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SUMMARY

Case-cohort designs are widely used in large cohort studies to reduce the cost associated with
covariate measurement. In many such studies the number of covariates is very large, so an effi-
cient variable selection method is necessary. In this paper, we study the properties of a variable
selection procedure using the smoothly clipped absolute deviation penalty in a case-cohort design
with a diverging number of parameters. We establish the consistency and asymptotic normality
of the maximum penalized pseudo-partial-likelihood estimator, and show that the proposed vari-
able selection method is consistent and has an asymptotic oracle property. Simulation studies
compare the finite-sample performance of the procedure with tuning parameter selection meth-
ods based on the Akaike information criterion and the Bayesian information criterion. We make
recommendations for use of the proposed procedures in case-cohort studies, and apply them to
the Busselton Health Study.

Some key words: Case-cohort design; Diverging number of parameters; Oracle property; Smoothly clipped absolute
deviation; Survival analysis; Variable selection.

1. INTRODUCTION

Large-scale epidemiological studies and disease prevention trials often follow thousands of
subjects for long periods of time. Measuring covariates for the entire study cohort can be pro-
hibitively expensive, especially when it involves taking biological samples or performing expen-
sive bioassays. Moreover, the rate of occurrence of the event of interest, such as cardiovascular
disease, stroke or death, is typically low in such studies. We refer to subjects who develop the
event of interest during the study as cases and the other subjects as noncases. If the covariates
were to be measured for everyone in the study, most of the cost would be spent on the noncases,
who do not contribute as much information as the cases. To reduce the cost and effort in collect-
ing expensive covariates while losing as little efficiency as possible, Prentice (1986) proposed
the case-cohort design, where complete covariate information is obtained from only a random
subcohort of the sample, as well as from all of the cases.

Various estimation methods have been developed for case-cohort studies under the propor-
tional hazards model (Cox, 1972). Prentice (1986) and Self & Prentice (1988) proposed a pseudo-
partial-likelihood method that modifies the risk set to account for subcohort sampling. Barlow
(1994) introduced a time-dependent weight to estimate the risk set from the subcohort sample
and developed a robust variance estimator for the regression parameters. Kalbfleisch & Lawless
(1988) proposed a more efficient weighting that uses the complete covariate history of all cases.
Borgan et al. (2000) further studied several types of weights under the stratified case-cohort
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design. Kulich & Lin (2004) established the asymptotic properties of the efficiently weighted
estimator of Kalbfleisch & Lawless (1988); Kang & Cai (2009) extended this estimator to stud-
ies with multivariate failure time outcomes, and Kim et al. (2013) further improved the estima-
tor’s efficiency in the presence of multivariate failure time outcomes. In this paper, we focus on
the efficient weighting proposed by Kalbfleisch & Lawless (1988) in a univariate unstratified
case-cohort design.

In large epidemiological studies that use the case-cohort design, many covariates are usually
collected, and often one goal of the research is to identify a subset of covariates related to the
event of interest. With the inclusion of interactions and polynomial terms, the number of candi-
date covariates can be very large. As Huber (1973) argued, in the context of variable selection,
the number of parameters should be considered as increasing to infinity with the sample size n.
In this paper, we consider the scenario where the model size dn diverges to infinity but at a slower
rate than the sample size. Traditional variable selection methods such as stepwise and best subset
selection are computationally intensive and unstable. Since the introduction of the lasso by Tib-
shirani (1996), penalty-based variable selection procedures have achieved great success. Under
certain regularity conditions, these methods can simultaneously select variables and estimate their
coefficients. Many penalty functions have been proposed, among which the smoothly clipped
absolute deviation (Fan & Li, 2001), adaptive lasso (Zou, 2006), adaptive elastic net (Zou &
Zhang, 2009) and minimax concave (Zhang, 2010) penalties have been shown to possess the ora-
cle property, namely, as n → ∞ the procedure correctly identifies the true model with probability
tending to unity and estimates the standard errors of nonzero parameters as efficiently as if the
true model were known. Fan & Li (2002) applied the smoothly clipped absolute deviation penalty
to the proportional hazards model and proved its oracle property. Cai et al. (2005) extended the
penalized partial likelihood procedure to multivariate models with a diverging number of param-
eters. However, to the best of our knowledge, the properties of penalized variable selection have
not been studied under the case-cohort design where not all covariates are fully observed.

2. PSEUDO-PARTIAL LIKELIHOOD FOR CASE-COHORT DESIGNS

Suppose there are n independent subjects in a cohort. Let Zi (t) be the dn × 1, possibly time-
dependent, covariate vector for subject i at time t . Since dn goes to infinity with n, all quantities
that are functions of the covariates depend on n. For notational simplicity, however, we shall
suppress the subscript n. Without loss of generality, we partition the real-valued true parameter
vector βn0 as (βT

n0,I, β
T
n0,II)

T, where βn0,I and βn0,II are the nonzero and zero components of βn0,
respectively. Denote by kn the dimension of βn0,I, which is allowed to diverge with n in such a
way that kn/dn converges to a constant c ∈ [0, 1].

Let T and C be, respectively, the time to the outcome of interest and the censoring time. Let
X = min(T, C) be the observed time and let � = I (T � C) be the censoring indicator, where
I (·) denotes the indicator function. We assume that T and C are independent, conditional on
Z . Define for subject i the counting process Ni (t) = I (Xi � t, �i = 1) and the at-risk process
Yi (t) = I (Xi � t). Let λi (t) denote the hazard function for subject i . Cox (1972) proposed the
proportional hazards model λi {t | Zi (t)} = λ0(t) exp{βT Zi (t)}, in which λ0(t) is an unspecified
baseline hazard function.

Under the case-cohort design, suppose that we randomly select a subcohort of fixed size ñ from
the full cohort. Let ξi denote the indicator of the i th subject being selected into the subcohort, and
let α = ñ/n = pr(ξi = 1) ∈ (0, 1] be the selection probability for the i th subject. Here we consider
simple random sampling without replacement. Under this sampling scheme, (ξ1, . . . , ξn) are
correlated. The covariate histories are not observed for censored subjects outside the subcohort.
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If complete covariate histories are available for all the cases, one can use the following pseudo-
partial likelihood to estimate the regression coefficients β (Kalbfleisch & Lawless, 1988):

�̃n(β) =
n∑

i=1

∫ τ

0

⎡
⎣βT Zi (t) − log

n∑
j=1

ρ j (t)Y j (t) exp{βT Z j (t)}
⎤
⎦ dNi (t), (1)

where τ is the time at the end of the study and ρi (t) =�i + (1 − �i )ξi α̂
−1(t), with

α̂(t) = ∑n
i=1(1 − �i )ξi Yi (t)/{

∑n
i=1(1 − �i )Yi (t)} being a time-dependent estimator of the

true sampling probability α. The corresponding pseudo-partial score equation is

�̃′
n(β) =

n∑
i=1

∫ τ

0

{
Zi (t) − S̃(1)(β, t)

S̃(0)(β, t)

}
dNi (t) = 0,

where S̃(k)(β, t) = n−1 ∑n
i=1 ρi (t)Yi (t)Zi (t)⊗k exp{βT Zi (t)} for k = 0, 1, 2. Here a⊗0 = 1,

a⊗1 = a and a⊗2 = aaT for a vector a.

