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Systems cell biology: What it is and what  
it is not
Systems cell biology is the study of the emergent properties of a 
cell and its component parts using comprehensive and quantita-
tive experimental methods that are interpreted by predictive 
mathematical and statistical models. Emergent properties result 
from “the whole being greater than the sum of its parts.” The pro-
gression to studying the cell as a system is a natural one for cell 
biologists who have always sought to meld the biochemical pro-
cesses of molecules and modules with the spatial and structural 
features of cells (Alberts, 1998; Hartwell et al., 1999). Thus, un-
derstanding cell biology is inherently a multiscale problem, with 
many levels and hierarchies of cellular organization, compart-
mentalization, and temporal regulation (Fig. 1). Emergent prop-
erties within a cell derive from the interplay of system components 
arranged in complex motifs such as logic gates, feedback and 
feed-forward loops, and combinations thereof (Alon, 2007; 
Tyson and Novák, 2010). This complex interplay leads to behav-
iors that include switch-like functionality, filtering, signal ampli-
fication, oscillations, and multistability. This gives rise to 
systems-level properties of cells including robustness, hysteresis, 
modularity, and population heterogeneity. The goal of systems 
cell biology is therefore to achieve more than a description of the 
individual components and component properties. It is to achieve 
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an understanding of how information is transmitted and inter-
preted by the cell. Systems cell biology is also more than simply 
the acquisition of large amounts of data, or the assembly and vi-
sualization of that data into networks, heat maps, and diagrams. It 
is also not an unbiased replacement for intuition, as many cellular 
processes can be intuitively explored from a systems perspective. 
A prime example is the eukaryotic cell cycle, where a rich history 
of applying nonlinear dynamical systems models that rely, in 
part, on an intuition about the interactions of key cell cycle regu-
lators has dramatically advanced our understanding of this pro-
cess (see Ferrell et al., 2011 and the references within).

Systems biology: A glove for every hand?
Systems biology is broadly defined as a framework for conduct-
ing quantitative and comprehensive scientific enquiry. This frame-
work facilitates a rigorous analysis of the complexity of biological 
systems at all levels of cellular organization that contribute to a be-
havior or phenotype of interest (Kitano, 2002). However, this com-
mon definition is rather vague, and this has encouraged skepticism 
with regard to the ability of systems biology research to achieve the 
lofty goal of understanding complex biology (Brenner, 2010).

Irrespective of the focus of a study, a systems biology ap-
proach often includes several common elements: exploratory data 
acquisition and visualization, data integration and the formulation 
of quantitative models, and the testing of these models, along with 
the hypotheses they generate, with further experimentation (Ideker 
et al., 2001; Aitchison and Galitski, 2003). These results can then 
be used to guide iterative cycles of the systems approach that serve 
to refine the model in question (Fig. 1). Another way to consider 
this is that systems biology enables the identification of the many 
ways information can flow and be processed within a biological 
system (Ideker et al., 2001; Nurse, 2008). To function in this capac-
ity, systems biology requires systems-level data collection.

The omics of systems biology: Exploratory 
data acquisition and visualization

Systems biology is commonly associated with large-scale 
“-omics” technologies such as genomics, proteomics, and func-
tional genetics that are used to explore the state of a system 
under investigation (Short, 2009). However, it is a misapprehen-
sion to think that systems biology is only the acquisition of such 

Systems cell biology melds high-throughput experimenta-
tion with quantitative analysis and modeling to understand 
many critical processes that contribute to cellular organi-
zation and dynamics. Recently, there have been several 
advances in technology and in the application of model-
ing approaches that enable the exploration of the dynamic 
properties of cells. Merging technology and computation 
offers an opportunity to objectively address unsolved cel-
lular mechanisms, and has revealed emergent properties 
and helped to gain a more comprehensive and funda-
mental understanding of cell biology.
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a reference genome is an essential starting point and necessary 
tool for their implementation. NGS, also known as “deep-
sequencing,” is helping to redefine our understanding of chro-
matin structure and organization (Yen et al., 2013), as well as 
the regulation of transcription (Rhee and Pugh, 2011, 2012) and 
translation (Ingolia et al., 2009, 2011; Guttman et al., 2013). Al-
though we will avoid giving a thorough overview of the technol-
ogy and various NGS platforms (which can be found in Koboldt 
et al., 2013; Mardis, 2013), we highlight recent discoveries that 
illustrate the need to view the cell from a systems perspective.

