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Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between
the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are
typically quiescent, but can be activated in response to muscle injury. Depending on
the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage
within individual myofibers or produce a larger progeny pool that forms new myofibers
in cases of overt muscle injury. SC transition through proliferation, differentiation and
renewal is governed by the molecular blueprint of the cells as well as by the extracellular
milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF)
family in regulating SCs during growth and aging is well recognized. Of the several
FGFs shown to affect SCs, FGF1, FGF2, and FGF6 proteins have been documented
in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect
through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the
mouse model, we show here that of the four Fgfr genes, only Fgfr1 and Fgfr4 are
expressed at relatively high levels in quiescent SCs and their proliferating progeny.
To further investigate the role of FGFR1 in adult myogenesis, we have employed a
genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1.
Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury
were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory
for SC performance in this acute muscle trauma model, where compensatory growth
factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to
FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice.
Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation
of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed
in SCs.
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Introduction

Skeletal muscle is composed of multinucleated myofibers that
are established during embryogenesis by fusion of myoblasts.
Addition of myofiber nuclei (myonuclei) or formation of new
myofibers during postnatal and adult life depend on satellite cells
(SCs), Pax7+ myogenic progenitors that are localized between the
basal lamina and the plasmalemma of the myofiber (Mauro, 1961;
Seale et al., 2000; Yablonka-Reuveni, 2011). During postnatal
growth, at least some SCs are proliferative and contribute
progeny that fuse with the enlarging myofibers (Moss and
Leblond, 1971; Schultz, 1996; Halevy et al., 2004; White et al.,
2010). In mature muscles, SCs are typically quiescent, but can
be activated in response to muscle injury (Schultz et al., 1978;
Montarras et al., 2013). Depending on the magnitude of tissue
trauma, SCsmay divideminimally to repair subtle damage within
individual myofibers or produce a larger progeny pool that forms
new myofibers in cases of overt muscle injury (Grounds and
Yablonka-Reuveni, 1993; Hawke and Garry, 2001). In addition
to generating myogenic progeny that fortify myofibers, at least
some SCs can self-renew, thereby meeting the defining criteria of
bona fide resident stem cells (Collins et al., 2005; Day et al., 2007;
Kuang et al., 2007; Sacco et al., 2008).

At the molecular level, SCs and their progeny are tightly
regulated by highly orchestrated temporal expression of
transcription factors and cell cycle regulators, providing a
balance between SC quiescence, proliferation, differentiation
and renewal (Bentzinger et al., 2010; Yablonka-Reuveni and Day,
2011; Yin et al., 2013). To monitor progression through these
stages, researchers have relied on distinct marker signatures, in
particular, temporal expression of the paired box transcription
factor Pax7, and the myogenic regulatory factors MyoD and
myogenin (Yablonka-Reuveni and Rivera, 1994; Zammit
et al., 2006; Yablonka-Reuveni et al., 2008; Yablonka-Reuveni,
2011). Proliferating progeny maintain Pax7 expression as their
quiescent progenitors, but distinctly, are also MyoD-positive
(Zammit et al., 2004). A decline in Pax7, along with the
induction of myogenin, marks progeny that have entered into the
differentiation phase and subsequently may fuse into myotubes
(Shefer et al., 2006; Day et al., 2009). Re-emergence of cells that
express Pax7, but not MyoD, defines a self-renewing population
of SCs known as reserve cells (Halevy et al., 2004; Zammit et al.,
2004; Day et al., 2007).

Satellite cell transition through proliferation, differentiation
and renewal is not only governed by the molecular blueprint
of the cells, but is also regulated by the extracellular milieu
at the SC niche (Allen et al., 1984; Allen and Boxhorn, 1989;
Anderson, 2006; Brack and Rando, 2007; Shefer and Yablonka-
Reuveni, 2008; Yin et al., 2013; Wang et al., 2014). Isolated
myofibers maintained in conditions where the SCs and their
progeny are retained at their native position, have offered a
unique in vitro means to investigate the effect of growth factors
on SC behavior at their native niche (Bischoff, 1986a; Yablonka-
Reuveni and Rivera, 1994; Yablonka-Reuveni et al., 1999a). Using
this approach, hepatocyte growth factor (HGF) and selective
members of the fibroblast growth factor (FGF) family have
been shown to enhance SC proliferation (Bischoff, 1986a,b;

Yablonka-Reuveni et al., 1999a,b; Kastner et al., 2000; Wozniak
and Anderson, 2007), while transforming growth factor beta
(TGFβ1) has been found to repress proliferation (Bischoff, 1990;
Yablonka-Reuveni and Rivera, 1997b). Our particular interest
in the role of the FGFs and their receptors in regulating SC
dynamics through life (Yablonka-Reuveni and Rivera, 1994,
1997b; Yablonka-Reuveni et al., 1999a,b; Kastner et al., 2000;
Shefer et al., 2006; Kwiatkowski et al., 2008) has prompted the
research described in the current study.

The FGFs are key players in the processes of proliferation
and differentiation of a wide range of cells and tissues. Over
20 FGFs, classified as paracrine (FGFs 1–10, 16–18, 20, 22),
endocrine (FGFs 15/19, 21, 23) and intracrine (FGFs 11–14)
types, have been discovered to date (Mason, 2007; Itoh and
Ornitz, 2011; Ohta and Itoh, 2014). Selective paracrine FGFs
have long been known to act as mitogens of SCs [i.e., FGF1,
FGF2, FGF4, and FGF6, but not FGF5, FGF7, and FGF8 (Sheehan
and Allen, 1999; Kastner et al., 2000)]. Importantly, several of
these paracrine FGFs that can promote SC proliferation (FGF1,
FGF2, FGF6) have been detected at the transcript and the protein
levels in adult skeletal muscle (Yamada et al., 1989; Alterio et al.,
1990; Le Moigne et al., 1990; Oliver et al., 1992; Clarke et al.,
1993; Dusterhoft et al., 1999; Kastner et al., 2000; Zhao and
Hoffman, 2004; Fon Tacer et al., 2010; Chakkalakal et al., 2012).
In particular, FGF2 (formerly known as basic FGF) has been used
extensively as the FGF of choice in many studies of SCs in single
myofibers (Yablonka-Reuveni and Rivera, 1994, 1997b; Yablonka-
Reuveni et al., 1999a,b; Shefer et al., 2006) and as a routine
medium supplement in primary cultures (Rando and Blau, 1994;
Motohashi et al., 2014). Apart from its mitogenic effect, FGF2
has been suggested to directly repress myoblast differentiation,
thereby supporting expansion of the proliferative pool (Clegg
et al., 1987; Olwin et al., 1994).

Studying SCs in isolated myofibers under conditions that
retain SCs at the myofiber niche, we previously showed that SCs
from senile mice (29–33 months) could not enter a proliferative
state without FGF2 supplementation, whereas SCs from young
mice (3–6 months) did not require exogenous FGF2 (Shefer et al.,
2006). In accordance with our findings, a recent study reported
that FGF2 is required to remove age-associated proliferative
inhibition of SCs (Li et al., 2014). We also demonstrated
that an FGF2 activity-blocking antibody drastically reduced SC
activation/proliferation in isolated myofibers from young rodents
(Yablonka-Reuveni and Rivera, 1994). Collectively, our studies
indicate that FGF2 is required for SC proliferation and that
FGF2 (or FGF2-mediated signaling) becomes rate limiting in
SC function in old age, and this may be an underlying factor
in the age-associated decline in SC numbers observed in some
limb muscles (Brack et al., 2005; Shefer et al., 2006, 2010, 2013).
However, it has been reported that excess FGF2 harbored in the
myofibers of aging mice leads to SC depletion due to detrimental
proliferation (without self-renewal), rather than retention of the
quiescent state (Chakkalakal et al., 2012). Hence, means for direct
ablation of FGF2 signaling are needed to assist in determining its
role in SC performance during aging.

