means 6 SD (n ‡ 2). B: Semiquantitative RT-PCR analysis
of R1T1 and R1T3 expression (as described in Fig. 1) in fetal and adult human skeletal muscles. C: Western blot analysis of AdipoR1 protein
expression in fetal and adult human skeletal muscles. Equal amounts (50 mg) of protein lysates were resolved by means of 10% SDS-PAGE and
were subjected to Western immunoblotting using anti-AdipoR1 antibody. Anti-actin and anti-GAPDH were used as loading controls.
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level paralleled with cell differentiation as indicated by in-
creased expression of myogenin and MyHC (Fig. 3A and C).
Knockdown of AdipoR1 expression by R1T3-siRNA.
To evaluate the competence of R1T3 transcript to produce
AdipoR1 protein, we employed RNAi to downregulate ei-
ther R1T3, using siRNA specific to the human 1c exon
(R1T3-siRNA), or the expression of both R1T1 and R1T3

transcripts, using an siRNA pool targeting different sites of
AdipoR1 open reading frame (ORF) (AdipoR1-siRNA). As
depicted in Fig. 3D, R1T3-siRNA efficiently silenced R1T3
without affecting R1T1 expression, whereas AdipoR1-
siRNA downregulated both transcripts. Transfection with
either R1T3-siRNA or AdipoR1-siRNA resulted in sub-
stantial reduction of AdipoR1 protein (Fig. 3E) (P , 0.001

FIG. 3. Alterations in AdipoR1 splice variants and AdipoR1 protein expression levels during h-SkMc differentiation and in knockdown experi-
ments. A: qPCR analysis of R1T1, R1T3, and myogenin mRNA expression normalized to TBP in h-SkMc myoblasts and myotubes. Each sample was
measured in triplicate. Data are expressed as the means6 SD of three independent experiments. B: Semiquantitative RT-PCR analysis of R1T1 and
R1T3 expression (as described in Fig. 1) in h-SkMc myoblasts and myotubes. C: Western blot analysis of AdipoR1 protein expression in h-SkMc
myoblasts and myotubes. Equal amounts (50 mg) of protein lysates were resolved by means of 10% SDS-PAGE and were subjected to Western
immunoblotting using anti-AdipoR1, anti-MyHC, anti-myogenin (as differentiation markers), and anti-tubulin (as loading control) antibodies.
D: qPCR analysis of R1T1 and R1T3 expression in h-SkMc transfected with siRNAs (n = 3). The cells were transfected with 100 nmol/L NT-siRNA,
pool of siRNAs targeting different sites of the AdipoR1 ORF (AdipoR1-siRNA), or with siRNA targeting exon 1c (R1T3-siRNA). Forty-eight hours
after transfection, cell differentiation was induced by incubation with differentiation medium for 10 days and mRNA expression was measured.
Data are expressed as means 6 SD. E: Western blot analysis of AdipoR1 protein expression in h-SkMc transfected with siRNAs as described above
(n = 3). Equal amounts (40 mg) of protein lysates were resolved by means of 10% SDS-PAGE and were subjected to Western immunoblotting using
anti-AdipoR1 and anti-tubulin (as loading control) antibodies. The relative band intensity (RBI) was determined by densitometry of AdipoR1 band
intensity, normalized to tubulin band intensity. An average RBI value from three independent experiments is shown. P values were evaluated using
Student t test. *P < 0.05; **P < 0.005. NS, nonsignificant.
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for both, compared with NT-siRNA), indicating that R1T3
is a functional transcript important for AdipoR1 protein
expression in differentiated h-SkMc.
Evaluation of AdipoR1 transcripts in human skeletal
muscle of subjects with NGT and type 2 diabetes. The
abundance of AdipoR1 transcripts in skeletal muscle of
subjects with NGT (n = 29) and type 2 diabetes (n = 20)
was next studied. Basal characteristics of both groups are
demonstrated in Table 1. As can be observed, the type 2
diabetic patients were significantly older, had higher BMI
values, and had significantly decreased plasma adipo-
nectin concentrations and increased plasma leptin levels.