3. VARIABLE SELECTION WITH A PENALIZED PSEUDO-PARTIAL LIKELIHOOD

3·1. Penalized pseudo-partial likelihood

We define a penalized pseudo-partial likelihood as

Q̃n(β) = �̃n(β) − n
dn∑

j=1

Pλnj (|β j |), (2)

where Pλnj (|β j |) is a nonnegative penalty function with Pλnj (0) = 0. The nonnegative tuning
parameter λnj controls the model complexity. We use the smoothly clipped absolute deviation
penalty (Fan & Li, 2001) with covariate-specific tuning parameters λnj , which allows different
regression coefficients to have different penalty functions. The smoothly clipped absolute devi-
ation penalty is

Pλnj (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λnjθ, θ � λnj ,

−θ2 − 2aλnjθ + λ2
nj

2(a − 1)
, λnj < θ � aλnj ,

(a + 1)λ2
nj

2
, θ > aλnj ,

for some a > 2 and θ > 0. The first derivative of the penalty is

P ′
λnj

(θ) = λnj I (θ � λnj ) + (aλnj − θ)+
a − 1

I (θ > λnj ).

3·2. Regularity conditions

For each n, we define

S(k)
n (βn, t) = 1

n

n∑
i=1

Yi (t)Zi (t)
⊗k exp{βT

n Zi (t)} (k = 0, 1, 2),

s(k)
n (βn, t) = E{S(k)

n (βn, t)} (k = 0, 1, 2),
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en(βn, t) = s(1)
n (βn, t)

/
s(0)

n (βn, t),

Vn(βn, t) = S(2)
n (βn, t)S(0)

n (βn, t) − S(1)
n (βn, t)⊗2

S(0)
n (βn, t)2

,

Ṽn(βn, t) = S̃(2)
n (βn, t)S̃(0)

n (βn, t) − S̃(1)
n (βn, t)⊗2

S̃(0)
n (βn, t)2

,

In(βn) = E

{∫ τ

0
Vn(βn, t)S(0)

n (βn, t) d �0(t)

}
,

�n(βn) = var
{

n−1/2�̃′
n(βn)

}
.

We require the following regularity conditions:

Condition 1.
∫ τ

0 λ0(t) dt < ∞ and E{Y (τ )} > 0;

Condition 2. |Zi j (0)| + ∫ τ

0 |dZi j (t)| < C1 < ∞ almost surely for some constant C1, for
i = 1, . . . , n and j = 1, . . . , dn;

Condition 3. there exists a neighbourhood Bn of βn0 such that for all βn ∈Bn and t ∈
[0, τ ], ∂s(0)

n (βn, t)/∂βn = s(1)
n (βn, t) and ∂2s(0)

n (βn, t)/(∂βn∂β
T
n) = s(2)

n (βn, t). The functions

s(k)
n (βn, t) (k = 0, 1, 2) are continuous and bounded, and s(0)

n (βn, t) is bounded away from zero
on Bn × [0, τ ];

Condition 4. there exist positive constants C2, C3, C4 and C5 such that

0 < C2 < λmin{In(βn0)} � λmax{In(βn0)} < C3 < ∞,

0 < C4 < λmin{�n(βn0)} � λmax{�n(βn0)} < C5 < ∞,

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of a matrix;

Condition 5. min1� j�kn |βnj0|/λnj → ∞ as n → ∞;

Condition 6. lim infn→∞ lim infθ→0+ P ′
λnj

(θ)/λnj > 0 for j = 1, . . . , dn .

Condition 1 guarantees a finite baseline cumulative hazard and a nonempty risk set at the end
of the study. Condition 2 requires the stochastic process of each time-dependent covariate to have
bounded variation almost surely. Condition 3 essentially requires exp{βT

n Zi (t)} to be integrable

under a diverging dimension so that integration and differentiation with respect to S(k)
n (βn, t)

(k = 0, 1) can be interchanged. Condition 4 ensures that the covariance matrices of the score
function under both regular and case-cohort designs are positive definite and have uniformly
bounded eigenvalues for all n; it assumes a nonsingular Hessian matrix of the objective function
used for variable selection. The same condition has been assumed in other works on variable
selection (Peng & Fan, 2004; Cai et al., 2005; Cho & Qu, 2013). Condition 5 specifies the rate at
which the proposed procedure can distinguish nonzero parameters from zero ones. As n → ∞,
the size of nonzero parameters detectable by the procedure can approach zero, but at a slower
rate than the tuning parameter. This condition is required for the derivation of the asymptotic
properties of the proposed procedure, and has been assumed by many authors (e.g., Peng & Fan,
2004; Wang et al., 2009; Cho & Qu, 2013; Fan & Tang, 2013). In real-world biomedical research,
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there usually exists a fixed minimum clinically important effect size. Any effect smaller than this
size can effectively be treated as zero. Thus, Condition 5 is a reasonable requirement. Condition 6
implies that those zero parameters whose finite-sample estimates are of about the same scale as
the λnj will automatically be shrunk to zero; this helps to establish the oracle property of variable
selection.

3·3. Asymptotic properties

Throughout this paper we use Op(·) and op(·) to denote probability order relations and O(·)
and o(·) to denote almost-sure order relations. Let an = max1� j�kn {|P ′

λnj
(|βnj0|)|} and bn =

max1� j�kn {|P ′′
λnj

(|βnj0|)|}. We first prove the existence of a penalized pseudo-partial-likelihood
estimator that converges at rate Op{d1/2

n (n−1/2 + an)} and then establish its oracle property. The
proofs of Theorems 1 and 2 are provided in the Appendix.

THEOREM 1. Under Conditions 1–5, if bn → 0 and d4
n/n → 0 as n → ∞, then with proba-

bility tending to 1 there exists a local maximizer β̂n of Q̃n(βn) = �̃n(βn) − n
∑dn

j=1 Pλnj (|βnj |)
such that ‖β̂n − βn0‖ = Op{d1/2

n (n−1/2 + an)}.
From Theorem 1 one can obtain a (n/dn)

1/2-consistent penalized pseudo-partial-likelihood
estimator, provided that an = O(n−1/2), which is the case for the smoothly clipped absolute
deviation penalty under Condition 5. This consistency rate is the same as that of the maximum
likelihood estimator for the exponential family (Portnoy, 1988). For the next theorem, we define

�n = diag{P ′′
λ1n

(|βn01|), . . . , P ′′
λknn

(|βn0kn |)}, (3)

Bn = {P ′
λ1n

(|βn01|) sgn(βn01), . . . , P ′
λknn

(|βn0kn |) sgn(βn0kn )}T. (4)

THEOREM 2. Under Conditions 1–6, if bn → 0, d5
n/n → 0, λnj → 0, λnj (n/dn)

1/2 → ∞ and
an = O(n−1/2) as n → ∞, the (n/dn)

1/2-consistent local maximizer β̂n = (β̂T
n,I, β̂

T
n,II)

T must be

such that β̂n,II = 0 with probability tending to unity and, for any nonzero kn × 1 constant vector
un with ‖un‖ = 1,

n1/2uT
n�

−1/2
n11 (In11 + �n){β̂n,I − βn0,I + (In11 + �n)

−1 Bn} → N (0, 1)

in distribution, where �n and Bn are defined in (3) and (4), respectively, In11 consists of the first
kn × kn components of In(βn0), and �n11 consists of the first kn × kn components of �n(βn0).