As the paracrine FGFs mediate their biological responses by
binding to cell surface FGF receptors (FGFR1, FGFR2, FGFR3,
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FGFR4), FGFR impairment offers one possible approach for
studying the effect of FGF2 signaling on SC performance.
The FGFRs share a common “generic” structure consisting of
an extracellular region containing three immunoglobulin-like
domains (Ig-1, Ig-2, Ig-3), a transmembrane domain, and an
intracellular domain containing a tyrosine kinase core. FGF
binding to the FGFR extracellular domain induces receptor
dimerization and activation of the tyrosine kinase domain, which
can initiate key downstream intracellular signaling pathways:
RAS–RAF–MAPK, PI3K–AKT, STAT, and PLCγ (Eswarakumar
et al., 2005; Mason, 2007; Lanner and Rossant, 2010; Goetz
and Mohammadi, 2013). While the FGFRs are encoded by
four separate genes (Fgfr1, Fgfr2, Fgfr3, Fgfr4), alternative
splicing variants, alongside the temporal and spatial regulation of
expressed FGF and FGFRs and the involvement of additional co-
factors, increase the complexity and specificity of FGF signaling
(Ornitz, 2000; Zhang et al., 2006; Mason, 2007; Itoh and Ornitz,
2011; Goetz and Mohammadi, 2013). Out of the four FGFRs,
typically only FGFR1 and FGFR4 have been considered in
the context of adult myogenesis, due to their relative higher
transcript levels observed in freshly isolated SCs and myogenic
cultures [(Sheehan and Allen, 1999; Cornelison et al., 2000;
Kastner et al., 2000; Jump et al., 2009; Chakkalakal et al.,
2012); current study]. Furthermore, to date only FGFR1 and
FGFR4 have been documented at the protein level in SCs or
their progeny (Cornelison et al., 2001; Kwiatkowski et al., 2008;
Cassano et al., 2011). While our overexpression studies have
suggested different modes of function for FGFR1 and FGFR4
(Kwiatkowski et al., 2008), it is unknown whether these two
FGFRs can compensate for each other during SC myogenesis.
Pharmacological-based abrogation of FGFR-signaling has been
employed in order to elucidate the role of FGFR1 in the context
of SC dynamics (Chakkalakal et al., 2012; Bernet et al., 2014).
However, the inhibitory drug used, SU5402 (Mohammadi et al.,
1997), can theoretically target all FGFRs based on its effect on
blocking FGFR tyrosine kinase function. Indeed, SU5402 has
been used as a general inhibitor of FGF signaling in different
species regardless of the expressed FGFR (Udayakumar et al.,
2003; Delaune et al., 2005; Dvorak et al., 2005; Abe et al., 2007;
Thomsen et al., 2008; Vatsveen et al., 2009; Franzdottir et al.,
2010; Fukui and Henry, 2011; Li et al., 2013). Myogenic-specific
ablation or overexpression of Spry1, a member of the Sprouty
family of negative regulators of receptor tyrosine kinase signaling
(Cabrita and Christofori, 2008), were also employed to modulate
FGF signaling during adult myogenesis (Chakkalakal et al.,
2012). The Sprouty proteins, however, act as inhibitors of the
Ras/MAPK cascade, a pathway downstream of various receptor
tyrosine kinases beyond just the FGFRs (Mason, 2007; Cabrita
and Christofori, 2008), which can complicate data interpretation.

If FGFR signaling is essential for regulating SC pool size,
which in turn may be important for muscle homeostasis, then
a better understanding of this topic is needed when considering
future therapies for disease- or age-associated muscle wasting.
Gaining further understanding of the role of the FGFR system
in myogenesis requires models that facilitate direct FGFR
ablation, bypassing downstream interventions that may not
specifically target individual FGFRs and may affect additional

tyrosine kinase receptor cascades. In the current study we have
aimed to gain insight into the role of FGFR1 during adult
myogenesis using Fgfr1-ablated mice. As standard Fgfr1-null
mice die during gastrulation (Deng et al., 1994; Yamaguchi
et al., 1994), investigations of the role of FGFR1 in fetal and
adult life have only become possible with the development of
conditional Fgfr1-null alleles (Xu et al., 2002; Trokovic et al.,
2003). Here, we have ablated Fgfr1 specifically in the myogenic
lineage using a genetic approach with a Cre/loxP mouse model
that relies on the MyoDCre allele to mediate excision of the
floxed Fgfr1 gene. MyoD is well recognized as a master regulator
of the myogenic lineage specification during embryogenesis
(Weintraub et al., 1991). While SCs are thought to express MyoD
only upon their activation (Yablonka-Reuveni and Rivera, 1994;
Cornelison and Wold, 1997; Yablonka-Reuveni et al., 2008), SC
progenitors do emerge during embryogenesis from a MyoD-
expressing lineage (Kanisicak et al., 2009; Yamamoto et al., 2009).
Thereby, MyoDCre-mediated excision of floxed genes would
occur in the embryonic muscle and be stably maintained in
the myogenic lineage through adult life. Here we show that
myogenic-specific ablation of Fgfr1 does not appear to influence
muscle morphology or regeneration following cardiotoxin-
induced damage in adult mice. Nevertheless, our study provides
novel evidence for the obligatory role for FGFR1 in mediating
FGF2mitogenic effect on SCs that is not compensated by FGFR4,
which is also highly expressed in SCs.

Materials and Methods

Mice
Experimental procedures were approved by the University of
Washington Institutional Animal Care and Use Committee.
Mice were typically 4–6 months of age. Knockin heterozygous
males MyoDCre [MyoD1tm2.1(icre)Glh (Kanisicak et al., 2009)]
provided by David Goldhamer, backcrossed by us to C57BL/6,
were bred with knockin reporter females R26mTmG [Gt(ROSA)
26Sortm4(ACTB−tdTomato,−EGFP)Luo/J (Muzumdar et al., 2007)] to
generate adult F1 MyoDCre/+/R26mTmG/+ double heterozygous
animals. Mice harboring floxed Fgfr1 alleles (Trokovic et al.,
2003) were provided by David Ornitz (White et al., 2007).
These mice additionally harbored floxed FGFR2 (Yu et al.,
2003). Nevertheless, as discussed in the Introduction, FGFR2
has been considered not relevant in adult myogenesis and
indeed, as shown in Results, Fgfr2 transcript expression in
SCs and their progeny is negligible. The Fgfr1fl/fl/Fgfr2fl/fl
females were crossed with MyoDCre/+/R26mTmG/+ males and
the resulting MyoDCre/+/R26mTmG/+/Fgfr1fl/+/Fgfr2fl/+ males
were backcrossed with Fgfr1fl/fl/Fgfr2fl/fl females to produce
MyoDCre/+/R26mTmG/+/Fgfr1fl/fl/Fgfr2fl/fl experimental
animals harboring muscle-specific (i.e., MyoD-driven) Fgfr
deletions. The FGFR1fl allele contains loxP sites flanking exons
8–15 that encompass the transmembrane domain and most of
the intracellular region (Trokovic et al., 2003). The FGFR2fl allele
contains loxP sites flanking exons 8-10 that encode a portion of
the ligand binding Ig-3 domain and the transmembrane domain
(Yu et al., 2003).
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Primers for genotyping the MyoDCre (JAX mice stock
#014141) and R26mTmG (JAX mice stock #007676) alleles were
according to Jackson Lab. Primers for genotyping the floxed Fgfr
alleles were according to (Trokovic et al., 2003; White et al.,
2007). Myogenic specificity of the MyoDCre-driven Fgfr deletions
was confirmed by the detection of Fgfr delta alleles (Fgfr1� ,
Fgfr2�) only in skeletal muscles but not in other control organs;
PCR primers were according to (Trokovic et al., 2003; White
et al., 2007). Likewise, GFP fluorescence was detected only in
skeletal muscle myofibers and SCs as we previously published for
MyoDCre/+/R26mTmG/+ mice (Stuelsatz et al., 2012, 2014).