qPCR analysis of cDNA obtained from skeletal muscle of
these subjects demonstrated decreased expression of
R1T1 (P , 0.001) and R1T3 (P , 0.001) in the type 2 di-
abetic group compared with the NGT group (Fig. 4A and
B). The reduction in R1T3 transcript levels was more
profound than the reduction observed in R1T1 levels
among the type 2 diabetic group (by fourfold and by 2.2-
fold compared with the NGT group, respectively). Ac-
cordingly, R1T3-to-R1T1 ratio was found to be 37% lower
in the type 2 diabetic group than in the NGT group (1.11 vs.
1.76, respectively; P , 0.001) (Fig. 4C). In a multivariate
linear regression analysis, adjusted for both age and BMI
differences, type 2 diabetes remained independently as-
sociated with decreased expression of R1T1 (b = 20.45;
P = 0.018), R1T3 (b = 20.40; P = 0.037), and R1T3-to-R1T1
ratio (b =20.29; P = 0.006) compared with the NGT group.
A statistically significant correlation was found between
R1T3 expression levels and the degree of insulin sensitiv-
ity, as assessed by glucose infusion rate (GIR), within the
NGT subjects (r = 0.39, P = 0.03) (Table 2). In addition,
there was a trend toward a negative correlation between
the expression of both transcripts and fasting plasma in-
sulin levels in these subjects (R1T1, r = 20.35, P = 0.06;
R1T3, r =20.34, P = 0.06) (Table 2). Because our results in
the h-SkMcs supported a differentiation-dependent modu-
lation of R1T3 transcript, we next assayed the expression
of the muscle differentiation factor myogenin within the
two groups. A significant decreased myogenin expression
was observed in the type 2 diabetic group compared with
the NGT group (P , 0.001) (Fig. 4D).
Effect of 59UTR of R1T1 and R1T3 on translation
efficiency. Alternative splicing in the 59UTR could affect
posttranscriptional regulation of gene expression due to
differences in the translation efficiency of distinct splice
variants (32,33). To evaluate whether introduction of an

additional 59 exon in R1T3 affects translational efficiency,
we cloned the distinct 59UTRs of R1T3 and R1T1 upstream
of a luciferase reporter gene (Fig. 5A). HEK293 cells were
transfected with the respective constructs, and after 24 h
cells were assayed for luciferase activity. These experi-
ments demonstrated that exon 1c insertion in the 59UTR of
R1T3 caused a significant decrease in luciferase activity
without a significant change in transcript levels (Fig. 5B).
Similar results were obtained using C2C12 myoblasts and
myotubes (Fig. 5B). Analysis of the R1T3–59UTR nucleo-
tide sequence revealed that exon 1c insertion introduces
four novel upstream AUG (uAUG) start codons, creating
new upstream ORFs (uORFs) that may reduce the efficient
translation of the downstream coding sequences (Fig. 5A
and Supplementary Fig. 2). Indeed, elimination of the new
uORFs by mutating the four uAUG initiation codons to
ACG significantly enhanced translation efficiency (Fig.
5B). Altogether, these findings indicate that the 59UTR of
R1T3 attenuates the translation of downstream coding
sequences compared with the 59UTR of R1T1, probably
due to introduction of uORFs.
Regulation of AdipoR1 translation through its 39UTR
during muscle differentiation. In addition to the 59UTR,
the 39UTR is known to play an important role in regulation
of mRNA translation (28) and may be part of the post-
transcriptional mechanisms contributing to the marked

TABLE 1
Baseline anthropometrics and metabolic characteristics of men
with NGT and type 2 diabetes

NGT Type 2 diabetes

n 29 20
Age (years) 30.8 6 10.5 53.1 6 7.0*
BMI (kg/m2) 25.4 6 3.0 34.7 6 4.3*
Fat mass (%) 14.1 6 8.1 35.6 6 5.8*
FPG (mmol/L) 5.1 6 0.7 6.4 6 0.3*
FPI (pmol/L) 13.7 (6.6–18) 159 (130–239)*
GIR (mg/kg/min) 101 (96.5–119) 48.5 (24.3–55.7)*
Adiponectin (mg/mL) 13.4 6 3.6 4.3 6 2.2*
Leptin (pg/mL) 3.6 (2.0–8.5) 16.4 (13.8–18.8)*

Data are expressed as means6 SD or as median (interquartile range)
unless otherwise indicated. FPG, fasting plasma glucose; FPI, fasting
plasma insulin. *P , 0.001.

