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The substrates of a transporter are not only useful for inferring function of the transporter, but also important to discover
compound-compound interaction and to reconstruct metabolic pathway. Though plenty of data has been accumulated with the
developing of new technologies such as in vitro transporter assays, the search for substrates of transporters is far from complete.
In this article, we introduce METSP, a maximum-entropy classifier devoted to retrieve transporter-substrate pairs (TSPs) from
semistructured text. Based on the high quality annotation from UniProt, METSP achieves high precision and recall in cross-
validation experiments. When METSP is applied to 182,829 human transporter annotation sentences in UniProt, it identifies 3942
sentences with transporter and compound information. Finally, 1547 confidential human TSPs are identified for further manual
curation, amongwhich 58.37% pairs with novel substrates not annotated in public transporter databases.METSP is the first efficient
tool to extract TSPs from semistructured annotation text inUniProt.This tool can help to determine the precise substrates and drugs
of transporters, thus facilitating drug-target prediction, metabolic network reconstruction, and literature classification.

1. Introduction

Metabolic network analysis and reconstruction have become
increasingly prevalent with diverse sources from functional
genomics experiments. Plenty of bioinformatic tools were
developed to generate high quality metabolic models on
metabolic enzyme and pathway annotation for different
organisms [1]. However, transporters, as a large group of pro-
teins to exchange metabolite, drug, toxin, and environmental
signal between cells [2, 3], are often ignored in metabolic
analysis and reconstruction [4, 5]. One possible challenge
is the inherently difficult integration of enzyme metabolic
system with transporting system. Our previous study built
connections between all metabolic enzymes and transporters

in human via their shared substrates [6]. Although it is
far from complete, it provides a practical solution to link
transporter and metabolic enzyme in genome scale. To get
more comprehensive metabolic reconstruction with both
metabolic enzyme and transporter, more accurate informa-
tion on substrates of transporters is needed.

Although many transporter databases were developed to
store and classify all reported transporters such as TCDB
[7] and TransportDB [2], most of them focus on collection
of transporters. TCDB contains comprehensive transporter
families according to their transporter classification system.
And TransportDB includesmore comprehensive annotations
for transporters from 365 organisms.The important substrate
information for transporters is not systematically collected
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Figure 1: Workflow of design and function of METSP. Step I (highlighted in pink): explicit TSPs were manually collected from UniProt,
TCDB, and TransportDB databases. Step II (in blue): the UniProt annotation text of proteins in explicit TSPs and in randomly selecting
protein set was processed to get positive and unlabeled sentence training sets. The maximum-entropy model was used to train and retain the
classifier. Step III (in green): the classifier was used to recognize TSPs from query protein annotation text. The new TSPs were obtained by
further experts checking.

and classified. To get accurate relations between transporters
and their substrates, we manually curated transporter-
substrate information from UniProt function annotation
(TSDB: http://TSdb.cbi.pku.edu.cn/) [6]. Though manual
curation gains reliable substrate data for transporters, it is
also too time consuming to keep abreast of the growth of
transporter-substrates information from published literature
and UniProt annotation.

In postgenomic era, biomedical data and literature are
growing in an exponential way. To date, the PubMed,
the most comprehensive biomedical literature repository,
includes over 21 million abstracts [8]. And as the most
popular protein database, UniProt [9] records over 1.5 mil-
lion proteins with various annotations currently. Given the
explosion of free text based electronically available publica-
tions, increasing strategies in text mining and information
extraction were applied to extract biomedical knowledge.
Many high efficient tools were developed for recognition
of named entity such as protein and gene names in free
text, identification of subcellular localization of proteins,
extraction of interaction of proteins, and association of genes
according to functional concepts such as gene ontology and
MeSH terms [10–16].

Here we constructed a standalone tool METSP, a
maximum-entropy text mining classifier, to extract TSPs
from semistructured text in UniProt protein annotation.
As most comprehensive and confidential protein databases,
UniProt provides us with more reliable substrate data. In
addition, its semistructured text for protein annotation
makes information extraction more reliable than those from
free text.We believe that it will be useful to help themetabolic
network reconstruction [17–19] and disease network analyses

[20, 21] by incorporating the transporter-substrate informa-
tion.