Mice carrying a MyoD-null allele (Rudnicki et al., 1992) or
α7integrin-null allele (Flintoff-Dye et al., 2005) in a heterozygous
or homozygous format were additionally used for comparison
when analyzing SC numbers in isolated myofibers from
Fgfr1/Fgfr2-ablated mice. Both null strains were utilized in our
earlier studies (Yablonka-Reuveni et al., 1999a; Kirillova et al.,
2007; Rooney et al., 2009; Stuelsatz et al., 2012) and genotyped
according to published procedures (Valdez et al., 2000; Flintoff-
Dye et al., 2005). Apart from the MyoD+/− and MyoD−/− mice
that were on Balb/C background, all other strains used in this
study were on enriched C57BL/6 background.

Cell Sorting by Flow Cytometry
Cells were isolated from hindlimb [limb; pooled tibialis anterior
(TA), extensor digitorum longus (EDL) and gastrocnemius] or
diaphragm muscles of floxed FGFR and control mice harboring
the MyoDCre and the R26mTmG alleles. The R26mTmG reporter
operates on a membrane-localized dual fluorescent system
where all cells express Tomato until Cre-mediated excision of
the Tomato gene allows for GFP expression in the targeted
cell lineage (Muzumdar et al., 2007). Consequently, when the
R26mTmG allele is combined with MyoDCre allele all skeletal
muscles and their resident SCs are GFP+ (Stuelsatz et al.,
2014) due to ancestral MyoD expression in the myogenic
lineage (Kanisicak et al., 2009). Using this muscle-specific
reporter model, the isolated cells are sorted into myogenic
and non-myogenic populations according to GFP vs. Tomato
fluorochrome, respectively, combined with antigen-based sorting
for maximal purification as we previously described (Stuelsatz
et al., 2014). In brief, cell suspensions were released from
harvested muscles by collagenase/dispase digestion and were
first incubated with 10 μM Hoechst 33342 (Sigma-Aldrich) for
30 min at 37◦C to label cell nuclei, followed by incubation
with the following fluorescently conjugated antibodies (from
eBioscience): anti-Sca1 (APC, clone D7), anti-CD31 (PECy7,
clone 390), anti-CD45 (PECy7, clone 30-F11). Cell sorting was
then performed using an Influx Cell Sorter (BD Biosciences)
equipped with 350, 488, and 638 nm lasers. All sorted cells
were collected within the G0-G1 population depleted of CD31+
(endothelial) and CD45+ (hematopoietic) cells, with myogenic
and non-myogenic populations isolated as GFP+/Sca1− and
Tomato+/Sca1+ cells, respectively. Gates were determined by
comparing fluorophore signal intensities between the unstained
control and each single antibody/fluorophore control. Data
was acquired at 20,000–100,000 events per sample and sorted
cells were collected in our culture media described below.

Subsequent analysis and flow cytometry plots were generated
using FlowJo (TreeStar). Sorted populations were either used as
freshly isolated cells for gene expression studies or first expanded
in primary cultures before harvested for DNA/RNA isolation and
subsequent PCR/RT-PCR analyses as detailed next.

Primary Cultures of Sorted Myogenic and
Non-myogenic Populations
Cells were cultured according to our routine procedures
for mouse primary cultures (Danoviz and Yablonka-Reuveni,
2012; Stuelsatz et al., 2014). The basal solution used for all
culture medium preparations consisted of Dulbecco’s modified
Eagle’s medium (DMEM, high glucose, with L-glutamine,
110 mg/l sodium pyruvate, and pyridoxine hydrochloride,
Hyclone) supplemented with antibiotics (50 U/ml penicillin and
50 mg/ml streptomycin, Gibco-Life Technologies). Sorted cells
were cultured in 12-well culture plates pre-coated with Matrigel
(BD Biosciences, diluted to a final concentration 1 mg/ml) using
our standard DMEM-based medium containing 20% fetal bovine
serum (Gibco-Life Technologies), 10% horse serum (Gibco-Life
Technologies), and 1% chicken embryo extract [prepared from
whole 10-day-old embryos as detailed in Notes #4 and 5 in
(Danoviz and Yablonka-Reuveni, 2012)] and were incubated at
37◦C, 5% CO2. Cultures were initiated at a density of 1–2 × 104
cells per well. After the initial plating, growth medium was
replaced every 3 days.

Quantitative Gene Expression Analysis of
Freshly Sorted Cells
RNA was isolated from freshly sorted myogenic and non-
myogenic populations and reverse transcribed according to our
published procedure (Day et al., 2010). Sorted cell populations
were pelleted (400 × g for 10 min followed by 90 s at 12,000 × g)
and suspended in the lysis buffer from the RNeasy Plus Micro
kit (Qiagen) used to isolate total RNA. The RNA was then
quantified using an Agilent Bioanalyzer and reverse transcribed
(at 0.4 ng/μl) into cDNA using the iScript reverse transcriptase
(Bio Rad). Gene expression was determined by SYBR Green-
based quantitative PCR using 1 μl cDNA per reaction (20 μl
final volume) on an ABI 7300 Real Time PCR machine (Life
Technologies) as we previously described (Phelps et al., 2013)
except that the annealing temperature for Fgfr1 and Fgfr2 primer
sets was adjusted at 66◦C instead of the standard 63◦C used for
the remaining primer sets. Raw qPCR cycle threshold values for
each individual sample were normalized to eukaryotic translation
elongation factor 2 (Eef2) reference gene expression as in (Phelps
et al., 2013). Each sample was analyzed in triplicate. Genes were
considered expressed if cycle threshold values (raw Ct) of less
than 33 cycles were detected.

Primer sequences were (fwd/rev): Pax7, GCCACAGCTTC
TCCAGCTAC/CACTCGGGTTGCTAAGGATG (120 bp, UCSC
Genome Browser ID Pax7_uc008vms.1_1_1_2); Fgfr1, GCCC
TGGAAGAGAGACCAGC/GAACCCCAGAGTTCATGGATGC
[244 bp, (Kwiatkowski et al., 2008)]; Fgfr2, GCCTCTCGAA
CAGTATTCTCCT/ACAGGGTTCATAAGGCATGGG [103 bp,
PrimerBank ID 2769639a1, (Spandidos et al., 2010)]; Fgfr3,
GGCTCCTTATTGGACTCGC/TCGGAGGGTACCACACTTTC
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[219 bp, (Deng et al., 1996)]; Fgfr4, TTGGCCCTGTTGAGCAT
CTTT/GCCCTCTTTGTACCAGTGACG (189 bp, PrimerBank
ID 6679789a1); Eef2, TGTCAGTCATCGCCCATGTG/CATCCT
TGCGAGTGTCAGTGA (123 bp, PrimerBank ID 33859482a1).
The final concentration of all primers was 500 nM.