Because of the diverging dimension of βn0,I, Theorem 2 establishes the asymptotic normality
of some linear combination of standardized estimators. However, by choosing a particular un , it
can give the asymptotic distribution of each individual estimator. Thus, it provides a theoretical
basis for inference on individual coefficients. The matrix In(βn0) can be consistently estimated
by În(β̂n) = n−1 ∑n

i=1

∫ τ

0 Ṽn(β̂n, t) dNi (t). The estimator of the matrix �n(βn0) is given in the
Supplementary Material. For the smoothly clipped absolute deviation penalty, an = 0, �n = 0
and Bn = 0 for large n under Condition 5. Therefore, the result of Theorem 2 reduces to

n1/2uT
n�

−1/2
n11 In11(β̂n,I − βn0,I) → N (0, 1)

in distribution as n → ∞. The conditions d4
n/n → 0 and d5

n/n → 0 in the above theorems
describe the divergence rate of dn relative to the sample size; they do not impose any one-to-
one relationship between finite dn and n.
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4. PRACTICAL IMPLEMENTATION CONSIDERATIONS

4·1. Local quadratic approximation and variance estimation

Since the smoothly clipped absolute deviation penalty function is not differentiable at the ori-
gin, in practical implementations the Newton–Raphson algorithm cannot be applied directly to
maximize (2). Instead, we use a modified Newton–Raphson algorithm with a local quadratic
approximation to the penalty function. The unpenalized pseudo-partial likelihood (1) can be
seen as a special case of the penalized pseudo-partial likelihood (2) with Pλnj (|βnj |) = 0 for
all j = 1, . . . , dn . Applying Theorem 1 with λnj = 0 for all j = 1, . . . , dn , we know there exists
a (n/dn)

1/2-consistent maximizer of (1). The concavity of (1) ensures that the maximizer is
unique. We use this maximizer as the initial value β

(0)
n for the modified Newton–Raphson

algorithm. If |β(0)
nj | is less than a prespecified small positive constant c j , then we set β̂nj = 0.

Otherwise, the penalty function is locally approximated by a quadratic function, Pλnj (|βnj |) ≈
Pλnj {|β(0)

nj |} + P ′
λnj

{|β(0)
nj |}{2|β(0)

nj |}−1[β2
nj − {β(0)

nj }2], which has the same value and first deriva-

tive as the original penalty at β
(0)
nj . It follows that P ′

λnj
(|βnj |) ≈ [P ′

λnj
{|β(0)

nj |}/|β(0)
nj |]βnj . This

approximation is local in the sense that it is valid only in a neighbourhood of β
(0)
nj . With the

approximated penalty function, one Newton–Raphson step is performed and the updated nonzero
estimate is used as the new initial value. The process is iterated until convergence or until all
parameters are estimated as zero. Hunter & Li (2005) showed that the local quadratic approxi-
mation is an extension of the expectation-maximization algorithm and has the same properties.

The sandwich estimate of the covariance matrix for β̂n can be obtained directly from the
last iteration of the above algorithm as ˆcov (β̂n) = {�̃′′

n(β̂n) − n�λ(β̂n)}−1n�̂n(β̂n){�̃′′
n(β̂n) −

n�λ(β̂n)}−1, where �λ(βn) = diag{P ′
λ1n

{|β(0)
n1 |}/|β(0)

n1 |, . . . , P ′
λdnn

{|β(0)
ndn

|}/|β(0)
ndn

|}. The sand-
wich estimate of the covariance matrix is applicable only to the nonzero parameter estimates.

4·2. Selection of tuning parameters

The tuning parameter λ in the smoothly clipped absolute deviation penalty function Pλ(·)
controls the magnitude of the penalty on each regression coefficient and thereby controls the
complexity of the selected model. Typical methods of selecting tuning parameters include data-
driven procedures such as K -fold crossvalidation and generalized crossvalidation (Craven &
Wahba, 1979). We follow Fan & Li (2002) and Cai et al. (2005) and use generalized crossval-
idation. The effective number of parameters measures the degrees of freedom in a regularized
regression model (Hastie et al., 2009). For the proportional hazards model, the effective num-
ber of parameters is defined as e(λ1n, . . . , λdnn) = tr [{�̃′′

n(β̂n) − n�λ(β̂n)}−1�̃′′
n(β̂n)] (Fan & Li,

2002). The generalized crossvalidation statistic is defined as

GCV (λ1n, . . . , λdnn) = −�̃n(β̂n)

n{1 − e(λ1n, . . . , λdnn)/n}2
,

which is guaranteed to be positive since the log-pseudo-partial likelihood in the numerator is
negative. The optimal tuning parameters are chosen as arg min(λ1n,...,λdnn)GCV (λ1n, . . . , λdnn).
This dn-dimensional optimization problem is difficult to solve in practice. We follow Cai et al.
(2005) and take λnj = λn ŜE{β(0)

nj }, where ŜE{β(0)
nj } is the estimated standard error of the unpenal-

ized pseudo-partial-likelihood estimator used in § 4·1. Then the optimization problem reduces to
a one-dimensional search for the optimal λn .

When e(λn)/n is small, as is the case under the conditions for Theorems 1 and 2, we can
write log GCV (λn) = log{−�̃n(β̂n)/n} − 2 log{1 − e(λn)/n} ≈ log{−�̃n(β̂n)/n} + 2e(λn)/n.
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This expression is analogous to the Akaike information criterion (Akaike, 1973), so we write
log GCV (λn) as AIC (λn) and define λAICn = arg minλn

AIC (λn). Following the idea of the Bayesian
information criterion (Schwarz, 1978), we define another tuning parameter selection criterion,
where the optimal tuning parameter, denoted by λBICn , minimizes BIC (λn) = log{−�̃n(β̂n)/n} +
log(n)e(λn)/n. Wang et al. (2007) and Zhang et al. (2010) showed that, in linear and generalized
linear models with a finite number of parameters, λAICn overfits the model with a positive
probability whereas λBICn consistently identifies the true model. Such a result has not been
established in the Cox proportional hazards model so far as we know. In the simulation section
that follows, we investigate the performance of λAICn and λBICn . Following Fan & Li (2001), we set
the second tuning parameter a in the penalty function to 3·7 in our simulations.

In practice, researchers can perform a grid search to identify λAICn and λBICn . The lower limit of
the search range is zero and the upper limit is the smallest λn that gives an empty model. From
our simulation experience, the upper limit rarely exceeds 2. Moreover, the model selection results
are fairly robust with respect to the fineness of the search grid.

