# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4-Benzenesulfonamidobenzoic acid

# Hafiz Muhammad Adeel Sharif,<sup>a</sup> Gui-Ying Dong,<sup>b</sup> Muhammad Nadeem Arshad<sup>a</sup> and Islam Ullah Khan<sup>a</sup>\*

<sup>a</sup>Materials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and <sup>b</sup>College of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China

Correspondence e-mail: iukhangcu@126.com

Received 4 November 2009; accepted 9 November 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.199; data-to-parameter ratio = 18.5.

In the molecule of the title sulfonamide compound,  $C_{13}H_{11}NO_4S$ , the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent molecules are linked *via* classical intermolecular N-H···O and O-H···O, and non-classical C-H···O hydrogen bonds, which stabilize the crystal structure.

### **Related literature**

For the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Innocenti *et al.* (2004); Parai *et al.* (2008); Rathish *et al.* (2009); Selvam *et al.* (2001). For related structures of sulfonamide derivatives with 4–aminobenzoic acid, see: Arshad *et al.* (2009); Khan *et al.* (2009); Nan & Xing (2006).



## **Experimental**

Crystal data  $C_{13}H_{11}NO_4S$   $M_r = 277.30$ Monoclinic,  $P2_1/c$  a = 5.2050 (3) Å b = 37.726 (2) Å

c = 7.3781 (4) Å  $\beta = 117.510 (3)^{\circ}$   $V = 1284.98 (13) \text{ Å}^{3}$ Z = 4



 $\mu = 0.26 \text{ mm}^{-1}$ T = 295 K

F

#### Data collection

| Bruker CCD diffractometer            | 13550 measured reflections             |
|--------------------------------------|----------------------------------------|
| Absorption correction: multi-scan    | 3185 independent reflections           |
| (SADABS; Sheldrick, 1996)            | 2633 reflections with $I > 2\sigma(I)$ |
| $T_{\min} = 0.935, T_{\max} = 0.958$ | $R_{\rm int} = 0.025$                  |
|                                      |                                        |

### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.065 & 172 \text{ parameters} \\ wR(F^2) &= 0.199 & \text{H-atom parameters constrained} \\ S &= 1.10 & \Delta\rho_{\text{max}} &= 0.38 \text{ e } \text{\AA}^{-3} \\ 3185 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.36 \text{ e } \text{\AA}^{-3} \end{split}$$

 $0.26 \times 0.21 \times 0.19 \text{ mm}$ 

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                        | $D-\mathrm{H}$               | $H \cdots A$                 | $D \cdots A$                                     | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------|---------------------------|
| $\begin{array}{c} N2 - H2 \cdots O8^{i} \\ O5 - H5 \cdots O6^{ii} \\ C18 - H18 \cdots O5^{iii} \\ C19 - H19 \cdots O6^{iv} \end{array}$ | 0.81<br>0.82<br>0.93<br>0.93 | 2.28<br>1.82<br>2.58<br>2.48 | 3.054 (4)<br>2.625 (3)<br>3.413 (4)<br>3.348 (4) | 162<br>168<br>150<br>155  |

Symmetry codes: (i) x + 1, y, z; (ii) -x - 1, -y + 1, -z - 1; (iii) -x - 1, -y + 1, -z; (iv) x, y, z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Government College University and the Scientific Research Fund of Hebei Provincial Education Department (project 2006114) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2179).

#### References

- Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, 0230.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Innocenti, A., Antel, J., Wurl, M., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 5703–5707.

- Khan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073.
- Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.
- Parai, K. M., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.

Rathish, I. G., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). *Bioorg. Med. Chem. Lett.* 19, 255–258.

Selvam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o3086 [doi:10.1107/S1600536809047291]

# 4-Benzenesulfonamidobenzoic acid

# H. M. A. Sharif, G.-Y. Dong, M. N. Arshad and I. U. Khan

#### Comment

Benzene sulfonamide derivative have shown antimalarial (Parai *et al.*, 2008), carbonic anhydrase inhibitors (Innocenti *et al.*, 2004), anti*HIV* (Selvam *et al.*, 2001) and antiinflamatory (Rathish *et al.*, 2009) activities. In continuation of synthesis and structural studies of different benzene sulfonamide derivative (Khan *et al.*, 2009; Arshad *et al.*, 2009), we report here the molecular and crystal structures of title compound. The molecular structure of the title compound, **I**, is illustrated in Fig. 1. In **I**, phenyl and *p*-aminobenzoic acid moieties are connected through the SO<sub>2</sub> group. The structure of **I** is comparable with 4–(tosylamino)benzoic acid, (Nan & Xing, 2006). The dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings (C20–C25 and C14–C19) are inclined at 45.36 (15)° to one another. The torsion angle C14—N2—S1—C20 in the central part of the molecule is 70 (1)°.