Genomic and Transcriptional Analysis of
Cultured Cells
Sorted cells cultured for 7 days were rinsed twice with DMEM
before adding the lysis buffer from the AllPrep DNA/RNA Mini
kit (Qiagen) used for simultaneous purification of genomic DNA
and total RNA. Resulting preparations were quantified with a
NanoDrop spectrophotometer. Genomic analyses were done by
using 5 μl of DNA solution (adjusted to 10 ng/μl) per PCR
reaction (25 μl final volume). PCR primers used for Fgfr1 and
Fgfr2 genomic products (wildtype, flox and �) were according
to (White et al., 2007). Transcript expression analysis was done
by semi-quantitative RT-PCR according to our standard protocol
(Day et al., 2007). Briefly, the RNA was reverse transcribed (at
20 ng/μl) into cDNA using the iScript reverse transcriptase (Bio
Rad) and 5 μl of cDNA per PCR reaction (25 μl final volume)
were used. PCR primers used for transcript expression analysis
were previously described by us in (Kwiatkowski et al., 2008;
Stuelsatz et al., 2012) and were used here at a final concentration
of 400 nM. Expression of Tbp (TATA box binding protein)
housekeeping control gene served as quality and loading control
as in (Stuelsatz et al., 2012). For all PCR reactions, the following
cycling parameters: 95◦C for 15 min, 22–30 cycles of 94◦C for
40 s, 60◦C for 50 s, 72◦ for 1 min, with a final extension step
of 72◦C for 10 min were used. PCR products were separated on
1.5% agarose gels containing 1:10,000 dilution of SYBR Green I
(Molecular Probes). Gels were imaged using Gel Logic 212 Pro
(Carestream).

Quantification of SCs on Isolated Myofibers
Single myofibers were isolated from the EDL muscle as we
previously described (Day et al., 2010; Keire et al., 2013). For
each mouse strain and for each condition tested, myofibers were
typically isolated from 3 mice. For analyzing the number of SCs
on freshly isolated myofibers, we relied on Pax7 immunostaining
following our standard approach using adherent myofibers
where each myofiber is dispensed into an individual Matrigel-
coated well (Shefer et al., 2006; Day et al., 2007; Keire et al.,
2013) prior to fixation and immunostaining. For analyzing
SC proliferation/differentiation, myofibers were cultured for
3 days in non-coated wells (24-well trays, 1 myofiber per
well) using a DMEM-based medium containing 10% horse
serum, an approach that yields non-adhering myofibers and
maintains the SCs and their progeny associated with the parent
myofibers [adapted from (Zammit et al., 2004)]. For myofibers
treated with FGF, FGF2 was supplemented at 5 ng/ml (R&D
Systems, recombinant human FGF basic, #234-FSE-025). The
cultures were initiated in 0.3 ml and the replenishment of
the medium (±FGF2) was achieved by adding fresh medium
(0.2 ml) on culture day 1 and performing partial medium
change (0.25 ml) on culture day 2; this approach ensured
that myofibers were not disturbed during medium change.

Myofibers were fixed on day 3 by adding to the medium
an equal volume of 4% paraformaldehyde [PFA, prepared
as detailed in Note# 14 in (Keire et al., 2013)]. SCs were
analyzed by immunostaining using mouse antibodies against
Pax7 [Developmental Studies Hybridoma Bank (DSHB), ascites,
1:1000], MyoD (BD Biosciences, 1:800), Myogenin (DSHB,
supernatant, 1:5) and counterstaining with DAPI according to
our standard protocol for blocking, rinsing and mounting the
myofibers (Shefer et al., 2006; Keire et al., 2013), except that
extra care had to be taken due to the non-adherent nature of the
myofibers.

Muscle Injury and Histology
Mice were anesthetized with isoflurane. For each mouse, the
TA muscle from one leg was injected with 25 μl of 20 μM
cardiotoxin (Sigma C9759), while the TA from the contralateral
leg was injected with 25 μl of 0.9% NaCl as a control. TAs
(with EDLs attached, referred later as TA/EDL) were harvested
at different time points after injury, embedded in OCT (Tissue-
Tek) and flash frozen in isopentane cooled with liquid nitrogen.
Transverse sections (10 μm) prepared using a Leica CM1850
cryostat were stained with hematoxylin and eosin [H&E, as
described in (Stuelsatz et al., 2015)] or alternatively fixed with 2%
PFA for 10 min before being stained with DAPI when analyzed
for GFP and Tomato fluorochrome expression.

FGFR4 Immunodetection
FGFR4 immunolabeling was performed on unfixed cryosections
or on fixed primary myogenic cultures processed according to
our standard protocol (Kwiatkowski et al., 2008; Stuelsatz et al.,
2014). Cultures were prepared from Pronase digested muscle
and grown on gelatin as in (Danoviz and Yablonka-Reuveni,
2012) before being fixed with ice-cold methanol as we previously
published (Yablonka-Reuveni and Rivera, 1997a). In all cases,
specimens were prepared from limb muscle of wildtype mice.
Rabbit anti-FGFR4 was either from Santa Cruz Biotechnology or
produced in our laboratory [(Kwiatkowski et al., 2008), available
from Millipore]. FGFR4 immunolabeling of cryosections was
done in combination with laminin immunodetection (Stuelsatz
et al., 2014) to identify presumptive SCs based on their location
underneath the myofiber basal lamina.

Microscopy and Imaging
Cell culture and histological observations were made with an
inverted fluorescent microscope (Eclipse TE2000-S, Nikon).
Images were acquired using CoolSNAP ES monochrome CCD
camera (Photometrics) controlled withMetaVue Imaging System
(Universal Imaging Corporation). For acquiring real color images
of H&E stained muscle sections, images were taken with a
Digital Sight DS-Ri1 color camera controlled by NIS-Elements F
software (Nikon). Digitized images were assembled using Adobe
Photoshop software. For final images of tissue cross sections
showing the whole TA/EDL muscle, several pictures were taken
(with a 10 or 20x objective) and merged together, resulting in a
high-resolution view of the entire muscle cross-sectional area.
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Statistics
Data were analyzed by one-way ANOVA (p < 0.05) with
Bonferroni–Holm post hoc analysis using Excel with Daniel’s XL
Toolbox Add-In (by Daniel Kraus, Würzburg, Germany).