FIG. 4. Evaluation of AdipoR1 transcripts and myogenin in human
skeletal muscle of subjects with NGT and type 2 diabetes (T2D). R1T1
mRNA levels (A), R1T3 mRNA levels (B) and R1T3 mRNA relative to
R1T1 mRNA expression (C) in subjects with NGT (n = 29) and type 2
diabetes (n = 20). D: Myogenin mRNA levels in subjects with NGT (n =
25) and type 2 diabetes (n = 12). Data are results of qPCR analysis
expressed as means 6 SD. Gene expression levels were normalized to
b-actin mRNA levels. Relative quantification of gene expression was
calculated as described under RESEARCH DESIGN AND METHODS. The P values
were evaluated using Student t test. *P < 0.001.
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increase of AdipoR1 protein expression during muscle
differentiation (Fig. 3C). To address this possibility, we
cloned the human AdipoR1 39UTR (identical for both R1T1
and R1T3) downstream of the luciferase coding region of
a pGL3 reporter vector (LUC-R1–39UTR) (Fig. 6A). As de-
picted in Fig. 6B, a significant increase in luciferase ac-
tivity of LUC-R1–39UTR construct was detected in C2C12
myotubes compared with C2C12 myoblasts, suggesting
that alterations in endogenous factors during muscle dif-
ferentiation enhance the translation of human AdipoR1
through its 39UTR. In support of this observation were the
findings that differentiation of C2C12 cells, which express
the mouse homolog of R1T1, is associated with a marked
increase in AdipoR1 protein levels in the absence of sig-
nificant differences in total mRNA levels (Fig. 6C–E).

DISCUSSION

In the current study, we demonstrate an important role
for posttranscriptional mechanisms, including alternative
splicing and translational control, in regulation of AdipoR1
expression in human skeletal muscle. We identified a novel
AdipoR1 splice variant (R1T3) derived from an insertion of
additional short exon located in intron 1 at the 59UTR
of human AdipoR1 gene. R1T3 is abundantly and pre-
dominantly expressed in adult human muscle, contrary to
the previously described human AdipoR1 mRNA transcript
R1T1, which is ubiquitously expressed in adult human
tissues including muscle (8). The two distinct transcripts
are controlled by the same promoter, and both encode
AdipoR1 receptor. R1T3 is subjected to developmental
regulation, and its expression is considerably increased
during human myoblast-myotube differentiation and dur-
ing fetal development and adaptation to extrauterine en-
vironment. Comparison of translational efficiency of the
discrete transcripts revealed that exon 1c insertion in the
59UTR of R1T3 introduces uORFs, which suppress trans-
lation of the downstream coding region in a cell type–
independent mechanism. Conversely, the 39UTR of AdipoR1
is associated with enhanced translation efficiency during
myoblast-myotube differentiation.