A current trend from the rapid rise in genomic sequenc-
ing is the inclusion of phylogenetic and comparative genomic 
analyses in considering mechanistic models of cell biology 
(Liti et al., 2009; Finnigan et al., 2012; Mast et al., 2014). 
Addressing the challenge of assigning cell components to a 
particular function is thus partly alleviated by considering the 
idiosyncratic origins of the components of a system. Evolu-
tionary analyses of cell biology on a systems scale have ben-
efitted from increased taxon sampling and are enabling tests of 
the implicit assumptions of molecular cell biology as well as 
the study of cellular phenomena in model systems. These evo-
lutionary comparisons on a systems level are helping to place 
the findings from one cellular system within the context of all 
cellular systems (Elias et al., 2012; Koonin and Mulkidjanian, 
2013). Furthermore, it enables the exploration of the origins 
of cellular complexity and helps restrict the search space of 

large-scale datasets. The inclusion of an omic discovery compo-
nent to the analysis of biological complexity assists in identifying 
situations where a phenotype is caused by an emergent or unantic-
ipated property of the system (Aitchison and Galitski, 2003). This 
does not imply that emergent properties are naturally revealed 
through omics approaches, but rather that through the acquisition 
of a comprehensive and quantitative dataset such properties can 
be revealed through mathematical modeling and computational 
analysis. To be of practical use in discovering these essential 
components, omics technologies must be quantitative and ame-
nable to high throughput approaches, comprehensible visualiza-
tion, and statistical approaches. Even when properly executed, 
experiments often fall short of this goal, and, ideally, computa-
tional interpretation of the results can assist in identifying miss-
ing variables and influences or measurements that would be more 
informative. Moreover, computational analyses and modeling 
strategies can assist in revealing the underlying mechanisms of 
the system (Fig. 1). From this vantage point, proximal causes and 
effects can be separated from distal ones and be analyzed further 
with a cycle of modeling and experimentation.

Next-generation sequencing (NGS): 
Understanding genetic determinants  
in cellular systems
For the correct implementation of a great deal of other sys-
tems approaches, such as proteomics and functional genetics,  

Figure 1. Exploring the cell as a system. Systems cell biology incorporates systems-level and small-scale measurements of information flow from all the com-
ponents of the system and from all the hierarchies of the relevant temporal and spatial scale. Multiscale modeling approaches are used to infer missing pa-
rameters and visualize phenotypes as the function of multiscale system characteristics. The process is iterative, and the model is refined until it is predictive.
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The ability to precisely map protein–nucleic acid inter-
actions in a quantitative way is perhaps the most demonstrative 
example of the advancement and refinement of NGS technology. 
Protein–DNA or protein–RNA purification strategies in combi-
nation with exonuclease treatment before deep sequencing of the 
protected fragments provides the ability to map such interactions 
at a genome-wide scale to within single nucleotide resolution 
(Ingolia et al., 2009; Rhee and Pugh, 2011). These high-resolution  
genome-wide studies enable the comprehensive study and di-
rect visualization of chromatin remodeling dynamics (Yen et al., 
2013), identification of transcription factor binding sites (Rhee 
and Pugh, 2011), assembly of RNA polymerase pre-initiation 
complexes (Rhee and Pugh, 2012), and the profiling of ribosome 
occupancy of mRNA (Ingolia et al., 2009; Ingolia et al., 2011; 
Guttman et al., 2013). When visualized globally, the noisy sig-
nals from individual genes are smoothed and universal mecha-
nisms are revealed. Aligning DNA sequences bound to RNA 
polymerase II pre-initiation complexes and viewing them at a 
genome scale has provided a unifying view of many regulatory 
mechanisms governing transcription. One striking revelation 
was the presence of degenerate TATA-like elements at previ-
ously characterized “TATA-less” promoters in yeast (Rhee and 
Pugh, 2012). Assembling genome-wide maps for an ensemble 
of RNA polymerase II–associated general transcription factors 
has also revealed consequences for deviations from the TATA 
consensus sequence, including increased reliance on nucleo-
some positioning for proper assembly (Rhee and Pugh, 2012). 
The fate of both coding and noncoding RNA has been mapped 
by immunoprecipitations of mRNA-binding proteins (Tuck and 
Tollervey, 2013). Sorting the ribonucleoprotein complexes using 
clustering approaches allowed for the identification and classi-
fication of several mRNP subclasses with implications for the 
importance of 3 processing events in biogenesis, localization, 
and turnover (Tuck and Tollervey, 2013).