Results and Discussion

Experimental Approach
To achieve muscle-specific ablation of FGFR1 we have used
a Cre/loxP genetic approach relying on the MyoDCre allele
to mediate ablation of the floxed Fgfr1 gene. Regardless of
muscle origin, virtually all SCs in adult muscles are derived
from progenitors that have expressed the MyoDCre allele during
embryogenesis (Kanisicak et al., 2009; Yamamoto et al., 2009).
Hence, as detailed in the Introduction, MyoDCre-mediated
excision of floxed genes would occur in the embryonic muscle
and be stably maintained in the myogenic lineage through
adult life. Indeed, our use of the R26mTmG mouse (a floxed
dual fluorescent reporter system described in Materials and
Methods), crossed with the MyoDCre mouse, has clearly
demonstrated specificity of the MyoDCre-mediated excision
(i.e., GFP expression) in all adult muscles in both myofibers
(which are formed during embryogenesis by myoblasts fusion)
and SCs (Stuelsatz et al., 2012, 2014, 2015). Moreover,
this specific expression of GFP in the myogenic lineage of
MyoDCre × R26mTmG mice has provided us with an effective
tool for sorting SCs (GFP+) from non-myogenic (Tomato+)
populations (Stuelsatz et al., 2012, 2014, 2015). While we were
mostly interested in the present study in the role of FGFR1,
the founder mice we had received to establish our colony
harbored both floxed Fgfr1 and Fgfr2 alleles. As detailed in
the Introduction, Fgfr2 has been considered not relevant in
adult myogenesis and indeed, as shown in Figures 1 and 2,
its expression level in SCs and their progeny is negligible.
However, Fgfr2 could have theoretically been upregulated in
the cell culture conditions used in the current study and/or
upon Fgfr1 ablation. Hence, in this original investigation of
the effect of Fgfr genetic ablation on the myogenic lineage
we decided to retain both Fgfr1 and Fgfr2 floxed alleles.
Mice carrying these myogenic-specific (MyoDCre-driven) double
homozygous deletions are referred to throughout the manuscript
as mR1�/�/R2�/�, while control mice, wildtype for Fgfr1 and
Fgfr2, or harboring floxed Fgfr1 and Fgfr2 alleles, are referred
to as R1+/+/R2+/+ or R1fl/fl/R2fl/fl, respectively. The mR1� /�/
R2�/� mice (with or without the R26mTmG allele) were fertile
and appeared normal by size and overall morphology (mice were
followed up to 16 months of age).

Fgfr Expression in Freshly Isolated SCs
Before embarking on Fgfr ablation, we wished to analyze
endogenous Fgfr transcript levels in freshly isolated SCs in
comparison with non-myogenic cells. Gene expression analyses
were performed on freshly isolated populations sorted from
limb and diaphragm muscles of MyoDCre/+/R26mTmG/+ mice
(Figure 1, quantitative RT-PCR). For both muscle types analyzed,
the Pax7 data validates the myogenic nature of the GFP+

FIGURE 1 | Fgfr expression in freshly isolated SCs from limb and
diaphragm muscles of MyoDCre/+/R26mTmG/+ mice. Myogenic and
non-myogenic cell populations were sorted by flow cytometry (based on GFP
and Tomato fluorescence, respectively, and cell surface antigens) and
analyzed by quantitative RT-PCR. Gene expression values were normalized to
Eef2 reference gene expression (�Ct). Average Ct values for Eef2 gene (±SD)
were 23.49 ± 0.09 (limb myogenic), 22.90 ± 0.04 (diaphragm myogenic),
20.84 ± 0.01 (limb non-myogenic), and 20.42 ± 0.01 (diaphragm
non-myogenic).

population; i.e., Pax7, the classic marker of SCs, was expressed
only by the sorted GFP+ population but not by the Tomato+
non-myogenic population (Figure 1). As additionally shown in
Figure 1, Fgfr1 was expressed at a relatively high level by both
the myogenic and non-myogenic populations, while Fgfr4 was
expressed only by the myogenic population, in accordance with
our previous rat studies (Kastner et al., 2000). Fgfr2 was below
detection level in the myogenic population, while some Fgfr2
expression was demonstrated by the non-myogenic population.
Fgfr3 was detected at relatively low level in both the myogenic
and non-myogenic populations (Figure 1).

MyoDCre Induces Effective Deletions of the
Floxed Fgfr1 and Fgfr2 Alleles in the
Myogenic Lineage without Modulating
Endogenous Levels of Fgfr3 and Fgfr4
The efficiency of MyoDCre-driven Fgfr1/Fgfr2 deletions in SCs
was evaluated concurrently at the genomic (PCR) and transcript
(RT-PCR) levels for both limb and diaphragmmuscles (Figure 2).
The cells were isolated from mR1�/�/R2�/� and control
R1+/+/R2+/+ mice that also harbored the R26mTmG reporter
to facilitate cell sorting of SCs vs. non-myogenic cells and to
confirm the purity of the sorted populations in culture according
to GFP vs. Tomato reporter color, respectively (Figure 2A). To
ensure sufficient material for the analyses, and also to obtain
insight into possible modulations in Fgfr gene expression upon
proliferation/differentiation vs. freshly isolated cells (Figure 1),
the sorted cells were cultured for 7 days in our standard rich–
medium conditions, then harvested for simultaneous isolation of
DNA and RNA preparations.

Notably, there were no apparent differences in overall
morphology of the myogenic cultures from Fgfr1/Fgfr2-ablated
(mR1�/�/R2�/�) and control (R1+/+/R2+/+) mice, whether
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FIGURE 2 | MyoD-driven Cre induces effective deletions of Fgfr1 and
Fgfr2 in the myogenic lineage without modulating gene expression
levels of Fgfr3 and Fgfr4. Myogenic (GFP+ ) and non-myogenic (Tomato+ )
cell populations were sorted by flow cytometry (as in Figure 1) from limb
and diaphragm muscles (denoted as L and D, respectively) of
MyoDCre/+/R26mTmG/+/Fgfr1fl/fl/Fgfr2fl/fl (mR1�/�/R2�/�) and control
MyoDCre/+/R26mTmG/+ (R1+/+/R2+/+ ) mice. (A) Representative images of
sorted GFP+ and Tomato+ cell populations isolated from hindlimb muscles
and cultured for 7 days before being processed for simultaneous DNA and
RNA isolation and further PCR and RT-PCR analyses, respectively. As shown
here, the myogenic (GFP+ ) cultures displayed the initiation of myotube
formation that became more prominent by culture days 10–14 (not shown),
while the non-myogenic (Tomato+ ) cultures were void of myotubes. (B) PCR

analysis of the presence of the different Fgfr1 and Fgfr2 alleles (wt, flox, or �

alleles) at the genomic level. The detection of PCR products of the
Cre-mediated genomic deletions (�) solely in myogenic (GFP+ ) cells confirms
the muscle-specific deletion of Fgfr1 and Fgfr2 genes. (C) Semi-quantitative
RT-PCR analysis of Fgfr transcript levels. Fgfr1 and Fgfr2 transcripts were
absent in myogenic (GFP+ ) cells from mR1�/�/R2�/� mice (in agreement
with the genomic analysis), while expressed at a relatively high (Fgfr1) and
low (Fgfr2) levels, in control myogenic (GFP+ ) cells from R1+/+/R2+/+ mice.
In contrast, Fgfr3, Fgfr4, and c-Met were each detected at a similar level in
the myogenic cultures from mR1�/�/R2�/� vs. R1+/+/R2+/+ mouse
strains. The observed higher Fgfr4 expression levels in diaphragm (vs. limb)
myogenic cultures from both mR1�/�/R2�/� and R1+/+/R2+/+ mice
appear to coincide with the higher myogenin expression levels observed.

cells were isolated from limb (Figure 2A) or diaphragm
muscles (data not shown). For both mouse strains, the cultured
GFP+ cells demonstrated typical myogenic features, fusing into
myotubes by day 7 (Figure 2A), with myotubes enlarging
in number and size in subsequent days (not shown). The
non-myogenic cultures (Tomato+) from both Fgfr-deleted and
control mice harbored typical features of fibroblastic cells as
expected, with no myotubes detected even when following the
cultures for longer time.