5. NUMERICAL STUDY AND DATA APPLICATION

5·1. Simulation study

Independent failure times are generated from the proportional hazards model. We let the
baseline hazard be λ0(t) = 2 and set the model dimension to dn = [5n1/5−1/500

c ] to reflect its
dependence on sample size, where nc is the expected number of cases for a given censoring
rate and [x] denotes x rounded to the nearest integer. We relate the model dimension to the
number of cases rather than to the sample size directly, because the former better represents
the amount of information in the dataset. We follow Tibshirani (1997) and consider two sce-
narios for the true parameter: a few large effects and many small effects. In the first scenario,
βn0 = (0·35, 0, 0, 0·6, 0, 0, −0·8, 0, 0, 0·6, 0, 0, −0·8, 0, 0, . . .); so a third of the components of
βn0 are nonzero and the smallest nonzero effect in absolute value is 0·35, which corresponds
to a hazard ratio of 1·4. In the second scenario, all components of βn0 equal 0·1, which corre-
sponds to a hazard ratio of 1·1. In both scenarios, we generate the design matrix Z as a mixture of
correlated binary and continuous variables. First, a dn-dimensional multivariate standard normal
variable Z∗ is generated with corr (Z∗

i , Z∗
j ) = 0·5|i− j |. Then the first three components of Z∗

are kept continuous while the next three components are dichotomized at zero, and this pattern
is repeated for the rest of Z∗. Thus, half of the covariates become binary with parameter 0·5.
The censoring times Ci are generated from a uniform distribution Un(0, c), with c adjusted to
achieve the desired censoring percentage.

Various sample sizes, censoring rates, and noncase-to-case ratios are considered for both sce-
narios. Performance of the penalized variable selection with tuning parameter λAICn or λBICn is
assessed. As a benchmark, we use the hard-threshold variable selection procedure, where the
unpenalized full model is fitted and the components of the unpenalized estimates that give a
significant Wald test at level 0·05 are included in the final model. We also consider the oracle
procedure where the correct subset of covariates is used to fit the model. As the censoring rate
is typically high in case-cohort studies, we set it to 80% or 90%, with 1000 replications for each
setting.

We define the model error for a given model to be ME(μ̂) = E{E(T | z) − μ̂(z)}2. Under
the proportional hazards model with constant baseline hazard λ0, ME(μ̂) = λ−2

0 E{exp(−β̂T
n z) −

exp(−βT
n0z)}2. The relative model error of a given model is defined as the ratio of its model

error to that of the unpenalized full model. We use the median and median absolute deviation
of the relative model error to evaluate the prediction performance of different procedures. As
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Table 1. Model selection performance in the scenario of a few large effects
Noncase : Case = 1 : 1 Noncase : Case = 2 : 1

RME Zeros RITM RME Zeros RITM
Method α Median (MAD) C I (%) α Median (MAD) C I (%)

n = 3000, 80% censored, dn = 18
HT 0·25 0·67 (0·21) 11·2 0·0 45·4 0·50 0·65 (0·21) 11·3 0·0 52·1
SCAD(AIC) 0·63 (0·20) 10·7 0·0 30·3 0·49 (0·22) 11·5 0·0 61·6
SCAD(BIC) 0·39 (0·20) 12·0 0·2 83·7 0·37 (0·18) 12·0 0·0 95·2
Oracle 0·34 (0·16) 12·0 0·0 100·0 0·36 (0·17) 12·0 0·0 100·0

n = 3000, 90% censored, dn = 15
HT 0·11 0·88 (0·30) 9·2 0·5 25·1 0·22 0·75 (0·29) 9·3 0·2 42·7
SCAD(AIC) 0·92 (0·14) 6·4 0·1 1·2 0·82 (0·20) 7·6 0·0 8·3
SCAD(BIC) 0·74 (0·38) 9·3 0·5 33·3 0·49 (0·30) 9·8 0·3 63·9
Oracle 0·32 (0·18) 10·0 0·0 100·0 0·33 (0·17) 10·0 0·0 100·0

n = 6000, 90% censored, dn = 18
HT 0·11 0·71 (0·24) 11·1 0·1 39·6 0·22 0·64 (0·21) 11·3 0·0 48·4
SCAD(AIC) 0·89 (0·12) 7·9 0·0 1·2 0·80 (0·16) 9·5 0·0 9·4
SCAD(BIC) 0·49 (0·24) 11·5 0·1 58·6 0·38 (0·18) 11·9 0·0 87·8
Oracle 0·36 (0·17) 12·0 0·0 100·0 0·33 (0·15) 12·0 0·0 100·0

n = 10 000, 90% censored, dn = 20
HT 0·11 0·69 (0·20) 12·1 0·0 36·4 0·22 0·65 (0·20) 12·2 0·0 48·0
SCAD(AIC) 0·88 (0·14) 8·9 0·0 1·2 0·80 (0·18) 10·2 0·0 8·0
SCAD(BIC) 0·47 (0·21) 12·5 0·0 60·8 0·39 (0·18) 12·9 0·0 92·8
Oracle 0·34 (0·15) 13·0 0·0 100·0 0·35 (0·17) 13·0 0·0 100·0
α, subcohort sampling probability; RME, relative model error; MAD, median absolute deviation; C, average number
of zero parameters correctly identified as zero; I, average number of nonzero parameters incorrectly identified as
zero; RITM, rate of identifying true model; HT, hard threshold; SCAD(AIC), smoothly clipped absolute deviation
with λAICn ; SCAD(BIC), smoothly clipped absolute deviation with λBICn .

measures of variable selection performance, we also calculate the average number of parameters
correctly estimated as zero, the average number of parameters erroneously estimated as zero,
and the overall rate of identifying the true model. Point estimates, empirical and model-based
standard errors, and empirical 95% confidence interval coverages are calculated for βn01 = 0·35
in the first scenario.

Table 1 summarizes the simulation results in the scenario of a few large effects. The penalized
method with tuning parameter λBICn has by far the best performance in all settings in terms of the
relative model error and the rate of identifying the true model. The inferior performance of λAICn is
apparently due to overfitting, as reflected by the low average number of correctly identified zero
parameters; this is consistent with the theoretical findings of Wang et al. (2007) and Zhang et al.
(2010). For both λAICn and λBICn , more noncases in the case-cohort design and lower censoring rates
are associated with better prediction and variable selection performance. Table 2 summarizes the
parameter estimation results of βn01 = 0·35 under the same settings as for Table 1, but using only
simulation replications where βn01 is correctly identified as nonzero. Conditional on β̂n1 |= 0, all
procedures produce approximately unbiased point and standard error estimates, with coverage
close to the nominal level. The normality of the sampling distributions of β̂n1 was assessed by
Q-Q plots, shown in the Supplementary Material. The sampling distribution of β̂n1 is a mixture
of a point mass at zero and a left-truncated distribution that is well approximated by a truncated
normal distribution. As the rate of identifying the true model increases, the point mass at zero
vanishes and the sampling distribution of β̂n1 becomes normal.
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Table 2. Estimation performance for βn01 = 0·35 in the scenario of a few large effects; results are
based on replications where β̂n1 |= 0