From genomics to proteomics
Despite the advancements in NGS, gene expression and mRNA 
levels are not very good proxies for protein levels or function in 
cells. Regulatory mechanisms exist at each stage of a protein’s 
life cycle: synthesis, folding, targeting, integration into distinct 
compartments and complexes, activity, stability, and degrada-
tion (Vogel and Marcotte, 2012). Measuring the half-life of 
proteins on a global scale has revealed complexity in protein 
turnover in a cell type–dependent manner (Claydon and Beynon, 
2012). The constituents of protein complexes measured typi-
cally have similar turnover rates, although there are exceptions 
(for examples see Price et al., 2010). In addition, translation 
and proteolysis not only regulate the synthesis and degradation 
of proteins, but also serve to buffer intracellular amino acids 
levels, and must therefore receive regulatory inputs from sev-
eral sources (Vogel and Marcotte, 2012). Profiling the associa-
tion of ribosomes with mRNA provides one measure of the rate 
of protein synthesis (Ingolia et al., 2011). This technique was 
recently complemented with a proteomic analysis of protein 
longevity using isotope pulse labeling combined with shotgun 
tandem mass spectrometry (MS) to measure both the translation 
of new protein and the longevity of old protein in rat liver and 

causal mechanisms to those that are congruent with evolu-
tionary theory (Koonin, 2011; Doolittle, 2012; Koumandou  
et al., 2013). See the JCB review series on evolution (http://jcb 
.rupress.org/cgi/collection/7).

NGS has also resulted in an increase in the number of in-
dividual genomes from a single species (Liti et al., 2009; 1000 
Genomes Project Consortium et al., 2010; Koboldt et al., 2013). 
Phenotypic analysis of related strains of budding yeast showed 
remarkable differences in response to a variety of stimuli in-
cluding acclimation to temperature and tolerance to drugs (Liti 
et al., 2009). From a medical perspective, the intraorganismal 
comparisons of genome-wide association studies (GWAS) are 
identifying allelic heterogeneity that has important implications  
for organismal development and disease diagnosis, progression, 
and prognosis (Welch et al., 2012). For example, polymor-
phisms in the FOXO3 locus, a member of the forkhead family 
of transcription factors with roles in diverse cellular processes 
(Litvak et al., 2012; Eijkelenboom and Burgering, 2013), are 
prognostic for the outcome of patients diagnosed with Crohn’s  
disease (Lee et al., 2013). Importantly, the polymorphisms in 
FOXO3 are not diagnostic for the disease, and susceptibility is 
therefore contingent on other factors. In addition to Crohn’s dis-
ease, FOXO3 may also affect the severity of prognosis for other 
autoimmune diseases including rheumatoid arthritis. These re-
sults highlight the importance of allelic diversity to cellular 
function, an underexplored topic that will only be understood 
from the context of a systems perspective.

The role of NGS in providing high-resolution data on the 
transcriptome of cells also has mechanistic relevance for cell  
biology. Deep sequencing of RNA (RNaseq) provides absolute 
transcription levels of both annotated and unannotated regions of 
the genome. The result of its application has revealed a wealth of 
unanticipated complexity in transcript heterogeneity, including 
novel splice variants, alternative start and stop sites, the lengths 
of 5 and 3 untranslated regions, and the dynamic expression of 
bicistronic transcripts (Pelechano et al., 2013; Gupta et al., 2014; 
Pelechano et al., 2014). Transcription of the genome is also much 
more pervasive and ubiquitous than previously thought (Djebali 
et al., 2012). Use of NGS technology in combination with novel 
processing steps is just beginning to vastly redefine our under-
standing of transcriptional regulation and complexity (Mudge  
et al., 2013). For example, a recent survey of the yeast transcrip-
tome identified 1.88 million unique mRNA transcript reads 
(Pelechano et al., 2013). From an organism originally character-
ized as having 5,885 genes (Goffeau et al., 1996), this is a stag-
gering amount of diversity at the mRNA level. To avoid the biases 
of isoform analysis that result from enrichment strategies to se-
quence only the 5 or 3 end of individual mature mRNA mole-
cules, a novel intramolecular ligation step after mRNA isolation 
allowed joint sequencing of both ends of a single mRNA isoform 
(Pelechano et al., 2013). Consistent with a functional relevance 
for at least some of this diversity, rather than a result of stochastic 
transcription initiation or termination, isoform variation was 
demonstrated to be responsive to changes in growth conditions. 
These new layers of transcriptional complexity will be of use in 
refining our understanding of the regulation and plasticity of a 
cell’s transcriptional response to environmental perturbations.