The genomic analysis of the different Fgfr1 and Fgfr2 alleles
(wt, flox, or � alleles) validated that the mice harbored the
anticipated alleles in accordance with mouse genotype and cell
type analyzed (Figure 2B). The detection of genomic PCR
products specific of the MyoDCre-mediated Fgfr1 and Fgfr2
genomic deletions (� allele) solely in myogenic cells confirmed
muscle-specific deletions while the concurrent absence of any
residual flox allele revealed the high efficiency of the Cre-
mediated recombination in the SC lineage.

Fgfr transcript evaluation by semi-quantitative RT-PCR in
cultures from both limb (L) and diaphragm (D) further

demonstrates the effectiveness of MyoDCre-driven Fgfr1-ablation
in the myogenic lineage (Figure 2C) while Fgfr2 is already barely
detected in the myogenic lineage from the non-ablated control.
One primer of each pair used to detect Fgfr1 or Fgfr2 transcripts
is localized within the targeted floxed region, thereby avoiding
detection of truncated mRNAs that may be produced by the �
alleles. Nevertheless,mutant FGFR proteins potentially translated
from such truncated mRNA would be non-functional due to the
lack of critical domains (see Materials and Methods). Indeed,
as anticipated based on their location within the corresponding
Fgfr floxed region, our Fgfr1/Fgfr2 primers did not produce
any RT-PCR products when analyzing Fgfr1/Fgfr2 mRNA
expression in the myogenic lineage from mR1�/�/R2�/� mice
(Figure 2C). This is in contrast to that seen in non-myogenic
cell cultures where both Fgfr1 and Fgfr2 are expressed at a
relatively high level for both mouse strains analyzed (Figure 2C),
demonstrating the specificity of the Fgfr1/Fgfr2 ablation to the
myogenic lineage. Fgfr3 and Fgfr4 expression levels in myogenic
cells were unaffected when comparing myogenic cells from
mR1�/�/R2�/� vs. R1+/+/R2+/+ muscles. Likewise, the level
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of c-Met, the receptor for HGF, also an established mitogen of
SCs as detailed in the Introduction, was unaffected following
Fgfr1/Fgfr2 deletion (Figure 2C). Hence, there is no apparent
compensatory upregulation of Fgfr3, Fgfr4, or c-met in the
Fgfr1/Fgfr2-ablated myogenic lineage.

The data in Figure 2C illustrate additional noteworthy points
regarding Fgfr expression in cultures from both limb (L) and
diaphragm (D) in the context of the control R1+/+/R2+/+
cultures. (i) Fgfr3 appears to be expressed at a higher expression
level in the myogenic cultures vs. the non-myogenic cultures
and Fgfr4 is clearly expressed only in the myogenic cultures.
(ii) When compared to Fgfr expression levels in freshly isolated
populations from R1+/+/R2+/+ control mice (Figure 1), Fgfr1
and Fgfr4 appear to retain the same expression profile in the day 7
cultures (with no Fgfr4 being detected in the non-myogenic cells),
but Fgfr2 and Fgfr3 appear to be up-regulated in the cultured
non-myogenic and myogenic cells, respectively. Our additional
unpublished studies of limb-derived sorted populations have
shown that Fgfr2 expression level continues to rise in the non-
myogenic population with time in culture, concomitant with
adipogenic differentiation that takes place uniquely in this Sca1+
sorted population. The latter non-myogenic population has
previously been defined by others and us as fibro/adipogenic
progenitors (Joe et al., 2010; Stuelsatz et al., 2014).

Muscle Tissue of Adult mR1�/�/R2�/� Mice
Does Not Show Apparent Signs of
Histopathology or Abolishment of
Regenerative Activity
Histological examination of muscle tissues from Fgfr1/Fgfr2-
ablated mice showed no apparent differences compared to the
control (R1fl/fl/R2fl/fl) mice. Low and high magnification images
of H&E stained cross sections processed from TA/EDL of
mR1�/�/R2�/� and control R1fl/fl/R2fl/fl mice demonstrate for
both mouse strains a normal muscle morphology (Figure 3).
Next, we analyzed muscle regeneration in mR1�/�/R2�/�

mice (Figures 4 and 5) following intramuscular administration
of cardiotoxin, which specifically destroys the myofibers but
preserves SCs (Harris, 2003). As seen in Figure 4, while most of
the cardiotoxin-injected muscle tissue did not initiate myofiber
formation on day 7 post-injury and still demonstrated large areas
of inflammatory cell infiltrations at day 14, by day 21 there
was an effective regenerative process throughout the muscle as
observed by the characteristic presence of central myonuclei
(Figure 4). Our unpublished studies with wildtype adult mice
have demonstrated formation of nascent regenerative myofibers
by day 7 following cardiotoxin injury and an almost complete
myofiber recovery by day 14 post-injury. Hence, it appears that
mR1�/�/R2�/� injured muscle has a lag inmuscle regeneration.
Nevertheless, our data (Figures 4 and 5) clearly indicate a
thorough regeneration of the injured muscle by day 21 regardless
of Fgfr1/Fgfr2 ablation in the myogenic lineage.

This injury study presented in Figures 4 and 5 was done
in mR1�/�/R2�/� mice that also harbored the R26mTmG allele
to facilitate direct tracking of myogenic cells/myofibers (GFP+)
vs. non-myogenic cells (Tomato+), and as expected the newly

FIGURE 3 | Muscle tissue of adult mR1�/�/R2�/� mice does not
appear different from that of control muscle from R1+/+/R2+/+ mice.
Representative images of H&E stained cross sections of TA/EDL from
10-month-old (A) mR1�/�/R2�/� and (B) R1+/+/R2+/+ mice. For each
panel, regions delineated in the low magnification image of the whole TA/EDL
(A,B) are shown as higher magnification views (A1–B2) identified with
corresponding colored frames. Muscles from both mouse strains harbored
typical histology with larger and smaller diameter myofibers with peripheral
nuclei.

regeneratedmyofibers are of MyoD lineage origin (Figure 5). The
GFP reporter has also permitted the observation of (i) infrequent
groups of small-diameter myofibers (Figure 5A), and (ii) the
tiny intrafusal myofibers (Figure 5B) constituting the muscle
spindle apparatus that plays a role in proprioception (Walro
and Kucera, 1999; Kirkpatrick et al., 2008). Interestingly, the
muscle spindle seen in Figure 5B is located within a regenerating
region characterized by central myonuclei and thus most likely
underwent a regeneration process similar to the surrounding
myofibers.

SCs in Isolated Myofibers from
mR1�/�/R2�/� Mice Exhibit Impaired
Proliferative Response to FGF2
Based on the outcome of the injury study described above,
FGFR1/FGFR2 do not appear to be essential (at least at the
histological level) for muscle regeneration following cardiotoxin
injury, but it does not necessarily preclude a role for FGF
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FIGURE 4 | Muscle tissue of adult mR1�/�/R2�/� mice retains
regenerative activity. Representative images of H&E stained cross
sections of TA/EDL from 4-month-old mR1�/�/R2�/� mice, showing
extensive damage at 7 days post cardiotoxin-induced injury, and
progressive recovery at 14 and 21 days post-injury. For each panel,
regions delineated in the low magnification image of the whole
TA/EDL are shown as higher magnification views (A1–C2) identified
with corresponding colored frames; dotted lines in the low
magnification images delineate the outer limits of the region that
has been effectively injured. Morphology of control contralateral TAs
(NaCl-injected, not shown) appeared similar to that of the uninjured
muscle depicted in Figure 3. (A) As seen on day 7 post-injury,
cardiotoxin injection caused massive myofiber degeneration, resulting

in large necrotic regions in which empty remnants of the original
myofibers (A1) and infiltration of inflammatory cells (A2) are
detected; regions with small regenerating myofibers with central
myonuclei (hallmark of regenerating myofibers) were occasionally
observed (A2). (B) On day 14 post-injury, regenerating myofibers
were more abundant (B2), but regions showing infiltration of
inflammatory cells were still occasionally present (B1); asterisk in (B)
and (B2) indicates the scar left at the needle injection point.
(C) By day 21 post-injury, most of the original injured region
showed successful regeneration based on the presence of larger
(relative to day 14) myofibers containing central nuclei and overall
tissue morphology (C2); infiltration of inflammatory cells was only
minimally detected at this stage (C1).