2. Results

The main goal of METSP is to identify and extract sentences
with transporter-substrate information fromUniProt entries.
Thus, METSP focuses on two tasks: The first task is to
extract semistructured annotation sentences of transporters
in UniProt and then map transporter and compound names
in sentences into standardized protein identifiers in UniProt
and compound identifiers in KEGG LIGAND database [22].
The second addresses the judgement of transporter-substrate
relationship accurately. For example, when we aim to figure
out what substrates are transported by SLC12A8 (Solute
carrier family 12 member 8, UniProt entry with AC as
A0AV02), first the sentences containing transporter and
compound information are extracted by METSP. METSP
then extracts two compound names potassium and chloride
from functional annotation sentences of SLC12A8 (A0AV02)
and maps potassium and chloride to compound identifiers
C00238 and C00698, respectively. Next, METSP classifier
assigns the correct substrates for the transporter based on
the two extracted compounds. In this example, potassium
(C00238) curated by human expert is the real substrate of
SLC12A8 (A0AV02). Figure 1 shows a typical workflow for
METSP.

2.1. Collecting Reliable TSPs from Public Databases. To obtain
a comprehensive and reliable TSP dataset, we first retrieved
all the known transporter and substrate information from
UniProt and the other two popular transporter databases
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Table 1: Summary of reliable TSPs from UniProt, TCDB, and
TransportDB.

UniProt TCDB TransportDB Sum from
formula (∗)

TSPs 35586 2641 86726 6955
Transporters 25056 1501 57070 5042
Substrates 528 229 351 275
Note: (∗): 𝑅 = {𝑟 | 𝑟 ∈ 𝑅UniProt ∩ 𝑅TransportDB ∪ 𝑅TCDB}, where 𝑅UniProt,
𝑅
TCDB, and 𝑅TransportDB refer to all TSPs collected fromUniProt, TCDB, and

TransportDB, respectively.

TCDB and TransportDB. Then we mapped substrate names
to compound IDs in KEGG LIGAND database and manually
checked all the transporter names and their corresponding
substrate names and compound IDs one by one. Finally,
we compiled 6955 reliable TSPs from all the above three
databases (Additional file 1, in Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2015/254838, the 6955
TSPs were manually collected from UniProt, TransportDB,
and TCDB). As shown in Table 1, the number of extracted
transporters, substrates, and TSPs in different data sources
is different. Though TransportDB has the largest TSPs, the
collected substrates are less than those from UniProt.

2.2. Constructing Training Set for TSP Prediction. The train-
ing sentences expressing transporting relationship of trans-
porter and substrate are included in protein semistructured
annotation text of UniProt. To obtain a reliable training
dataset, we first retrieved all text of transporter entries from
UniProt based on the accession numbers of transporters in
our curated reliable TSPs (Additional file 1). As only anno-
tations from protein name (DE), function annotation (CC),
and gene ontology (DR) fields were informative to extract
substrate information, we deleted annotations in other fields
for training classifier to reduce the size of preprocessing
data and to drop negative influence generated by irrelevant
fields. Previous study indicated that better performance can
be achieved by using sentences as input instead of sentence
pairs [23]. Therefore, we split functional annotations into
sentences and regarded them as elements of training set, as
well as the text related with protein name and gene ontology
fields. If a sentence belonging to annotations of a transporter
contained one or more substrates which were transported by
this transporter and had corresponding compound IDs in
KEGG LIGAND database, we considered that this sentence
was a positive instance. We collected 13,212 positive instances
from the annotations of 5,042 transporters (Additional file
2, the training set includes 41,332 instances in the format of
“label + accession number + field flag + a sentence”).

It was expensive to collect negative dataset manually,
so we collected unlabeled instances as negative data and
combined positive instances to make up training set. There
were 525,997 reviewed protein accession numbers in UniProt
(checked onMay 4, 2011), fromwhich 5,042 protein accession
numbers were chosen randomly. Then 28,120 sentences were
extracted as unlabeled instances from the annotations of
selected proteins which are not overlapping with any proteins

in our training set (Additional file 2). Previous study indi-
cated that training set consisting of positive and completely
randomly chosen instances could get similar classification
with training set consisting of positive and negative instances
[24]. Therefore, we used positive and unlabeled datasets to
train classifier. However, the performance of the classifier
must be influenced by positive instances that existed in
unlabeled set. For excluding positive sentences that might
exist in unlabeled set, amethod of iterating relabelled training
set was adopted to make unlabeled instances as similar to
negative instances as possible.