Noncase : Case = 1 : 1 Noncase : Case = 2 : 1
Method nc β̂n1 SEe SEm 95% CIe nc β̂n1 SEe SEm 95% CIe

(×10−2) (×10−2) (×10−2) (×10−2)

n = 3000, 80% censored, dn = 18
HT 998 0·36 7·00 6·66 92·6 1000 0·35 5·85 5·55 92·7
SCAD(AIC) 1000 0·35 6·68 5·95 92·0 1000 0·35 5·28 4·87 92·7
SCAD(BIC) 991 0·35 5·96 5·88 94·8 1000 0·35 5·12 4·84 93·3
Oracle 1000 0·35 6·06 5·89 94·5 1000 0·35 5·08 4·84 93·5

n = 3000, 90% censored, dn = 15
HT 888 0·40 10·9 11·0 92·8 971 0·37 9·26 9·20 94·4
SCAD(AIC) 981 0·38 11·9 10·2 89·8 997 0·36 9·24 8·29 92·2
SCAD(BIC) 916 0·38 10·3 9·83 92·5 964 0·36 8·19 8·04 94·7
Oracle 1000 0·36 10·8 9·87 92·1 1000 0·35 8·37 8·05 93·8

n = 6000, 90% censored, dn = 18
HT 992 0·37 8·27 7·95 92·5 1000 0·36 7·01 6·53 92·2
SCAD(AIC) 1000 0·36 8·40 7·32 91·2 1000 0·36 6·73 5·92 91·0
SCAD(BIC) 992 0·36 7·68 7·09 92·5 996 0·35 6·06 5·74 93·8
Oracle 1000 0·35 7·64 7·10 93·0 1000 0·35 6·03 5·74 94·0

n = 10 000, 90% censored, dn = 20
HT 1000 0·36 6·51 6·29 93·2 1000 0·35 5·27 5·10 94·4
SCAD(AIC) 1000 0·36 6·31 5·83 91·6 1000 0·35 5·11 4·63 94·0
SCAD(BIC) 1000 0·36 5·93 5·67 94·0 1000 0·35 4·55 4·50 94·8
Oracle 1000 0·36 5·74 5·67 95·0 1000 0·35 4·53 4·50 94·8
nc, number of simulation replications where β̂n1 |= 0; SEe, empirical standard error; SEm, model-based standard error;
95% CIe, empirical 95% confidence interval coverage; HT, hard threshold; SCAD(AIC), smoothly clipped absolute
deviation with λAICn ; SCAD(BIC), smoothly clipped absolute deviation with λBICn .

Table 3 summarizes the simulation results in the scenario of many small effects, where all
βn0 = 0·1. In this scenario the oracle model is just the unpenalized full model with the relative
model error being unity by definition, which is not very informative and hence not included in
the table. With many small but nonzero effects, none of the three methods can identify all the
effects with a high probability, as reflected by the near-zero rate of identifying the true model
in all settings, which is not shown in the table. The inference results are not satisfactory either;
they are not shown due to space limitations. Nevertheless, λAICn produces the smallest relative
model error, suggesting that it has the best prediction performance among the three methods.
Moreover, λAICn correctly identifies the largest number of small effects as nonzero. The Bayesian
information criterion tends to select sparse models, so it may not perform as well as the Akaike
information criterion when there are many small nonzero parameters. The relative model error is
not comparable across different settings because it depends on the model error of the full model,
which shows large variation in this scenario.

5·2. Analysis of the Busselton Health Study

We use the proposed variable selection procedures to analyse the Busselton Health Study data
(Cullen, 1972; Knuiman et al., 2003). The study comprises a series of cross-sectional health
surveys conducted in the town of Busselton in Western Australia. Every three years from 1966
to 1981, general health information was collected from adult participants by questionnaire and
through clinical visits. In this analysis we are interested in identifying risk factors for stroke. In
particular, the main risk factor of interest is serum ferritin level. We also consider several other
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Table 3. Model selection performance in the scenario of many small effects with all βn0 = 0·1
Noncase : Case = 1 : 1 Noncase : Case = 2 : 1

RME Nonzero RME Nonzero
Method α Median (MAD) estimates α Median (MAD) estimates

n = 3000, 80% censored, dn = 18
HT 0·25 2·90 (1·50) 4·0 0·50 3·59 (1·82) 5·2
SCAD(AIC) 1·79 (0·88) 6·0 3·15 (1·59) 5·5
SCAD(BIC) 5·62 (2·39) 1·3 8·94 (3·46) 1·1

n = 3000, 90% censored, dn = 15
HT 0·11 1·89 (1·00) 2·6 0·22 2·91 (1·63) 3·5
SCAD(AIC) 0·99 (0·29) 6·0 1·67 (0·78) 5·4
SCAD(BIC) 2·48 (1·23) 1·8 4·92 (2·08) 1·5

n = 6000, 90% censored, dn = 18
HT 0·11 2·82 (1·45) 3·4 0·22 3·48 (1·69) 4·5
SCAD(AIC) 1·08 (0·28) 8·6 1·41 (0·54) 8·3
SCAD(BIC) 3·17 (1·52) 3·0 5·36 (2·47) 2·6

n = 10 000, 90% censored, dn = 20
HT 0·11 3·85 (2·02) 6·0 0·22 4·49 (2·37) 7·7
SCAD(AIC) 1·26 (0·39) 11·6 1·84 (0·81) 11·4
SCAD(BIC) 4·91 (2·49) 4·7 8·38 (3·75) 4·2
α, subcohort sampling probability; RME, relative model error; MAD, median absolute deviation; Nonzero estimates,
average number of parameters not estimated as zero; HT, hard threshold; SCAD(AIC), smoothly clipped absolute
deviation with λAICn ; SCAD(BIC), smoothly clipped absolute deviation with λBICn .

risk factors in the variable selection process: age, body mass index, blood pressure treatment,
systolic blood pressure, cholesterol, triglycerides, haemoglobin and smoking status. All variables
were measured at baseline. The full cohort of this analysis consists of 1401 subjects aged 40 to 89
years who participated in the Busselton Health Survey in 1981 and had no history of diagnosed
coronary heart disease or stroke at that time. Subjects were followed until 31 December 1998,
and their time to stroke, if one took place, was recorded. Subjects were treated as censored if
they left Western Australia during the follow-up period. There were 118 incidences of stroke in
the full cohort during the follow-up period. To reduce costs and preserve stored serum, a case-
cohort design was used where the serum ferritin level was measured for only a randomly selected
subcohort plus all stroke cases. The size of the random subcohort was 450, and the case-cohort
size was 513.

Table 4 summarizes the baseline characteristics of the full cohort and subcohort. The average
ferritin level is not available for the full cohort due to the case-cohort design. The summary statis-
tics for the baseline characteristics of the full cohort and the subcohort are similar, suggesting
that the subcohort is representative of the full cohort.