http://jcb.rupress.org/cgi/collection/7
http://jcb.rupress.org/cgi/collection/7
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were then measured against a battery of different growth fac-
tor receptor stimulants (Bisson et al., 2011). These experiments 
revealed stimulation-specific GRB2 complexes that displayed 
unique temporal kinetics of assembly and disassembly (Bisson 
et al., 2011). Similarly, the consequences of the temporal kinet-
ics of RTK scaffold assembly were explored with the epidermal 
growth factor receptor (EGFR) signaling scaffold protein Shc1 
(Zheng et al., 2013). The dynamics of Shc1 phosphorylation at 
six residues and its association with 41 binding partners was 
followed over multiple time points after activation of EGFR by 
EGF. Analysis of the results revealed a dynamic network of 
phosphorylation-dependent regulated recruitment and assem-
bly of three distinct signaling complexes (Zheng et al., 2013). 
Therefore, SRM-MS offers the ability to explore the dynamic 
properties of protein networks that are essential for mechanis-
tic understanding of biological function. In addition to studying 
signaling cascade kinetics, SRM-MS has also been success-
fully applied to the interrogation of 464 known and putative RNA 
polymerase II–associated general transcription factors and used to 
probe them for DNA binding capacity (Mirzaei et al., 2013).

Refinements of MS methodologies have also allowed for 
the development of quantitative data-independent approaches. 
For example, the systematic fragmentation of precursor ions 
independently of ion count was applied to a proteomic analysis 
of the principle of polydispersity (Jung et al., 2013). Polydis-
persity is a population phenomenon of proteins owing to their 
localization to one or more organelles that have nonuniform 
properties leading, for example, to a collection of different 
sedimentation coefficients (De Duve et al., 1960; de Duve, 
1964). The cosedimentation profile of proteins from cytosolic 
and organellar fractions of yeast grown under different nutrient 
conditions enabled a comprehensive look at the dynamics of 
protein movement between the cytosol and organelles such as 
mitochondria and peroxisomes. This data-independent acquisi-
tion protocol improved the dynamic range of protein identifi-
cation by over an order of magnitude from the classic shotgun 
MS/MS approach (Yi et al., 2002; Marelli et al., 2004; Jung  
et al., 2013). Remarkably, this approach revealed that as many 
as 1,200 proteins, a substantial portion of the yeast proteome, 
shift their relative distributions between the cytosol and an or-
ganellar fraction in response to changes in nutrient conditions 
(Jung et al., 2013).

The goal of an unbiased data-independent approach is to 
combine the benefits of increased sensitivity and quantitative 
capacity of targeted approaches with the discovery compo-
nent found in data-dependent approaches (Gillet et al., 2012). 
As with targeted SRM-MS, a priori information from preas-
sembled spectral libraries can be used by targeted data-mining 
algorithms to identify protein-specific peptide fragment ion 
traces in complex fragment ion spectra (Gillet et al., 2012). 
With specialized mass spectrometers, a complete record of the 
proteins contained in a sample can be recorded by implement-
ing comprehensive and systematic acquisition protocols that 
produce time-resolved and mass-segmented complex spectral 
ion maps. One such promising approach is sequential window 
acquisition of all theoretical spectra (SWATH-MS), which re-
fers to the way the mass spectrometer is operated to collect 

brain cells (Toyama et al., 2013). In addition to discovering 37 
long-lived proteins, the combined approach of ribosome profiling 
and semiquantitative MS revealed that despite the longevity of 
these proteins, all were pervasively translated. In several cases, 
discrepancies in the longevity of members of histone and nuclear 
pore complexes suggest mechanisms regulating the turnover and 
assembly of these complexes (Toyama et al., 2013).

Information on the pathways and function of a protein is 
often derived from knowledge of the proteins with which it in-
teracts. Protein–protein interactions (PPIs) range from stable 
molecular machines of defined stoichiometries and functions to 
transient interactions whose mechanisms of dynamics are 
poorly defined. Areas of outstanding interest in proteomics re-
search therefore concern the composition and stoichiometry of 
protein complexes, the interconnectivity and presence of shared 
components of different protein complexes, and identification 
of sites of posttranslational modifications. While detectable at 
the genomic and transcriptional level, the functional conse-
quence of variation from alternative splicing, allelic variations, 
and point mutations often plays out in the altered activity or 
binding capacity of the encoded proteins. For example, one pos-
sible phenotype caused by the reduced expression or enhanced 
turnover of a protein may have more to do with the effect this 
has on that protein’s binding partners.