In this study, all marked compound names must
have compound IDs in KEGG LIGAND database, with
a hypothesis that a compound name appearing in sen-
tences could be mapped to an identifier in KEGG LIG-
AND database and be unique. Besides, compound names
in UniProt should be general and in KEGG LIGAND
database should be comprehensive, for example, UniProt
names compound sucrose “sucrose,” and the other names it
“cane sugar,” “saccharose,” and “1-alpha-D-Glucopyranosyl-
2-beta-D-fructofuranoside.” For these reasons, we fast tagged
compound names in sentences using Trie data structure [25].

2.3. The Tenfold Cross-Validation Strategy to Evaluate the Pre-
diction Results. To assess how the predicted results are robust
to any independent data set, we conducted a tenfold cross-
validation.The collected training set (13,212 positive instances
from the annotations of 5,042 transporters) was randomly
partitioned into 10 equal sized subsets. Of the 10 subsets, a
single subset was used as the validation data to test the output
from our statistical model. The remaining 9 sets were used
as training data for each run. This cross-validation process
was repeated 10 times. As each subset was used exactly
once as the validation data, we harvested 10 results from
calculation, which were combined by average to generate
the final rotation estimation. Our 10-fold cross-validation
performed better than that repeated random subsampling
because all the collected 13,212 positive instances were used
for training and validation. In addition, each observation was
used for validation exactly once. For each cross-validation
process, there were 1,320 positive instances used as testing
set roughly. We calculated the true positive by counting how
many prediction results from testing set were the exact same
as their original labels (positive or negative, as shown in
Additional file 2).

2.4. The Comparison of Maximum-Entropy Classifier and
Naı̈ve Bayes (NB) Model. We obtained features from sen-
tences with the idea of bag of words [26] that ignored
the positions of words in the sentences. In addition, words
with the same stem usually have a similar meaning; for
example, transporter, transporting, and transported have the
same stem “transport.” So we used Porter algorithm [27] to
combine all the words with the same stem into a single term
to obtain general features. Stop words were removed from
sentences by the filter in Mallet Toolkit [28]. The maximum-
entropy (ME) model and Naı̈ve Bayes (NB) model in Mallet
toolkit software package [28] were applied to construct the
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Figure 2: The performance comparison of ME and NB classifiers. ROC curves of maximum-entropy classifier and Naı̈ve Bayes classifier on
the original (a) and relabelled datasets (b).

Table 2: The precision, recall of ME classifier, and the number of
“false” negative instances thatwere actually positive instances in four
iterations.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
Precision 94.93% 98.17% 98.50% 98.54%
Recall 97.52% 97.95% 98.00% 98.02%
FP ratio∗ 546/688 70/250 24/205 16/201
Note: ∗FP ratio represents the number of “false” negative instances that were
actually positive instances.

classifiers. Given a known probability distribution of a fact
dataset, ME model that is consistent with the distribution of
this dataset is constructed with even probability distributions
of unknown facts [29–31]. NB model assumes that the
occurrence of a given word in a sentence is independent of
all other words in the sentence [32].

Since there were positive instances in unlabeled dataset,
the method of iteration of tagging false negative instances
in unlabeled dataset was adopted to reduce their negative
effect on the classifier. In each iteration, we rescued the
sentences that expressed real transporting relationship in
unlabeled dataset, added them into positive set to construct
new training dataset, and then obtained the classification
results from tenfold cross-validation experiments on the new
training sets. The precision and recall [30] of our classifiers
were improved step by step until they met steady status after
the fourth iteration (Table 2). As unlabeled dataset is close to
negative dataset after 4 iterations, the final training set from
the last iteration was used to build our classifier to extract
TSPs from protein annotation in UniProt. The performance

of two classifiers was shown in Figure 2: When original
dataset was applied, the accuracy scores of two classifierswere
0.9749 (ME) and 0.9568 (NB), respectively. When retraining
dataset was applied, the accuracy scores of two classifierswere
0.9891 (ME) and 0.9698 (NB), respectively. The performance
of ME classifier was better than that of NB classifier; thus we
adopt ME classifier as the main component of METSP.