We apply the hard-threshold method and the penalized variable selection procedures with tun-
ing parameters λAICn and λBICn to the Busselton Health Study. In order to avoid missing any poten-
tially important effects, we also include in the initial model the quadratic terms of all continuous
covariates as well as interactions between ferritin and all covariates. The total number of param-
eters is 28. All continuous covariates are standardized using the means and standard deviations
from the subcohort, shown in Table 4. To decrease their skewness, we log-transformed the val-
ues of ferritin and triglycerides before standardization. The tuning parameter selector identifies
λAICn = 0·244 and λBICn = 0·305. Table 5 shows the models identified by the three methods. Due
to space limitations, only terms that are selected by at least one method are shown. The use of
λAICn results in seven terms being selected, and the use of λBICn results in four terms being selected.
Both methods select age, sex, blood pressure treatment, and squared systolic blood pressure as
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Table 4. Baseline characteristics of the Busselton Health Study
Full cohort (n = 1401) Subcohort (ñ = 450)

Variables Mean (SD) or % Mean (SD) or %

Age (years) 58·0 (10·8) 58.9 (10·9)
Body mass index 25·9 (3·9) 25.9 (4·0)
Blood pressure treatment (%) 17·2 18.4
Systolic blood pressure (mmHg) 132·2 (20·0) 132.9 (20·2)
Cholesterol (mmol/L) 6·14 (1·14) 6.24 (1·17)
Triglycerides (mmol/L) 1·52 (0·97) 1.55 (0·97)
Haemoglobin (g/100 ml) 141·9 (12·0) 142.0 (11·5)
Smoking (%)

Never 49·5 51.6
Former 32·4 32.0
Current 18·1 16.4

Ferritin (μg/L) – 148.1 (140.8)
log(ferritin) – 4.57 (1.01)

SD, standard deviation.

Table 5. Estimated coefficients and standard errors for the Busselton Health Study data; all
continuous covariates were standardized using the means and standard deviations based on

the random subcohort before applying the variable selection procedure
Hard threshold SCAD(AIC) SCAD(BIC)

Variable β̂( ˆSE ) β̂( ˆSE ) β̂( ˆSE )

Age (years) 0.92 (0·27) 0·87 (0·15) 0.85 (0·14)
Sex (1 = female) 0 (–) −0·61 (0·26) −0.65 (0·25)
Blood pressure treatment 0.83 (0.34) 0·83 (0.29) 0.89 (0·25)
Systolic blood pressure 0 (–) 0·21 (0·15) 0 (–)
Systolic blood pressure2 0 (–) 0·092 (0.067) 0.16 (0·044)
log(triglycerides) 0 (–) −0·24 (0·18) 0 (–)
log2(triglycerides) 0 (–) 0·18 (0·093) 0 (–)

SCAD(AIC), smoothly clipped absolute deviation with λAICn ; SCAD(BIC), smoothly clipped absolute deviation
with λBICn .

important risk factors for stroke. The procedure using λAICn additionally selects the linear term
of systolic blood pressure and the linear and squared terms of triglycerides. The hard-threshold
method selects only age and blood pressure treatment.

To shed some light on which model provides the best fit to the data, we performed five-fold
crossvalidation. The average log-pseudo-partial likelihood from the test datasets is used as the
validation statistic. The hard-threshold method and penalized variable selection with λAICn and λBICn
give validation statistics of −621·5, −627·7 and −614·0, respectively. Therefore, we consider the
model with λBICn to be the best fit to the Busselton data. According to this model, increased age,
maleness, blood pressure treatment, and increased systolic blood pressure are associated with a
higher risk of stroke. There is no evidence that serum ferritin level is associated with stroke.

6. DISCUSSION

One potential limitation of the theorems presented in this paper is that they only establish
the consistency and oracle property for a local maximizer of the penalized objective function.
Because of the nonconcavity of the penalized objective function, there may be multiple maxi-
mizers. However, based on Fan & Li (2001, § 3.5) and judging from the small bias in the estimates



558 A. NI, J. CAI AND D. ZENG

in Table 2, it is reasonable to assume that the maximizer identified by using the unpenalized esti-
mator as the initial value is the (n/dn)

1/2-consistent local maximizer described in Theorems 1
and 2.

In this paper the quantity α̂(t) used in the weight function ρ(t) is calculated at each failure
time-point and so is time-dependent. When cases are rare, α̂(t) is almost constant across t . How-
ever, using time-dependent α̂(t) is more general and allows the sampling probability to vary with
time. Therefore, we use α̂(t) in this paper. A potential practical issue is that α̂(t) may not be reli-
able if the number of noncases in the random subcohort is very small, although this is highly
unlikely due to the use of case-cohort design for studies of rare disease. In the unlikely situation
where there is no noncase left in the subcohort, α̂(t) is not well-defined. To avoid computa-
tional difficulties, one can define (1 − �)ξ/α̂(t) = 0 if α̂(t) = 0. In fact, when α̂(t) = 0, 1 − �

is necessarily zero for all subjects remaining in the subcohort.
There is a strong line of research on the convergence of and post-selection inference for penal-

ized estimators (Leeb & Pötscher, 2005; Leeb & Pötscher, 2006; Pötscher & Leeb, 2009). In
particular, Pötscher & Leeb (2009) showed that the penalized estimators are not uniformly con-
sistent, and that their asymptotic distributions are nonnormal if the true parameter lies within a
shrinking neighbourhood of zero with rate (dn/n)1/2. The lack of local regularity is a theoretical
limitation of penalized variable selection methods. However, in this paper Condition 5, together
with the requirement that λnj (n/dn)

1/2 → ∞ for all j , ensures that the nonzero parameters are
uniformly larger than O{(dn/n)1/2}, hence avoiding the aforementioned irregularity. Our sim-
ulation study suggests that the performance of the proposed variable selection method depends
on the true effect size. In practice, since this size is unknown, we suggest conducting penalized
variable selection with both Akaike and Bayesian information criteria-based tuning parameter
selection, and then using crossvalidation to choose the best model, as done in § 5·2. Theoretical
justification of these model selection approaches will be investigated further. Moreover, as the
regularity conditions required for our asymptotic results may not be testable in finite samples, it
will be important to replicate findings from one particular finite data analysis. One possible way
to examine the consistency of findings is to use bootstrap data or to apply a resampling-based
variable selection approach such as stability selection (Meinshausen & Bühlmann, 2010).

In the Busselton data analysis we standardized all continuous covariates, for several rea-
sons. First, this makes the regression coefficients comparable. Second, it reduces the correla-
tion between the linear and quadratic terms and between the main effect and interaction terms,
which generally results in more robust and precise parameter estimates. More importantly, penal-
ized regression procedures are not invariant with respect to covariate scaling, and standardization
makes the penalization fair for all covariates (Tibshirani, 1997). For these reasons, we recommend
standardizing continuous covariates before carrying out penalized regression.
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APPENDIX

Proofs of the theorems

Throughout the proofs, we write �̃′
n(βn0) j = ∂�̃n(βn0)/∂βnj , �̃′′

n(βn0) jk = ∂2�̃n(βn0)/(∂βnj∂βnk) and
�̃′′′

n (βn0) jkl = ∂3�̃n(βn0)/(∂βnj∂βnk∂βnl). We also let Ṽnjk(βn0, t), Vnjk(βn0, t), S̃(2)
njk(βn0, t) and S(2)

njk(βn0, t)
be the ( j, k)th components of the corresponding matrices. For a matrix A = {ai j } (i, j = 1, . . . , n), the
norm is defined as ‖A‖ = (

∑n
i=1

∑n
j=1 a2

i j )
1/2. The following lemma will be used repeatedly.