signaling system in muscle regeneration. Indeed, multiple growth
factors have been implicated in muscle regeneration and might
compensate functionally for each other role in the cardiotoxin-
induced muscle regeneration model (Charge and Rudnicki,
2004; Shefer and Yablonka-Reuveni, 2008). Hence, to directly
investigate the impact of Fgfr ablation on SC number and

performance, we analyzed isolated myofibers maintained in
culture conditions where SCs are retained at their native
position by the myofiber as the cells undergo proliferation and
differentiation (Yablonka-Reuveni and Rivera, 1994; Zammit
et al., 2004; Keire et al., 2013). In the current studymyofibers were
isolated from EDL muscles and were either allowed to adhere to
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FIGURE 5 | Fluorescent images of cross sections prepared from
TA isolated 21 days post-injury from a 4-month-old
mR1�/�/R2�/� mouse (also harboring the R26mTmG allele)
depicting GFP and Tomato fluorescence, indicative of myogenic
and non-myogenic structures, respectively, with DAPI+ nuclei.
(A–A”) The use of the R26mTmG allele together with the MyoDCre

driver (used for recombining the floxed Fgfr1 and Fgfr2 alleles)
demonstrates that as expected, the regenerated myofibers identified
by their central nuclei, were GFP+, hence, of MyoD lineage origin.
The capillaries and connective tissue surrounding myofibers are
Tomato+ (i.e., of non-MyoD+ origin). (B–B”) In addition to the
standard myofibers (extrafusal), a muscle spindle (arrowhead, higher

magnification view in top left insert) can be observed within a
regenerating region. While the spindle capsule and the material
surrounding each intrafusal myofiber are of a non-MyoD+ origin
(Tomato+ ), similar to the standard myofibers, the intrafusal myofibers
are of MyoD-lineage origin (GFP+ ). Note the distinctive smaller
diameter size of the intrafusal myofibers compared to the larger
extrafusal myofibers. Asterisk indicates the scar (Tomato+ ) left at the
needle injection point. Notably, as shown in panels (A) and (B),
sites with groups of smaller diameter extrafusal myofibers were
observed in addition to the larger diameter myofibers. Morphology of
control contralateral TAs (NaCl-injected, not shown) exhibited no
differences when compared to uninjured muscle depicted in Figure 3.

Matrigel to determine SC numbers on freshly isolated myofibers
according to Pax7 immunostaining (Figure 6A), or maintained
in suspension to investigate SCdynamics (Pax7/MyoD/myogenin
immunostaining) in response to FGF2 over 3 days in culture
(Figure 6B).

The boxplot analysis of freshly isolated EDL myofibers
immunostained for Pax7 (Figure 6A) suggests that within
the four different groups identified as “FGFR-related,”
the mR1�/�/R2�/� mice potentially harbor less SCs per
myofiber. An ANOVA test indeed revealed a statistically
significant difference. Nevertheless, SC number in myofibers
of mR1�/�/R2�/�mice does not appear to be overtly affected
when each of the FGFR-related groups are compared with
mice lacking MyoD or α7integrin that show a clear increase or

decrease, respectively, in their SC numbers (Figure 6A). Overall,
the number of SCs per myofiber in each of the FGFR-related
groups (and in the MyoD+/− and α7integrin+/− groups) all fall
within the wildtype range of adult male mice (Shefer et al., 2006;
Day et al., 2007, 2010). Notably, the increase in SC numbers
in MyoD-null mice was previously recognized (Megeney et al.,
1996; Yablonka-Reuveni et al., 1999a; Cornelison et al., 2000;
Gayraud-Morel et al., 2007), but while α7integrin has been
known to be expressed in the myogenic lineage, including in SCs
(Burkin and Kaufman, 1999; Sacco et al., 2008; Rooney et al.,
2009; Ieronimakis et al., 2010), we report here the novel finding
of significantly reduced SC numbers in the absence of α7integrin.

To analyze the effect of FGF2 on SC performance, myofibers
were maintained for 3 days in suspension in basal medium
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FIGURE 6 | Satellite cells (SCs) in isolated EDL myofibers from
mR1�/�/R2�/� mice do not display a drastic change in their number
but exhibit impaired proliferative response to FGF2. (A) Quantification of
SCs in freshly isolated myofibers from different mouse strains as listed under
the X-axis. SCs were quantified on individual myofibers by Pax7
immunostaining combined with DAPI-staining to highlight both SCs and
myonuclei. Data are summarized as boxplots, depicting the quartile
distribution and mean ± SEM (red marks) for the number of SCs per myofiber;
the whiskers on each side of the box are taken to the minimum and maximum
values. MyoD-null and α7integrin-null data are included for comparison, as
these mutations do drastically affect SC numbers. For each strain as listed
from left to right under the X-axis, the number of myofibers analyzed was 48,
18, 54, 18, 120, 96, 88, and 95, respectively. (B) Single myofibers were
maintained in suspension for 3 days with or without FGF2 supplement
(5 ng/ml), then fixed and analyzed by immunostaining for the expression of the
myogenic markers Pax7, MyoD and myogenin as a means to investigate SC
dynamics. For typical Pax7/MyoD/myogenin immunostaining images see our
previous mouse myofiber studies (Yablonka-Reuveni et al., 1999a; Shefer
et al., 2006; Keire et al., 2013); examples of MyoD staining that depict the
proliferative response of SCs to FGF2 supplementation are shown in
Figure 7. To quantify the effect of FGF2 on SCs, the ratio in average cell
numbers between FGF2-treated and untreated myofibers was determined for
each marker (indicated under X-axis legend). Asterisks denote statistically
significant differences in the number of labeled cells per myofiber between
FGF2-treated and untreated myofibers (single asterisk p < 0.05; triple
asterisks p < 0.001). For each condition as listed from left to right under the
X-axis, the number of myofibers analyzed was 19, 21, 18, 21, 16, 17, 17, 12,
16, 12, 15, and 13, respectively.