In the crystal, adjacent molecules are linked *via* intermolecular classical N—H…O and O—H…O and non–classical C—H…O hydrogen bonds (Tab. 1, Fig. 2), which stabilize the crystal structure.

### **Experimental**

The 4-amino benzoic acid (1 g, 7.3 mmol) was dissolved in distilled water (10 ml). The pH of the solution was adjusted at 8-9 using 1M Na<sub>2</sub>CO<sub>3</sub>. Benzene sulfonylchloride (1.29 g, 7.3 mmol) was added to the above solution and stirred at room temperature until all the suspended benzene sulfonyl chloride was consumed. On completion of the reaction the pH was adjusted 1–2, using 1N HCl acid. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol to yield colourless crystals.

#### Refinement

All H atoms were positioned geometrically an refined using a riding model with C—H = 0.93Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic, O—H = 0.82Å and  $U_{iso}(H) = 1.5U_{eq}(O)$  for the OH group and N—H = 0.81Å and  $U_{iso}(H) = 1.2U_{eq}(N)$  for the NH group.

# **Figures**



Fig. 1. The molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.



Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding omitted for clarity.

# 4-Benzenesulfonamidobenzoic acid

| Crystal | data |
|---------|------|
|---------|------|

 $C_{13}H_{11}NO_4S$  $M_r = 277.30$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 5.2050 (3) Å b = 37.726 (2) Å c = 7.3781 (4) Å  $\beta = 117.510 \ (3)^{\circ}$  $V = 1284.98 (13) \text{ Å}^3$ Z = 4

### Data collection

| Bruker CCD<br>diffractometer                                   | 3185 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2633 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.025$                  |
| T = 295  K                                                     | $\theta_{max} = 28.4^{\circ}$          |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 1.1^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -4 \rightarrow 6$                 |
| $T_{\min} = 0.935, T_{\max} = 0.958$                           | $k = -50 \rightarrow 45$               |
| 13550 measured reflections                                     | $l = -9 \rightarrow 9$                 |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.065$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.199$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0878P)^2 + 1.4857P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.10                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 3185 reflections                                       | $\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$                                 |
| 172 parameters                                         | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

methods

 $F_{000} = 576$  $D_{\rm x} = 1.433 {\rm ~Mg~m}^{-3}$ Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 5008 reflections  $\theta = 3.0 - 25^{\circ}$  $\mu = 0.26 \text{ mm}^{-1}$ *T* = 295 K Block, colourless  $0.26 \times 0.21 \times 0.19 \text{ mm}$ 

# Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| S1  | 0.27263 (17) | 0.36345 (2)  | 0.53929 (12) | 0.0443 (3)                |
| 05  | -0.4876 (5)  | 0.48980 (7)  | -0.2675 (3)  | 0.0496 (6)                |
| Н5  | -0.5699      | 0.5003       | -0.3768      | 0.074*                    |
| O6  | -0.2171 (5)  | 0.47077 (6)  | -0.4087 (3)  | 0.0464 (5)                |
| 07  | 0.4834 (6)   | 0.35320 (8)  | 0.7386 (4)   | 0.0693 (8)                |
| 08  | -0.0109 (5)  | 0.37334 (7)  | 0.5034 (4)   | 0.0557 (6)                |
| N2  | 0.4098 (5)   | 0.39697 (7)  | 0.4738 (4)   | 0.0408 (6)                |
| H2  | 0.5771       | 0.3942       | 0.5010       | 0.049*                    |
| C14 | 0.2360 (6)   | 0.41529 (7)  | 0.2848 (4)   | 0.0344 (6)                |
| C15 | 0.2845 (6)   | 0.41056 (8)  | 0.1173 (5)   | 0.0411 (7)                |
| H15 | 0.4269       | 0.3949       | 0.1242       | 0.049*                    |
| C16 | 0.1192 (6)   | 0.42930 (8)  | -0.0615 (5)  | 0.0406 (6)                |
| H16 | 0.1543       | 0.4267       | -0.1735      | 0.049*                    |
| C17 | -0.0980 (5)  | 0.45182 (7)  | -0.0728 (4)  | 0.0319 (5)                |
| C18 | -0.1453 (6)  | 0.45608 (8)  | 0.0961 (4)   | 0.0375 (6)                |
| H18 | -0.2921      | 0.4710       | 0.0884       | 0.045*                    |
| C19 | 0.0239 (6)   | 0.43826 (8)  | 0.2754 (4)   | 0.0386 (6)                |
| H19 | -0.0049      | 0.4417       | 0.3895       | 0.046*                    |
| C20 | 0.2370 (7)   | 0.32889 (8)  | 0.3691 (5)   | 0.0456 (7)                |
| C21 | 0.4682 (10)  | 0.30652 (11) | 0.4110 (8)   | 0.0731 (12)               |
| H21 | 0.6402       | 0.3090       | 0.5314       | 0.088*                    |
| C22 | 0.4401 (13)  | 0.28042 (13) | 0.2715 (11)  | 0.0938 (18)               |
| H22 | 0.5934       | 0.2650       | 0.2995       | 0.113*                    |
| C23 | 0.1881 (15)  | 0.27699 (14) | 0.0918 (10)  | 0.0938 (17)               |
| H23 | 0.1703       | 0.2594       | -0.0015      | 0.113*                    |
| C24 | -0.0327 (15) | 0.29943 (14) | 0.0524 (9)   | 0.1009 (19)               |
| H24 | -0.2033      | 0.2972       | -0.0692      | 0.121*                    |
| C25 | -0.0115 (10) | 0.32565 (11) | 0.1883 (7)   | 0.0724 (12)               |
| H25 | -0.1653      | 0.3411       | 0.1574       | 0.087*                    |
| C26 | -0.2763 (6)  | 0.47182 (7)  | -0.2629 (4)  | 0.0340 (6)                |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| S1  | 0.0400 (4)  | 0.0527 (5)  | 0.0429 (4)  | 0.0102 (3)  | 0.0214 (3)  | 0.0115 (3)   |
| 05  | 0.0442 (12) | 0.0658 (15) | 0.0422 (11) | 0.0254 (11) | 0.0228 (10) | 0.0118 (10)  |
| 06  | 0.0505 (12) | 0.0567 (13) | 0.0380 (11) | 0.0155 (10) | 0.0255 (10) | 0.0054 (9)   |
| 07  | 0.0665 (17) | 0.087 (2)   | 0.0466 (14) | 0.0161 (15) | 0.0193 (13) | 0.0233 (13)  |
| 08  | 0.0467 (13) | 0.0653 (15) | 0.0681 (16) | 0.0086 (11) | 0.0376 (12) | 0.0058 (12)  |
| N2  | 0.0281 (11) | 0.0490 (14) | 0.0410 (13) | 0.0053 (10) | 0.0121 (10) | 0.0076 (10)  |
| C14 | 0.0279 (12) | 0.0365 (14) | 0.0357 (13) | 0.0003 (10) | 0.0122 (10) | 0.0004 (10)  |
| C15 | 0.0350 (14) | 0.0452 (16) | 0.0460 (15) | 0.0146 (12) | 0.0210 (12) | 0.0041 (12)  |
| C16 | 0.0410 (15) | 0.0483 (16) | 0.0395 (14) | 0.0095 (12) | 0.0247 (12) | 0.0008 (12)  |
| C17 | 0.0277 (12) | 0.0343 (13) | 0.0342 (13) | 0.0010 (10) | 0.0146 (10) | -0.0026 (10) |
| C18 | 0.0361 (14) | 0.0393 (14) | 0.0421 (14) | 0.0095 (11) | 0.0223 (12) | 0.0009 (11)  |
| C19 | 0.0416 (15) | 0.0437 (15) | 0.0360 (14) | 0.0073 (12) | 0.0226 (12) | -0.0003 (11) |
| C20 | 0.0475 (17) | 0.0407 (15) | 0.0560 (18) | 0.0068 (13) | 0.0303 (15) | 0.0121 (13)  |
| C21 | 0.054 (2)   | 0.058 (2)   | 0.108 (4)   | 0.0152 (18) | 0.038 (2)   | 0.003 (2)    |
| C22 | 0.089 (4)   | 0.059 (3)   | 0.156 (6)   | 0.019 (2)   | 0.076 (4)   | -0.001 (3)   |
| C23 | 0.130 (5)   | 0.066 (3)   | 0.101 (4)   | 0.008 (3)   | 0.067 (4)   | -0.011 (3)   |
| C24 | 0.122 (5)   | 0.076 (3)   | 0.074 (3)   | 0.019 (3)   | 0.019 (3)   | -0.015 (3)   |
| C25 | 0.074 (3)   | 0.060 (2)   | 0.066 (2)   | 0.022 (2)   | 0.017 (2)   | 0.0007 (19)  |
| C26 | 0.0307 (13) | 0.0361 (13) | 0.0346 (13) | 0.0023 (10) | 0.0146 (10) | -0.0031 (10) |