LEMMA A1. Let Wn(t) and Gn(t) be two sequences of processes with bounded variation almost
surely, and suppose that Gn(t) is progressively measurable and cadlag. For some constant τ , assume
that sup0�t�τ ‖Wn(t) − W (t)‖ → 0 in probability for some bounded process W (t), that Wn(t) is mono-
tone on [0, τ ], and that Gn(t) converges to a zero-mean process with continuous sample paths in the
metric space BV[0, τ ], the bounded variation function space on [0, τ ]. Then both sup0�t�τ ‖ ∫ t

0 {Wn(s) −
W (s)} dGn(s)‖ and sup0�t�τ ‖ ∫ t

0 Gn(s) d {Wn(s) − W (s)}‖ converge to zero in probability as n → ∞.

The proof of this lemma follows straightforwardly from that of Lemma 1 in Lin (2000), upon noting
that a process with bounded variation can be decomposed into two monotone processes.

We also need the following lemmas, proofs of which are provided in the Supplementary Material.

LEMMA A2. Let ξ = (ξ1, . . . , ξn) be a random vector containing ñ ones and n − ñ zeros, with each
permutation equally likely. Let Xni (t) (i = 1, . . . , n) be a triangular array of real-valued random processes
on [0, τ ], with E{Xni (t)} = μn(t), var {Xni (0)} < ∞ and var {Xni (τ )} < ∞ for all i and n. Let Xn(t) =
{Xn1(t), . . . , Xnn(t)} and ξ be independent. Suppose that almost all paths of Xni (t) have finite variation.
Then n−1/2

∑n
i=1 ξi {Xni (t) − μn(t)} converges weakly to a tight zero-mean Gaussian process and hence

n−1
∑n

i=1 ξi {Xni (t) − μn(t)} converges in probability to zero uniformly in t .

LEMMA A3. Given that ξ is independent of � and Y (t), n1/2{α̂−1(t) − α−1} converges weakly to a
zero-mean Gaussian process.

LEMMA A4. Under Conditions 1–3, for any nonzero dn × 1 constant vector un with ‖un‖ =
C < ∞ and ‖un‖0 = cn > 0, where ‖·‖0 denotes the number of nonzero components of a vector,
n1/2{S̃(0)

n (βn0, t)− S(0)
n (βn0, t)}, (n/cn)

1/2uT
n{S̃(1)

n (βn0, t) − S(1)
n (βn0, t)} and n1/2c−1

n uT
n{S̃(2)

n (βn0, t) −
S(2)

n (βn0, t)}un all converge weakly to tight zero-mean Gaussian processes.

LEMMA A5. Under Conditions 1–4, for any nonzero dn × 1 constant vector un with ‖un‖ = 1,
n−1/2uT

n�
−1/2
n (βn0)�̃

′
n(βn0) converges to a standard normal distribution, where �n(βn0) is the covariance

matrix of n−1/2�̃′
n(βn0).

LEMMA A6. Under Conditions 1–4, n−1/2{�̃′′
n(βn0) jk + nIn(βn0) jk} is Op(1) for j, k = 1, . . . , dn,

where In(βn0) jk is the ( j, k)th component of In(βn0) as defined in § 3·2.

LEMMA A7. Under Conditions 1–6, if d4
n/n → 0, λnj → 0 and λnj n1/2d−1/2

n → ∞ with probability
tending to 1, for any given βn,I satisfying ‖βn,I − βn0,I‖ = O(d1/2

n n−1/2) and any constant C, we have that
Q̃n{(βT

n,I, 0T)T} = max‖βn,II‖�Cd1/2
n n−1/2 Q̃n{(βT

n,I, β
T
n,II)

T}.

Proof of Theorem 1. Let βn0 be the true parameters, and let αn = d1/2
n (n−1/2 + an). It suffices to show

that for any ε > 0 and any constant vector un with ‖un‖ = C , there exists a large enough C such that
pr{sup‖un‖=C Q̃n(βn0 + αnun) < Q̃n(βn0)} � 1 − ε. This implies the existence of a local maximizer β̂n
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such that ‖β̂n − βn0‖ = Op(αn). Since Pλnj (0) = 0 and Pλnj (·) � 0, we have

Q̃n(βn0 + αnun) − Q̃n(βn0)

� {�̃n(βn0 + αnun) − �̃n(βn0)} − n
kn∑

j=1

{Pλnj (|βn0 j + αnunj |) − Pλnj (|βn0 j |)} = I1 − I2.

We first consider I1. By Taylor expansion,

I1 = αnuT
n �̃

′
n(βn0) + 1

2
α2

nuT
n �̃

′′
n(βn0)un + 1

6
α3

n

n∑
i=1

dn∑
j,k,l=1

�̃′′′
i (β∗

n ) jklunj unkunl = I11 + I12 + I13,

where β∗
n lies between βn0 and βn0 + αnun . From Lemma A5 we have �̃′

n(βn0) j = Op(n1/2) for
j = 1, . . . , dn . Therefore,

|I11| = |αnuT
n �̃

′
n(βn0)| � αn‖un‖‖�̃′

n(βn0)‖ = αn‖un‖Op{(dnn)1/2} = ‖un‖Op(α
2
nn).

The term I12 can be written as α2
nuT

n{�̃′′
n(βn0) + nIn(βn0)}un/2 − α2

nuT
nn In(βn0)un/2 = J1 − J2. By the

Cauchy–Schwarz inequality, the fact that �̃′′
n(βn0) jk + nIn(βn0) jk = Op(n1/2) for j, k = 1, . . . , dn and

Lemma A6, we have |J1| � α2
n‖un‖2‖�̃′′

n(βn0) + nIn(βn0)‖/2 = ‖un‖2 Op(α
2
nn1/2dn) = ‖un‖2op(α

2
nn). By

spectral decomposition of In(βn0) and Condition 4, |J2| � α2
n‖un‖2nλmin{In(βn0)}/2 � ‖un‖2(α2

nn)C2/2.
Under Conditions 1–3, ∂ Ṽnjk(β

∗
n , t)/∂βnl has bounded variation in t for i = 1, . . . , n and

j, k, l = 1, . . . , dn . Therefore �̃′′′
i (β∗

n ) jkl = − ∫ τ

0 ∂ Ṽnjk(β
∗
n , t)/∂βnl dNi (t) is Op(1). Combining

this with αn = d1/2
n (n−1/2 + an), d4

n/n → 0 and d2
n an → 0, we obtain |I13| = Op(d3/2

n )nα3
n‖un‖3 =

Op{d2
n (n−1/2 + an)}nα2

n‖un‖3 = ‖un‖3op(α
2
nn). Therefore, for large enough ‖un‖, |J2| dominates |I11|,

|J1| and |I13|.
Now consider I2. By Taylor expansion and the Cauchy–Schwarz inequality,

|I2| =
∣∣∣∣∣∣n

kn∑
j=1

P ′
λnj

(|βn0 j |)sgn(βn0 j )αnunj + 1

2
n

kn∑
j=1

P ′′
λnj

(|βn0 j |)α2
nu2

nj {1 + o(1)}
∣∣∣∣∣∣

� n

∣∣∣∣∣∣
kn∑

j=1

P ′
λnj

(|βn0 j |)αnunj

∣∣∣∣∣∣ + 1

2
n

∣∣∣∣∣∣
kn∑

j=1

P ′′
λnj

(|βn0 j |)α2
nu2

nj {1 + o(1)}
∣∣∣∣∣∣

� nαnank1/2
n ‖un‖ + 1

2
nα2

nbn‖un‖2{1 + o(1)}

= ‖un‖Op(α
2
nn).