2.5. The Precomputed Results for All the Human Proteins in
UniProt Identified Thousands of Novel Transporter-Substrate
Relationships. It is promising to extract specific transporter
and substrate information from the wealth of biomedical
knowledge in free text due to the increasing number of stored
literature in databases such as PubMed and UniProt. To
evaluate the results from METSP, we applied our tool on the
23,204 human reviewed protein annotations in UniProt (23
August 2011), which contained 182,829 sentences as input of
classifier; 3942 TSPs were extracted (Additional file 3, the
3942 human TSPs were extracted by METSP).

To identify novel transporter-substrate relationships, we
compared our predicted human TSPs with the human TSP
data in TCDB, TransportDB, and KEGG (Figure 3). The total
percentage of new TSPs is 58.37% against total TSPs in all
three other databases. The amount of our TSPs extracted
by METSP was more comprehensive than those in other
transporter databases. First, it could be explained by the
inaccuracy substrate description in other related databases.
Many substrate names in these databases are too general
such as “organic anion” in TransportDB. As the terms
such as “organic anion” are too general and common, it is
difficult to map these terms to compound IDs in KEGG
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Figure 3: Comparison of TSP data. Comparing human TSPs
extracted byMETSPwith that in three existing transporter-substrate
databases (TCDB, TransportDB, and KEGG database). Blue bars
represent the number of TSPs extracted by METSP and in the three
databases; red bars represent the number of TSPs that were not
extracted byMETSP but in the three databases; green bars represent
the number of TSPs extracted by METSP but not in the three
databases.

LIGAND database. In total, there are 40 human trans-
porters for “organic anion,” 22 for “organic cation,” 17 for
“monocarboxylate,” and 45 for “amino acid” in TransportDB.
However, the “organic anion” was specified to triiodothy-
ronine (C02465) and sulfobromophthalein (C11363) in our
result. On the other hand, the content of transporters in
these databases is not comprehensive as these databases
are constructed for specific purpose. For instance, TCDB
only includes representative transporters; thus it does not
collect some transporters with similar functions in different
organisms [33]. The UniProt entry P41130 (maltose-binding
periplasmic protein) from photorhabdus luminescens is not
included in TCDB because it is similar to transporter
P0AEX9 (maltose-binding periplasmic protein) from E. coli.
In summary, our approach utilizes not only accurate substrate
information but also more comprehensive transporter data
in UniProt. Thus our tool is able to harvest more TSPs from
UniProt compared to other transporter databases.

The comprehensive TSPs extracted by METSP are not
only able to facilitate access to transporter and substrate
researches, but also useful to link transporters withmetabolic
pathways in KEGG PATHWAY database. For instance, a
novel TSP (Q4U2R8 and C00954) summarized by METSP
has never been recorded in any existent transporter database
such as TCDB and TransportDB. TCDB does not include
the entry Q4U2R8. In addition, TransportDB and KEGG
databases only annotate substrate with general words as
“organic anion” for entry Q4U2R8 (named “NP 004781”
in TransportDB, “hsa: 9356” in KEGG), which is useless
to assign a compound ID in KEGG LIGAND database for
“organic anion” term. However the function annotations of
Q4U2R8 in UniProt contain the precise transporting sub-
strate as “indoleacetate” belonging to “organic anion.” Based
on its extracted substrate name in the protein annotation,

Q4U2R8 could be easier to be associated with four KEGG
pathways including “ko00380,” “map01070,” “ko01100,” and
“ko04075.” This link of transporter Q4U2R8 to the four
pathways may give more accurate clues for this transporter
on its substrate flux balance. In total, there are 136 compound
IDs in our curated human TSPs, which are not included in
other databases and inwhich 75 are annotated to 88metabolic
pathways. Therefore, our METSP is powerful to discover
potential novel linkage between transporters and metabolic
pathways.