Posttranscriptional regulation is often controlled by
short sequence elements located at the 59 and 39 ends of
the mRNA. Our findings imply that AdipoR1 39UTR has
a significant role in the robust increase of AdipoR1 protein
expression observed during differentiation. MicroRNAs
and RNA-binding proteins are known to regulate mRNA
translation by interacting with specific elements in their
39UTR. Thus, the translational regulation of AdipoR1

39UTR may be linked to alterations in specific microRNAs
or RNA-binding proteins that occur during myoblast-
myotube differentiation. Recent studies suggest that
59UTR uORFs reduce the protein expression of thousands
of mammalian genes, and variation in these elements can
influence human phenotype and disease (34). In line with
these studies is our finding that introduction of uORFs in
R1T3 reduces its ability to translate downstream coding
sequences. The introduction of uORFs, which is upregu-
lated by alternative splicing during muscle differentiation,
may serve as a negative control mechanism to attenuate
the concomitant marked increase in protein translation
mediated by the 39UTR during differentiation. On the other
hand, in subsets of genes uORFs are known to have
a positive regulatory role. Introduction of uORFs in genes
with important roles in cell growth and differentiation
(35,36) has been shown to enable their selective trans-
lation under conditions that inhibit the translation of most
cellular transcripts such as terminal differentiation and
stress (37–40). Therefore, it may be hypothesized that such
a mechanism has evolved to enable adaptation of human
muscle AdipoR1 receptor expression to diverse physio-
logical and pathological stress conditions.

Studying AdipoR1 transcript expression in subjects with
NGT and type 2 diabetes demonstrated decreased ex-
pression of R1T1 and R1T3 in the type 2 diabetic group.
Because the study is cross-sectional in nature, we cannot
conclude a cause-and-effect relationship from this study.
Nevertheless, the correlation between decreased expres-
sion of the predominant human skeletal muscle transcript
R1T3 and reduced insulin sensitivity (assessed by GIR)
among healthy subjects may suggest that inhibition in
AdipoR1 mRNA expression precedes the development of
the metabolic abnormalities observed in insulin resistant
and overtly diabetic patients. In support of these findings is
the observation of decreased AdipoR1 mRNA expression
in skeletal muscle of normoglycemic subjects with a posi-
tive family history of diabetes compared with expression
in age- and BMI-matched control subjects with a negative
family history of the disease (12), as well as the observa-
tion that specific disruption of AdipoR1 in muscle had led
to significantly decreased glucose disposal rate and GIR,
indicating decreased muscle insulin sensitivity (41). In line
with our findings in human skeletal muscle are several
studies utilizing different animal models for obesity and
diabetes, which almost unanimously observed reduced
muscle AdipoR1 mRNA expression in various diabetic
phenotypes such as ob/obmice (11), db/dbmice (10), KKAy

TABLE 2
Spearman correlation matrix of adiponectin, R1T1, and R1T3 mRNA levels with clinical, biochemical, and hormonal parameters

NGT (n = 29) Type 2 diabetes (n = 20)

Adiponectin R1T1 R1T3 T3/T1 Adiponectin R1T1 R1T3 T3/T1

Age 20.27 20.12 20.22 20.22 0.29 20.27 20.19 20.02
BMI 20.17 20.01 20.05 20.01 0.02 0.18 0.14 0.09
Fat mass % 20.35* 20.14 20.25 20.15 0.15 20.12 20.01 0.17
FPG 0.06 0.22 0.08 0.06 20.59† 0.05 0.02 0.05
FPI 20.28 20.35* 20.34* 20.22 20.49‡ 0.38 0.29 0.07
GIR 0.53† 0.29 0.39‡ 0.24 0.58† 0.32 0.13 20.28
Leptin 20.28 20.12 20.25 20.18 0.04 20.29 20.10 0.35
Adiponectin — 0.16 0.24 0.24 — 0.01 20.04 20.08
R1T1 — — 0.63† 0.18 — — 0.73† 20.23

FPG, fasting plasma glucose; FPI, fasting plasma insulin; T3/T1, R1T3-to-R1T1 ratio. †P , 0.01; ‡P , 0.05; *P , 0.07.
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mice (42), C57Bl/6 mice fed a high-fat and high-sucrose
diet (43), and obese Zucker rats (44).