The last equality holds because an = Op(αnd−1/2
n ) and bn → 0 under Condition 5. Therefore, |J2| domi-

nates |I2| for large enough C . Since J2 is negative, it follows that for large enough C , Q̃n(βn0 + αnun) −
Q̃n(βn0) is negative with probability tending to 1 as n → ∞. This completes the proof of Theorem 1. �

Proof of Theorem 2. The assertion that β̂n,II = 0 with probability tending to 1 as n → ∞ follows
directly from Lemma A7. To prove the second assertion, we first show that

n1/2uT
n�

−1/2
n11

[
(In11 + �n)(β̂n,I − βn0,I){1 + op(1)} + Bn

] = n−1/2uT
n�

−1/2
n11 �̃′

n1(βn0) + op(1), (A1)

where �̃′
n1(βn0) consists of the first kn components of �̃′

n(βn0). Since β̂n,I is the maximum penalized pseudo-
partial-likelihood estimator, ∂ Q̃n(β̂n)/∂βn,I = 0. By Taylor expansion of ∂ Q̃n(β̂n)/∂βn,I at βn0,I and the
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fact that β̂n,II − βn0,II = 0 with probability tending to 1, we have

�̃′
n1(βn0) + �̃′′

n1(βn0)(β̂n,I − βn0,I) + (β̂n,I − βn0,I)
T�̃′′′

n1(β
∗
n )(β̂n,I − βn0,I)/2

− nBn − n�∗∗
n (β̂n,I − βn0,I) = 0 (A2)

with probability tending to 1, where �̃′′
n1(βn0) consists of the first kn × kn components of �̃′′

n(βn0), �̃′′′
n1(β

∗
n )

consists of the first kn × kn × kn components of �̃′′′
n (β∗

n ), β∗
n lies between β̂n and βn0, and �∗∗

n = �n(β
∗∗
n )

with β∗∗
n between β̂n and βn0. Upon rearranging (A2), we get

{�̃′′
n1(βn0) − n�∗∗

n }(β̂n,I − βn0,I) − nBn = −�̃′
n1(βn0) − 1

2
(β̂n,I − βn0,I)

T�̃′′′
n1(β

∗
n )(β̂n,I − βn0,I). (A3)

Write νn = (β̂n,I − βn0,I)
T�̃′′′

n1(β
∗
n )(β̂n,I − βn0,I). Multiplying both sides of (A3) by n−1/2uT

n�
−1/2
n11 gives

n1/2uT
n�

−1/2
n11

{
1

n
�̃′′

n1(βn0) − �∗∗
n

}
(β̂n,I − βn0,I) − n1/2uT

n�
−1/2
n11 Bn

= −n−1/2uT
n�

−1/2
n11 �̃′

n1(βn0) − n−1/2uT
n�

−1/2
n11 νn/2. (A4)

By the Cauchy–Schwarz inequality, ‖νn‖ � ‖β̂n,I − βn0,I‖2
∑n

i=1{
∑kn

j,k,l=1 �̃′′′
i1(β

∗)2
jkl}1/2. As shown in the

proof of Theorem 1, �̃′′′
i1(β

∗) jkl = Op(1), so ‖νn‖ = Op{(dn/n)nk3/2
n } = Op(d5/2

n ). By spectral decomposi-

tion of �
−1/2
n11 , d5

n/n → 0 and Condition 4, we have

1

2
n−1/2uT

n�
−1/2
n11 νn � ‖un‖‖νn‖

2
n−1/2λmax(�

−1/2
n ) = Op(d

5/2
n n−1/2) = op(1). (A5)

The inequality in (A5) holds by the Cauchy–Schwarz inequality and the Cauchy inter-
lacing inequality for symmetric matrices. Moreover, uT

n�
−1/2
n11 n−1�̃′′

n1(βn0)(β̂n,I − βn0,I) =
uT

n�
−1/2
n11 {n−1�̃′′

n1(βn0) + In11(βn0)}(β̂n,I − βn0,I) − uT
n�

−1/2
n11 In11(βn0)(β̂n,I − βn0,I) = J1 − J2. By the

Cauchy–Schwarz inequality and Lemma A6, |J1| � ‖uT
n�

−1/2
n11 ‖‖n−1�̃′′

n1(βn0) + In11(βn0)‖‖β̂n,I − βn0,I‖ =
‖uT

n�
−1/2
n11 ‖‖β̂n,I − βn0,I‖Op(dnn−1/2). Also, we have |J2| � ‖uT

n�
−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In11) �

‖uT
n�

−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In). Then, by Condition 4,∣∣∣∣ J1

J2

∣∣∣∣ � ‖uT
n�

−1/2
n11 ‖‖β̂n,I − βn0,I‖Op(dnn−1/2)

‖uT
n�

−1/2
n11 ‖‖β̂n,I − βn0,I‖λmin(In)

= Op(dnn−1/2) = op(1).

Therefore J1 = op(J2) and uT
n�

−1/2
n11 n−1�̃′′

n1(βn0)(β̂n,I − βn0,I) = −uT
n�

−1/2
n11 In11(βn0)(β̂n,I −

βn0,I){1 + op(1)}. Since β̂n converges to βn0 in probability, it follows that

uT
n�

−1/2
n11

{
1

n
�̃′′

n1(βn0) − �∗∗
n

}
(β̂n,I − βn0,I) = −uT

n�
−1/2
n11

{
In11(βn0) + �n

}
(β̂n,I − βn0,I){1 + op(1)}.

(A6)
By (A4), (A5) and (A6), we have that (A1) holds. By Lemma A5, n−1/2uT

n�
−1/2
n11 �̃′

n1(βn0) converges to
the standard normal distribution. Therefore, n1/2uT

n�
−1/2
n11 (In11 + �n){β̂n,I − βn0,I + (In11 + �n)

−1 Bn} →
N (0, 1) in distribution. This proves the second assertion of Theorem 2. �
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MEINSHAUSEN, N. & BÜHLMANN, P. (2010). Stability selection (with Discussion). J. R. Statist. Soc. B 72, 417–73.
PENG, H. & FAN, J. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32,

928–61.
PORTNOY, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of param-

eters tends to infinity. Ann. Statist. 16, 356–66.
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