3. Programming

METSP is implemented by using JAVA language and consists
of data downloadable module, preprocessing module, ME
classifier module, compound name mapping module, and
assisting manual validation module. The three main features
of METSP are

(1) extracting accurate TSPs using the UniProt accession
numbers as input;

(2) extracting accurate TSPs from local semistructured
text, which is similar to the format of text in UniProt,
with transporter and substrate information;

(3) a command line-based running for user to process big
data without minimum deployment.

4. Usage

METSP was packed for downloading at http://tsdb.cbi.pku
.edu.cn/metsp.cgi. By unzipping the packed tar file, user
can find the executable jar file in the extracted directory.
User can configure the running environment for better
performance.The runnable classifier is included in the folder
“classifier.” The folder “compoundNameData” contains the
file “compoundName.txt” to construct Tire tree. User can
add more compound names to this compound name file for
better compound name match. The known TSPs collected
from public databases are included in folder “result,” which
are useful to evaluate the performance.

METSP provides a few parameters for user implementing
the running setting. The threshold of classifier can be set
by the parameter “𝑡” that is in positive correlation with the
precision of METSP and is in negative correlation with the
recall ofMETSP. It can balance theweight of scale and validity
of TSPs. The default value of “𝑡” is 0.5. User can obtain better
precision of the classifier by setting a threshold of parameter
𝑡. The parameter “𝑛” is used to set whether to remove known
TSPs from prediction result; the default value is not. The
parameter “𝑓” is used to obtain input data with the full
records in UniProt format. The parameter “𝑑” denotes a list
of UniProt accession numbers as input. METSP can retrieve
semistructured annotation sentences from UniProt entries
automatically.The default input is from parameter “𝑓” if user
does not set parameter “𝑑.” The parameter “𝑐” is used to
set whether to export the scores of instances in output; the
default is yes. The parameter “𝑒” is used to set whether to
extract TSP data in output; the default is yes. An example
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of input file “input.txt” in UniProt format is also stored in
METSP. The default output is a PDF file containing all TSPs
with prediction scores from the classifier. The example of the
command to run the example file is as follows:

“java -jar METSP.jar -t 0.5 -f input.txt result.pdf”.

5. Discussion

In cellular metabolism, transporters are a class of molecules
to control metabolite homeostasis and drug delivery. For
transporter studies, it is crucial to identify their substrates
precisely. In this study, we present a tool METSP focusing on
the extraction of transporter and substrate knowledge. The
resulting knowledgewill be easy to convert into the formatted
compound name from KEGG LIGAND database. The multi-
tude of possible applications of METSP makes it a comple-
mentary approach to more comprehensive metabolic recon-
nection of metabolic enzymes and transporters. It should be
noted that the organism-specific substrates of transporters
are still scarce. With the rapidly expanding transporter and
substrate data, the ability to predict transporter and substrate
information based on the data from phylogenetic neighbours
may be of great help. We believe that the combination of
our METSP and sequence alignment tools such as BLAST
can achieve a more comprehensive transporter and substrate
reconstructions for many uncurated metabolic networks.

Our TSPs were mainly collected from only TCDB, Trans-
portDB, andUniProt. Asmany reported TSPs in the literature
still lack annotation, in the future, we will focus on transplant
of our METSP to an abstract-based text mining system. To
achieve this, it is necessary to gain reliable protein literature
mapping relations. Starting from the mapped protein litera-
ture relations, more accurate and comprehensive TSPs will be
collected based on our improved METSP system. In general,
the next version of METSP will be focused on the extraction
substrate information from free text to support growing free
full text literature.

6. Conclusion

We present METSP, the first text mining tool to extract
transporter and substrate information from the semistruc-
tured text in UniProt annotation. Using maximum-entropy
model, METSP achieves high precision and recall in cross-
validation experiments for identification of TSPs. We believe
that METSP can be widely applied to help elucidate the
relationship between transporter and its substrates including
clinical drugs.This tool could have profound implications for
the further tool development of the semistructured text min-
ing by focusing on other high quality UniProt annotations
such as disease and tissue specificity. The METSP is flexible
and freely available at http://tsdb.cbi.pku.edu.cn/metsp.cgi.
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