(DMEM containing 10% horse serum, which is known to
contain fewer growth promoting factors than fetal bovine
serum) with or without FGF2 supplement. The cultured
myofibers were then analyzed by immunostaining using
antibodies against Pax7, MyoD and myogenin to quantify
SCs and their progeny according to their transcription
factor expression status (Figure 6B) The FGF2-mediated
increase in Pax7+ or MyoD+ cells seen by day 3 in control
(R1+/+R2+/+) cultures is drastically affected in myofibers from
mR1�/�/R2�/� mice (exemplified by MyoD immunostaining
in Figures 7A–B”). Indeed, the ratio in average cell numbers
between FGF2-treated and untreated myofibers declined by
∼50% in the mR1�/�/R2�/� mice (1.9 [Pax7] and 1.5 [MyoD])
compared to R1+/+/R2+/+ mice (3.8 [Pax7] and 2.8 [MyoD]
Figure 6B). There was a slight decline in Pax7+, MyoD+, and
myogenin+ cell numbers in untreated (i.e., not exposed to
FGF2) mR1�/�/R2�/� myofibers. This may be due to the
subtle decline in the initial number of SCs noted in freshly
isolated myofibers (Figure 6A) and/or due to an impaired
response of mR1�/�/R2�/� myofibers to the basal levels of
FGF2, available in the cell culture serum or contributed by the
myofibers (Yablonka-Reuveni and Rivera, 1994; Chakkalakal
et al., 2012). The transition to the differentiated, myogenin+
state, was suppressed by FGF2 in the R1+/+/R2+/+ myofibers
(i.e., the ratio of myogenin+ cells in FGF2-treated vs. untreated
myofibers was 0.1), which is in agreement with the established
FGF2 effect on delaying myogenic differentiation (Clegg et al.,
1987). Differently, in the mR1�/�/R2�/� mice, albeit the
number of myogenin+ labeled cells appeared slightly reduced
in FGF2-treated vs. untreated myofibers, there was no statistical
difference between the two groups.

FGFR4 Does Not Appear to Substitute for
the Mitogenic Effect of FGFR1 on SC
Performance in Isolated Myofibers
Overall, the data in Figure 6B demonstrate an impairment of
FGF2-mediated proliferative activity of SCs in isolated myofiber
cultures from mice lacking functional FGFR1 (and FGFR2).
This impairment suggests that other FGFRs that are possibly
expressed by SCs cannot substitute for FGFR1 function. As the
expression of Fgfr4 transcripts was indeed detected in freshly
isolated SCs and their progeny (Figures 1 and 2), we set out to
determine if FGFR4 protein is expressed by SCs. Previously we
and others have shown FGFR4 protein in mouse SC progeny
using Western blotting of cultured cells (Kwiatkowski et al.,
2008; Cassano et al., 2011). Here, we show immunodetection
of FGFR4 in limb muscle cross sections (Figures 8A–B”). The
observed FGFR4+ structures are presumptive SCs based on their
location underneath the myofiber basal lamina that is highlighted
by laminin immunostaining (Figures 8A–B”). We additionally
show here the expression of FGFR4 protein in mouse myogenic
primary cultures (Figures 8C,C’). FGFR4 was down regulated
in response to FGF2 supplement, therefore it appears to be
functional (Figures 8D,D’).

The inability of the endogenously expressed FGFR4 to rescue
the proliferative effect of FGF2 in isolated myofibers from
mR1�/�/R2�/� provides further support to our hypothesis that
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FIGURE 7 | Examples of EDL myofibers isolated from (A–A”)
mR1�/�/R2�/� or (B–B”) R1+/+/R2+/+ mice and cultured in
suspension for 3 days with FGF2 supplement and then
immunostained for MyoD, which is expressed by proliferating and
differentiating SCs. DAPI counterstaining detected both the MyoD+ cells

and the myofiber nuclei, but only nuclei at the focal level of the MyoD+ cells
can be seen in the images shown. The apparent difference in diameter
between the two examples of myofibers shown in (A) vs. (B) is arbitrary and
does not reflect a strain difference, as clearly demonstrated by the cross
section images shown in Figure 3.

FGFR4 has a different role from that of FGFR1 during adult
myogenesis. Indeed, overexpression studies have indicated that
different from the other three FGFRs, FGFR4 appears to be a
poor inducer of mitogenesis, whereas a clear mitogenic effect
was detected when the intracellular domain of overexpressed
FGFR4 was replaced with that of FGFR1 (Ornitz et al., 1996;
Zhang et al., 2006). The poor mitogenic effect of FGFR4 could
be linked to its much reduced tyrosine kinase phosphorylation
compared to the other FGFRs (Kwiatkowski et al., 2008). Our
FGFR4 overexpression studies [(Kwiatkowski et al., 2008); R
Almuly and Z Yablonka-Reuveni, unpublished] have suggested
a role for FGFR4 in suppressing FGFR1 tyrosine kinase activity
and downstream signaling via FRS2-Erk1/2 axis (Goetz and
Mohammadi, 2013), thereby leading cells to withdraw from the
cell cycle. Moreover, an earlier FGFR4 overexpression study
using L6E9 rat myoblasts demonstrated a weak mitogenic
activity for FGFR4 and a role in inhibition of myogenic
differentiation (Shaoul et al., 1995). Hence, FGFR4 might
provide fine-tuning among proliferation, differentiation and
renewal, counteracting the role of FGFR1 in enhancing myoblast
proliferation.

Conclusion

This current study of Fgfr expression profile in freshly isolated
SCs and their progeny from adult limb and diaphragm
muscles provides new experimental evidence to the commonly
held convention that of the four FGFRs, only Fgfr1 and
Fgfr4 are of potential relevance to myogenesis. Our earlier
work has suggested that these two FGFRs might have
different functional roles during adult myogenesis. To begin
addressing the possible distinct roles of FGFR1 vs. FGFR4,
we employed in the present study a genetic approach relying
on the MyoDCre allele for myogenic-specific ablation of
FGFR1 (and FGFR2). Albeit this MyoDCre-driven ablation
occurs early during embryogenesis, muscle development
does not seem to be overtly impaired in the absence of
functional FGFR1 (and FGFR2) based on the intact muscle
histology of the adult mR1�/�/R2�/� mice. Furthermore,
cardiotoxin-injured muscle of these mR1�/�/R2�/� mice
showed effective regeneration. However, the SC mitogenic
response to FGF2 was drastically repressed in isolated
myofiber cultures prepared from the myogenic-specific
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FIGURE 8 | Immuno-detection of FGFR4 protein in muscle tissue
and primary myogenic culture from wildtype mice. (A,B”) Detection
of FGFR4 in hindlimb muscle sections; positive cells are presumptive SCs
based on their location underneath the myofiber basal lamina highlighted
by laminin immunostaining Notably, SC identification using Pax7
immunostaining is precluded as it would require antigen retrieval step
which is not compatible with the conditions used here for FGFR4
detection on unfixed cryosections. As expected, SCs (FGFR4+ ) were more
abundant in (A–A”) the younger aged mouse (12 days old, gastrocnemius
muscle) than in (B–B”) the 30-day-old mouse (TA muscle). Corres-
ponding arrowheads denote common locations in the lower and higher

magnification images. (C–D’) Detection of FGFR4 in primary myogenic
cultures from adult mice; the myogenic nature of the cultured cells was
verified with double immunostaining for desmin as in (Yablonka-Reuveni
et al., 1999a; data not shown). (C,C’) FGFR4 protein expression is unique
to the myogenic cells while residual non-myogenic cells present in this
standard primary culture are negative. (D,D’) FGF2 treatment (20 ng/ml in
DMEM containing 2% horse serum for 16 hours) of mouse primary
myogenic cultures results in the downregulation of FGFR4. Following the
overnight treatment with FGF2, FGFR4-immunosignal is restricted to a
perinuclear compartment likely reflecting receptor desensitization through
its internalization and targeting to endosomes.

Fgfr1/Fgfr2-ablated mice. Collectively, our study indicates that
FGFR1 is important for FGF2-mediated proliferation of SCs,
while the role of the expressed FGFR4 has yet to be resolved. To
further address the role of FGFR1 and FGFR4, we are developing
genetic models for myogenic-specific ablation of these receptors
in growing and aging mice.
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