Quantitative, sensitive, and reproducible 
proteomics approaches
Recently, alternative operation modalities using certain types 
of mass spectrometers are making MS-based proteomics stud-
ies quantitative and reproducible, with attomole sensitivity 
(Doerr, 2013; Marx, 2013; Picotti et al., 2013a). Accumulated 
data on the fragmentation properties and chromatographic be-
havior of peptides has enabled the development of targeted 
and data-independent proteomics approaches (Farrah et al., 
2012). In targeted proteomics, e.g., selective reaction moni-
toring (SRM), the mass spectrometer is tuned to selectively 
monitor predefined pairs of precursor and product ion masses 
of unique proteins. This approach has been greatly enabled by 
the availability of genomic data, inexpensive de novo peptide 
synthesis techniques, and large-scale peptide reference maps 
(Ackermann et al., 2008; Farrah et al., 2012; Holman et al., 
2012; Picotti et al., 2013b). Multiplexing the assay by retun-
ing the filter allows one to keep a quantitative tally for several 
hundred proteins in a single experiment.

Targeted proteomics enable an interrogation of the dy-
namics of PPI networks. Importantly, the focus of proteomic 
studies can move beyond the technicalities of coverage depth 
or reproducibility, and allows one to pursue interrogation of the 
kinetic properties of protein complexes. For example, by adapt-
ing an affinity purification strategy to SRM-MS, Bisson et al. 
(2011) identified 90 reproducible interactors of GRB2, an im-
portant hub in growth factor signaling, and mapped the binding 
site of each protein to one of three characterized protein binding 
domains within GRB2. Thus, with a single experiment, detailed 
and quantitative data for 90 PPIs were collected. The dynamics of 
GRB2 signaling hub complexes and their association with differ-
ent receptor tyrosine kinases (RTKs) to form signaling scaffolds 



699Systems cell biology • Mast et al.

Systematically deciphering the genotype-to-
phenotype paradigm

Functional genomic studies pursue a mechanistic expla-
nation for the cause and effect relationship between genotype 
and phenotype (Fig. 2). At a systems level, the cause and effect 
of genetic perturbations are typically considered from a net-
work perspective. In organisms that are easy to manipulate ge-
netically, i.e., Saccharomyces cerevisiae, functional genetics 
have been automated using robotics-assisted synthetic genetic 
array (SGA) methodology and measurements of colony size 
as a function of cellular fitness for a phenotype (Tong et al., 
2001; Schuldiner et al., 2005; Tong and Boone, 2006; Roguev 
et al., 2008). The first compilation of a global genetic map was 
composed of genetic interaction profiles that covered 75% of 
all genes in yeast (Costanzo et al., 2010). These initial stud-
ies have revealed that the genetic interaction profile of one al-
lele, against a genomic collection of other alleles, comprises 
a unique phenotypic signature that can be used to deduce un-
characterized functions and to order sets of genes within novel 
functional pathways (Beltrao et al., 2010; Costanzo et al., 
2010; Baryshnikova et al., 2013). Such global genetic interac-
tion networks are assembled by systematically measuring the 
degree of epistasis that pairs of genetic alleles impart on each 
other. The strength of epistasis of one allele against another 
cannot be assumed to scale linearly across a systematic array 

these comprehensive proteomics data (Collins et al., 2013). In a 
proof-of-principle experiment, SWATH-MS of affinity purified 
14-3-3, an abundant cytosolic scaffold protein, consistently 
identified 1,967 interacting proteins and quantified the dynamic 
changes of 567 members of the promiscuous 14-3-3 scaf-
fold interactome after stimulation of the insulin–PI3K–AKT 
pathway (Collins et al., 2013). In a complementary study, the 
interactome data generated by SWATH-MS was used to track 
changes to PPI networks induced by chemical inhibitors or  
allelic variations linked to disease pathologies (Lambert et al., 
2013). Retaining the discovery component of traditional MS, 
experiments conducted with data-independent approaches, such 
as SWATH-MS, ensure an accurate measurement of the effect 
of biological perturbations on the study of cellular mechanisms. 
Also, the comprehensive spectral data generated serve as a reli-
able digital record of a protein sample, and ensure data integrity. 
These spectral maps can assist in experiment optimization or in 
comparing protocols or results between laboratories, or can be 
used for reassessment of samples to look for features that might 
have been initially missed or deemed unimportant. Excitingly, 
targeted and data-independent MS combined with cross-linking 
agents is an emerging approach to improve the detection and 
measurement of transient PPIs and for discovering the dynamic 
rearrangements within protein complexes (Gingras et al., 
2007; Politis et al., 2014).