Geometric parameters (Å, °)

| S1—O7     | 1.423 (3)   | C17—C26     | 1.482 (4) |
|-----------|-------------|-------------|-----------|
| S1—O8     | 1.423 (2)   | C18—C19     | 1.379 (4) |
| S1—N2     | 1.632 (3)   | C18—H18     | 0.9300    |
| S1—C20    | 1.760 (4)   | С19—Н19     | 0.9300    |
| O5—C26    | 1.279 (3)   | C20—C25     | 1.368 (5) |
| O5—H5     | 0.8186      | C20—C21     | 1.383 (5) |
| O6—C26    | 1.249 (3)   | C21—C22     | 1.383 (7) |
| N2—C14    | 1.440 (3)   | C21—H21     | 0.9300    |
| N2—H2     | 0.8048      | C22—C23     | 1.374 (8) |
| C14—C19   | 1.380 (4)   | С22—Н22     | 0.9300    |
| C14—C15   | 1.382 (4)   | C23—C24     | 1.347 (8) |
| C15—C16   | 1.390 (4)   | С23—Н23     | 0.9300    |
| C15—H15   | 0.9300      | C24—C25     | 1.376 (7) |
| C16—C17   | 1.386 (4)   | C24—H24     | 0.9300    |
| C16—H16   | 0.9300      | С25—Н25     | 0.9300    |
| C17—C18   | 1.386 (4)   |             |           |
| O7—S1—O8  | 120.12 (17) | C14—C19—C18 | 119.7 (3) |
| O7—S1—N2  | 106.43 (16) | C14—C19—H19 | 120.1     |
| O8—S1—N2  | 107.42 (14) | С18—С19—Н19 | 120.1     |
| O7—S1—C20 | 108.24 (17) | C25—C20—C21 | 119.8 (4) |
| O8—S1—C20 | 107.64 (16) | C25—C20—S1  | 120.2 (3) |
| N2—S1—C20 | 106.21 (14) | C21—C20—S1  | 119.9 (3) |
|           |             |             |           |

| С26—О5—Н5   | 109.5       | C20—C21—C22 | 119.1 (5) |
|-------------|-------------|-------------|-----------|
| C14—N2—S1   | 119.58 (19) | C20—C21—H21 | 120.4     |
| C14—N2—H2   | 115.3       | C22—C21—H21 | 120.5     |
| S1—N2—H2    | 113.4       | C23—C22—C21 | 120.7 (5) |
| C19—C14—C15 | 120.5 (3)   | C23—C22—H22 | 119.6     |
| C19—C14—N2  | 118.7 (3)   | C21—C22—H22 | 119.6     |
| C15—C14—N2  | 120.7 (2)   | C24—C23—C22 | 119.2 (5) |
| C14—C15—C16 | 119.6 (3)   | C24—C23—H23 | 120.4     |
| C14—C15—H15 | 120.2       | C22—C23—H23 | 120.4     |
| С16—С15—Н15 | 120.2       | C23—C24—C25 | 121.4 (5) |
| C17—C16—C15 | 119.9 (3)   | C23—C24—H24 | 119.3     |
| С17—С16—Н16 | 120.0       | C25—C24—H24 | 119.3     |
| С15—С16—Н16 | 120.0       | C20—C25—C24 | 119.7 (4) |
| C18—C17—C16 | 119.7 (3)   | C20—C25—H25 | 120.1     |
| C18—C17—C26 | 119.9 (2)   | C24—C25—H25 | 120.1     |
| C16—C17—C26 | 120.4 (2)   | O6—C26—O5   | 123.0 (3) |
| C19—C18—C17 | 120.4 (3)   | O6—C26—C17  | 120.2 (2) |
| C19—C18—H18 | 119.8       | O5—C26—C17  | 116.8 (2) |
| C17—C18—H18 | 119.8       |             |           |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|---------------------------|-------------|-------|--------------|---------|
| N2—H2···O8 <sup>i</sup>   | 0.81        | 2.28  | 3.054 (4)    | 162     |
| O5—H5···O6 <sup>ii</sup>  | 0.82        | 1.82  | 2.625 (3)    | 168     |
| C18—H18…O5 <sup>iii</sup> | 0.93        | 2.58  | 3.413 (4)    | 150     |
| C19—H19…O6 <sup>iv</sup>  | 0.93        | 2.48  | 3.348 (4)    | 155     |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*-1, -*y*+1, -*z*-1; (iii) -*x*-1, -*y*+1, -*z*; (iv) *x*, *y*, *z*+1.



Fig. 1