Putative mechanism for the decreased expression of
AdipoR1 mRNA in diabetes had been raised following the
observations that insulin itself acted as a negative regula-
tor of AdipoR1 mRNA expression (10,11). It had been

suggested that this negative regulation is mediated via the
phosphatidylinositol 3-kinase/Foxo1 pathway (11) and that
AdipoR1 promoter contains a putative insulin-responsive
element (45). Consistent with this proposition is our find-
ing of a negative association between the expression of
AdipoR1 transcripts and fasting plasma insulin levels

FIG. 5. Effect of 59UTR of R1T1 and R1T3 on translation efficiency. A: Schematic representation of the generated constructs containing the al-
ternative AdipoR1 59UTRs. R1T1 and R1T3 59UTR were fused upstream to a firefly luciferase reporter gene (R1T1–59UTR-LUC and R1T3–59UTR-
LUC, respectively). The uAUG initiation codons (denoted as ATG) in the R1T3–59UTR-LUC construct were altered to ACG codons by site-directed
mutagenesis to generate an R1T3-LUC DATGs construct. B: Luciferase activity and mRNA expression of the constructs transfected in HEK293 and
C2C12 cells. Cells were transiently cotransfected with each of the cloned firefly reporter plasmids (R1T1–59UTR-LUC [R1T1], R1T3–59UTR-LUC
[R1T3], or R1T3-LUC DATGs [R1T3 DATGs]) and with the Renilla plasmid as a control for transfection efficiencies. Twenty-four hours after
transfection, the cells were harvested (HEK293 and C2C12 myoblasts) or incubated with C2C12 differentiation medium for another 4 days (C2C12
myotubes). Firefly luciferase activities were assessed and normalized to Renilla values. The results are expressed relative to R1T1–59UTR-LUC
luciferase activity. Firefly luciferase mRNA levels in the transfected cells were quantified using qPCR and normalized to Renilla mRNA levels
(lower panel). Data are expressed as the means 6 SD of three independent experiments. P values were evaluated using Student t test. *P < 0.002.
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among subjects with NGT. Nevertheless, our observation
of a significant decrease in R1T3-to-R1T1 ratio in the type 2
diabetic group compared with the NGT group cannot be
explained solely by regulation of the AdipoR1 promoter
but, rather, may indicate diabetes-specific repression of
AdipoR1 alternative splicing. This raises the possibility
that R1T3 repression in diabetes may represent a com-
pensatory mechanism to enhance AdipoR1 biosynthesis
when AdipoR1 gene transcription is significantly reduced.

An additional putative mechanism to explain the differ-
ences in AdipoR1 transcript expression may be alteration
in fiber type composition and extent of differentiation in
skeletal muscle of the type 2 diabetic patients, which is
supported by the finding of decreased expression of
myogenin in the diabetic muscles. Other than as a marker
for myoblast-myotube differentiation, myogenin had also
been suggested to play a role in regulation of slow oxida-
tive phenotype (Type I) of human muscle fibers (46).
Furthermore, insulin-resistant skeletal muscle cells had
been reported to have repressed myogenin expression and
to display oxidative stress and lower mitochondrial ca-
pacity (47). Indeed, as previously described, skeletal
muscle of type 2 diabetic patients represents reduced ox-
idative capacity in parallel with increased glycolytic and
altered muscle fiber composition (48), and a positive

correlation between the proportion of type I myocytes and
insulin sensitivity had been demonstrated even in normo-
glycemic subjects (49). The robust increase in the ex-
pression of RIT3 late in gestation, when a very rapid
muscle differentiation and transition in muscle fiber type
occurs favoring oxidative over glycolytic capacity (50),
may support the notion that R1T3 is a specific transcript
expressed in oxidative and differentiated muscle fibers.

In summary, the work reported here describes a novel
skeletal muscle–specific AdipoR1 transcript that is signif-
icantly increased during myoblast-myotube differentiation
and fetal development and demonstrates an important role
for posttranscriptional mechanisms in the regulation of
AdipoR1 biosynthesis in skeletal muscle. Further studies
will be required to sort out the cellular factors involved in
the regulation of R1T3 mRNA expression and AdipoR1
transcript translation and to understand their potential
influence on AdipoR1 protein expression and adiponectin
biological action in muscle.
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