Figure 2. High-content microscopy screening combined with SGA technology. (a) SGA methods are used to integrate fluorescent markers into a yeast 
library. Depicted is the combining of two fluorescent markers, TEF2pr-mCherry, and a library where each yeast open reading frame has been C-terminally 
tagged with GFP. (b) Automated microscopy and image processing techniques enable the extraction of relevant information such as protein localization 
and intensity, which is a proxy for abundance. (c–e) Statistical methods can be used to normalize the quantified data and group proteins and classify them 
in relation to a particular cellular response. Reproduced from Breker et al. (2013). Bars, 5 µm.
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interrogations. In many cases, hypotheses formed from the 
evaluation of a systems dataset are easily addressed with tar-
geted and more traditional approaches to cell biology. They 
may also serve as a guide for choosing the right type of systems 
approach to invest for use in further study.

This approach was recently validated for a globally pre-
dictive environmental and gene regulatory influence network 
(EGRIN) model of peroxisome biogenesis in yeast (Danziger  
et al., 2014). The predictive capacity of the model was subse-
quently verified in a gene-by-gene focused study of the top can-
didates to more accurately assess activator or repressor function. 
This layered and iterative approach added an additional regulatory 
circuit composed of genes previously not associated with regu-
lating peroxisome biogenesis and integrated them into a model 
containing a well-studied regulatory circuit. The virtuous cycle of 
model refinement and the explanatory power of the mechanisti-
cally predictive model aptly demonstrate the promise of systems 
biology to improving our understanding of cellular mechanisms.

An important outcome and aim of systems cell biology 
will need to be the continued creation and curation of high- 
quality repositories for systems-level data that ensure accessibility 
and ease of use for the entire biological community (Hakenberg  
et al., 2004; Stark et al., 2006; Kowald and Schmeier, 2011; 
Chatr-aryamontri et al., 2013).

Modeling cellular systems
The spectrum of modeling approaches span from conceptual to 
mechanistic and from focused to broad (Aldridge et al., 2006). It 
is beyond the scope of this review to cover the plethora of model-
ing approaches that exist for cell biology (see Meier-Schellersheim  
et al., 2009; Chen et al., 2010; Ferrell et al., 2011; Ratushny 
et al., 2011a; Mogilner et al., 2012; Lander, 2013). However, 
within a systems biology paradigm, modeling forms a central 
part of a cycle that includes the interpretation and integration 
of existing and new data, the formation of new hypotheses, and 
the exploration of relative parameters that aid in designing new 
experiments to test the model (Fig. 1). Modeling brings objec-
tivity and minimizes the phenomenon of pareidolia, the illusion 
or misperception of perceiving a vague or obscure stimulus as 
clear and distinct, in the complex patterns found in systems  
biology data (Fig. 3).

The goal of modeling is to not merely imitate biological be-
havior but to simulate perturbations to the system in order to pro-
vide quantitative and reliable predictions of function. However, the 
relationship between any particular model and a set of observations 
is rarely unique; the number of possible models for a given system 
is too large without a theory to focus the search space (Brenner, 
2010). Therefore, the pairing of a modeling approach with a bio-
logical system is important, as each modeling method has individ-
ual requirements, limitations, and predictive power. The utility of 
any given model is in its ability to focus experiments that are pre-
dicted to be most informative to the biological area of interest. This 
is critical given the vast potential of solutions imparted by evolu-
tion. Models sharpen questions (Matessi and Karlin, 1984).

Combining modeling with experimentation often leads to 
new insights synergistically. For example, global monitoring of 
the GINS complex combined with a very simple model of its 

of all alleles in a genome. However, the systematic assembly of 
epistatic interactions between an allele of one gene against alleles 
in all other genes has successfully revealed the modularity of 
protein complexes as well as the cooperativity and redundancy 
that exists between known biological pathways and processes 
(Baryshnikova et al., 2013). For example, comparing the ge-
netic interaction network profiles with networks identified 
by chemical–genetic perturbations can help predict the cellu-
lar targets of chemical compounds (Hillenmeyer et al., 2008, 
2010; Costanzo et al., 2010; Lee et al., 2014). These functional 
genetics studies also highlight the challenge of pleiotropy for 
determining gene function with a reductionist approach. The 
unbiased, systematic, and quantitative characterization of ge-
netic interaction networks has inverted the reductionist para-
digm in defining a process-centric model of gene function to 
a component-centric model (Weissman, 2010). For example, 
a compilation of 53 point mutation alleles of yeast RNA poly-
merase II was used to assemble and systematically interrogate 
the functional characteristics of each of its subdomains (Braberg 
et al., 2013). This detailed analysis allowed a high-resolution 
dissection of coordinated RNA polymerase II activities in 
transcriptional regulation, including the rate of transcription, 
splicing events, and start site selection (Braberg et al., 2013). 
Phenotypic screening is also not limited to cellular growth or 
fitness. For example, SGA technology has been coupled to an 
automated microscopy platform to allow systematic interroga-
tion of spindle pole body assembly and microtubule dynamics 
in yeast (Vizeacoumar et al., 2010; Breker et al., 2013; Fig. 2). 
The combination of high-content screening and SGA technol-
ogy has also been used to study peroxisome dynamics (Saleem 
et al., 2010; Cohen et al., 2014).

One exciting application of functional genetics is identify-
ing novel drug candidates for cancer (Kuiken and Beijersbergen, 
2010). Here, the idea is to search for pathways and genetic in-
teractions that are relevant in the context of a particular cancer 
or infection and target these pathways and genes for therapeutic 
intervention. For example, synthetic lethal interactors of on-
cogenic MYC have been identified through systematic siRNA 
screens of “druggable” genes, a collection of the human ge-
nome whose protein products are known or considered likely to 
bind with high affinity to known small molecules (Cheng et al., 
2007; Toyoshima et al., 2012). This strategy ensures that sensi-
tivity to the drug only occurs in the presence of oncogenic MYC 
and therefore is applicable in cases where targeting the onco-
gene itself is not practical or feasible. It also greatly expands the 
number of druggable targets for a given disease. Similar strate-
gies for certain infectious diseases, where a virus or bacterial 
pathogen usurps the role of host cellular machinery, seem pos-
sible and are another potential application of functional genom-
ics and systems cell biology.

Systems analysis using public databases: 
Modeling guides experimentation
Publicly available databases of genetic expression data, pro-
teomics data, functional genomic screens, and automated mi-
croscopy data repositories are available to provide the inputs 
necessary for large-scale systems analysis to initiate systems-level 
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Focusing on peroxisome biogenesis, transcription was shown 
to control peroxisomal metabolism and peroxisome import and 
fission machineries, but not components of de novo peroxisome 
biogenesis. This suggests the utility of transcriptional regula-
tory data in informing models of regulated peroxisome biogen-
esis (for review see Smith and Aitchison, 2013).

Models also help to explore the features and topologies 
of large networks that are useful for studying emergent sys-
tems properties. Research into the universality of network 
structure has revealed several shared characteristics including 
the small-world phenomenon; that is, molecular networks are 
like social networks, separated by only a handful of connec-
tions (Milgram, 1967; Watts and Strogatz, 1998; Barzel and 
Barabási, 2013). However, at this level many networks fall 
prey to the “hair-ball” syndrome and can become unintelligi-
ble. Furthermore, the ontological assignments provided in 
these large-scale networks are oftentimes myopic because 
they are assigned based on partially characterized phenomena 
and ignore the unknowns. One solution to this problem is to 
systematically infer ontological features from the data itself 
(Dutkowski et al., 2013). By repeating this process in combi-
nation with the integration of new data into repositories, we 
can refine the ontologies that reflect the system characteristics 
of individual cellular components.

Bringing the leverage of systems biology tools from the 
level of large networks to the level of the molecules and mac-
romolecular complexes populating these networks is a frontier 
where both progress and challenges exist. Here, the central 
challenge is to equate the structural elements of a protein en-
coded in the genome with the functional capabilities that are 

movements revealed a surprisingly uniform progression of rep-
lication across the genome (Sekedat et al., 2010). The GINS 
complex is essential for establishing the DNA replication fork 
that is central to chromosome replication (Labib and Gambus, 
2007). Time-resolved chromatin immunoprecipitation (ChIP)-
chip experiments were compared with simulations that recapit-
ulated the observed dynamics using an iterative model that 
relies on reliable assumptions of the distribution of start times, 
replication velocity, efficiency of initiation, and pausing. The 
combination of systems data acquisition and accurate models 
that simulated the data was then used to study firing efficiencies 
at several replication origins and to study the effect of highly 
transcribed transfer RNA (tRNA) genes on replication fork ar-
rest (Sekedat et al., 2010).

Qualitative models that use pictures and diagrams with 
connecting arrows to propose mechanisms are likely the most 
common and most familiar type of models used by cell bi-
ologists. Challenges arise when such models are too abstract, 
when they depict mechanisms that operate outside of the scale 
of study, or when an attempt is made to incorporate many dif-
ferent types of experimental observations made under different 
time frames, conditions, or scales. Formalizing these qualita-
tive models into more mechanistic and multiscale models is an 
essential step in systems cell biology. For example, we have 
studied the mechanisms of peroxisome regulation and biogen-
esis by integrating various global systems datasets to build both 
kinetic models and genome-wide statistical models (Smith  
et al., 2007, 2011a,b; Ratushny et al., 2008, 2012; Danziger 
et al., 2014). These and other studies have revealed the coor-
dination of peroxisome dynamics with other cellular processes. 

Figure 3. Common pitfalls in systems cell biology include pareidolia and experimenter bias. (a) Two satellite photos of an elevated area of land in the 
Cydonia region of Mars. The image on the left gives the illusion of a face due to the perspective of the image and its relatively low resolution. This illusion 
is missing from the higher-resolution image on the right. Images captured by the National Aeronautics and Space Administration (NASA). (b) Results from 
an SGA experiment before (left) and after (right) statistical normalization of the data reflect the pareidolia phenomenon. (c) Rorschach blot 01 is the first 
in a series of ink blots used in psychological tests that evaluate a subject’s interpretation of ambiguous images for clues about their personality and mental 
state. Image generated by Hermann Rorschach. (d) A network diagram based on the yeast regulome (Payne and Garrels, 1997) is subject to a similar bias 
when a familiar node of interest is focused upon.
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for the Nup84 complex and its arrangement within the NPC 
(Fig. 4). This process of data integration in combination with 
modeling, iteration, and refinement, while specific to a portion 
of a much larger nuclear pore complex, is a specific example of 
how to systematically explore cellular function.

Challenges
Notwithstanding our expanded potential to map and quantify 
molecular components, processes, and functions of biological 
systems with advanced technologies, our understanding of many 
parts of these systems is far from complete. There are several 
major challenges that remain to be addressed in order to ef-
fectively model, systematically explore, and predictably control 
biological systems.

First, high-throughput experimental measurements often 
uncover intricate relationships between hundreds or thousands 
of molecular components. This simple fact dramatically in-
creases the number of parameters that need to be included in 
corresponding models, which in turn necessitates a deluge of 
new experiments and system interrogations for validation of 
these parameters. It is important to develop modeling and ana-
lytical approaches for rational formulation and parameteriza-
tion of mathematical models and optimal experimental design. 
This is especially critical for analysis of combinatorial regulations 

phenotypically observed. This is confounded by the modularity 
evidenced in cells as well as the observed fact that many proteins 
participate in multiple different complexes. Efforts to map the 
structure–function relationship with the subcomponents of the 
nuclear pore complex (NPC) help to illustrate this point (Rout  
et al., 2000; Hetzer and Wente, 2009; Aitchison and Rout, 2012; 
Fig. 4). Structural, biochemical, and genetic evidence has re-
vealed a modular NPC with eightfold symmetry (Alber et al., 
2007; Hoelz et al., 2011). Forming the outer rings of the NPC 
is the Nup84 complex, a heptameric modular structure composed 
of Nup133, Nup120, Nup145c, Nup85, Nup84, Seh1, and Sec13. 
Seh1 and Sec13 are also components of the Seh1-associated com-
plex and the COPII vesicle-coating complex (Barlowe et al., 1994; 
Stagg et al., 2006), and this complicates the matter of assigning 
specific functions to these proteins within the NPC. To deter-
mine the subunit arrangement and morphology of the Nup84 
complex, an extensive domain-mapping proteomics approach 
was used to identify contact points within the subcomplex, as 
well as between the Nup84 complex and the rest of the NPC 
(Fernandez-Martinez et al., 2012). In addition, negative stain 
electron microscopy was used to obtain structural information 
on the different truncated forms of the complex. These data were 
then translated into spatial restraints and integrated with existing 
structural data for individual components to build a density map 

Figure 4. Integrative biology combining multiple experimental approaches with statistical inference and modeling approaches. Structural data on the 
Nup84 complex was derived from domain mapping, negative stain electron microscopy, and x-ray crystallography experiments and integrated with com-
parative data modeling and bioinformatics methods. The resulting structural models were then overlaid with data from functional mapping experiments. 
The process is refined by iteration and results in a set of possible structural configurations from which inferences can be made regarding the dynamics of 
this subcomplex within the much larger nuclear pore complex. Reproduced from Fernandez-Martinez et al. (2012).
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hybrid modeling approaches that simultaneously and effectively 
span the various processes in cells, from the molecular to the 
morphological. These approaches should integrate temporal and 
spatial multiscale properties of biological systems and allow a 
reversible cross-scale flow of information within a single model.

How the cell manages the processing, storage, and trans-
mission of information across multiple scales remains an ex-
ceptional challenge (Nurse and Hayles, 2011). In particular, 
discovering the extent to which different systems mechanisms 
are responsible for cellular function, and how systems motifs 
can be combined to bring about new phenotypes, are excit-
ing avenues of pursuit. The future of cell biology as outlined 
here will increasingly come to rely on systems approaches. 
It is an exciting time to be pursuing the new biology of the  
21st century.
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