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Mathematical models have wide applications in studying COVID-19 epidemic transmission
dynamics, however, most mathematical models do not take into account the heterogeneity
of susceptible populations and the non-exponential distribution infectious period. This
paper attempts to investigate whether non-exponentially distributed infectious period can
better characterize the transmission process in heterogeneous susceptible populations and
how it impacts the control strategies. For this purpose, we establish two COVID-19
epidemic models with heterogeneous susceptible populations based on different as-
sumptions for infectious period: the first one is an exponential distribution model (EDM),
and the other one is a gamma distribution model (GDM); explicit formula of peak time of
the EDM is presented via our analytical approach. By data fitting with the COVID-19
(Omicron) epidemic in Spain and Norway, it seems that Spain is more suitable for EDM
while Norway is more suitable for GDM. Finally, we use EDM and GDM to evaluate the
impaction of control strategies such as reduction of transmission rates, and increase of
primary course rate (PCR) and booster dose rate (BDR).

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epidemics such as tuberculosis, smallpox, SARS, MERS and Ebola had significantly affected human history. Coronavirus
disease (COVID-19) has swept the whole world since 2019. By July 2022, nearly 600 million people worldwide had been
infected and more than 6 million people had been killed by COVID-19 (Coronavirus COVID, 2019). Mathematical models have
beenwidely applied to study the transmission dynamics of COVID-19 (Humphrey et al., 2021; Li et al., 2020; Musa et al., 2021;
Song et al., 2020, 2021a, 2021b, 2022; Wei et al., 2022). Mathematical models are very helpful in understanding the trans-
mission dynamics of infectious diseases as well as identifying proper strategies for the control and prevention of the
epidemic. From the SIR model proposed by Kermack and McKendrick(Kermack & McKendrick, 1927) to the later SEIR model
(Greenhalgh, 1992; Kuznetsov & Piccardi, 1994; Li&Muldowney, 1995; Tomchin and Fradkov, 2020) and other more complex
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models with hospitalization or isolation compartments (Brauer, 2015), these models can well describe the transmission
process of infectious diseases and have produced many applications. For example, it helps people to study the impact of
certain control measures, including wearing masks(Kabir et al., 2021), reducing parties (Djaoue et al., 2020), vaccinating
(Braud, 2018; Sivadas et al., 1770) and isolating (An et al., 2021) on disease transmission.

During the epidemic of COVID-19, the heterogeneity of susceptible populations may occur due to the difference of in-
dividuals in vaccinations, some recent excellent applications have appeared(Liu et al., 2008; Okuonghae, 2013). In addition,
most mathematical models assume exponential distribution for the infectious period, however, for many infectious diseases,
the distributions for the infectious periodmay not be exponential(Wearing et al., 2005; Bolzoni et al., 2021;Wang et al., 2017;
Krylova and Earn, 2013; Lloyd,1470; Feng et al., 2007; Feng et al., 2016)e(Wearing et al., 2005; Bolzoni et al., 2021;Wang et al.,
2017; Krylova and Earn, 2013; Lloyd, 1470; Feng et al., 2007; Feng et al., 2016). Recently, there have been many excellent
literatures supporting non-exponentially distributed infectious period for COVID-19: In (Verity et al., 2019), based on Bayesian
methods to fit the infectious period data from 169 COVID-19 cases, Verity et al. found out the infectious period obeys the
gamma distribution. Blyuss et al. use an SEIR-type mathematical model with non-exponential distribution of incubation and
infectious periods to investigate the dynamics and containment of COVID-19 (Blyuss & Kyrychko, 2021). In (Capistran et al.,
2021), Capistran et al. proposed COVID-19 mathematical model with non-exponentially distributed infectious period to
predict hospital demand in metropolitan areas during the COVID-19 pandemic and estimate the lockdown-induced 2nd
waves. Thus it remains an interesting problem of how the non-exponential distribution for infectious period of mathematical
models with heterogeneous susceptible populations affects the COVID-19 epidemic transmission dynamics and control
measures. As far as we know, this issue has not been well studied.

In 2007, Feng(Feng, 2007) made profound progress by obtaining an explicit formula on the peak value for the mathe-
matical epidemic model withmultiple infected compartments and non-exponentially distributed infectious period. However,
Feng's work (Feng, 2007) is only applicable to one susceptible compartment, thus it is worth considering how to extend it to
multiple susceptible compartments. On the other hand, peak time is a very important to evaluate the epidemic in under-
standing the epidemic process so as to reasonably allocate medical resources. However, there are very few literatures even for
the most classical SIR model until the recent excellent work by Turkyilmazoglu (Turkyilmazoglu, 2021). In this paper,
motivated by the above works of Feng(Feng, 2007) and Turkyilmazoglu(Turkyilmazoglu, 2021), we will investigate whether
non-exponentially distributed infectious period can better characterize the COVID-19 transmission process in heterogeneous
susceptible populations and how it impacts the control strategies.

The paper is organized as follows. In section 2, based on SIR model, we establish a mathematical model with heteroge-
neous susceptible populations and general distribution for infectious period. Then, we degenerate the general distribution
model into exponential distribution model (EDM) and Gamma distribution model (GDM) and make a detailed theoretical
derivation for the peak value, peak time, final size and the basic reproduction number R0. In section 3, the epidemic data of
Spain and Norway are used to fit with EDM and GDM respectively. It is found that the simulation results of EDM are more
consistent with the data of Spain while those of GDM are more consistent with the data of Norway. In addition, based on the
data from these two countries, we also investigate the effectiveness of different control measures on GDM and EDM. The
results show that they are consistent, but GDM tends to predict higher peak value and lower peak time. Section 4 includes
some concluding remarks and discussions.

2. Model and analysis

2.1. The basic model

The models in this paper are extensions of the standard SIR model (without vital dynamics):
8><
>:

_S ¼ �bSI;
_I ¼ bSI � gI;
_R ¼ gI:

(1)
The initial conditions of the system are: S(0) ¼ S0, I(0) ¼ I0 and R(0) ¼ R0. Here, S(t), I(t), and R(t) represent the number of
susceptible, infectious, and recovered individuals at time t. At the same time, S(t) þ I(t) þ R(t) ¼ N. N is the total number of
people in the system, b is transmission coefficient, g is the recover rate.

The SIR model implicitly assumes that the infectious period is exponentially distributed with 1/g being the mean value of
the infectious period. Although it is an option to assume that the infectious period is exponential distribution (see Fig. 1), it is
also an attempt to assume that the infectious period is other distribution. In previous studies, it is found that the infectious
Fig. 1. The classic SIR model.
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stage of many infectious diseases may be closer to the gamma distribution(Feng et al., 2007; Wearing et al., 2005).
Considering that vaccines have become a very important measure for us to deal with infectious diseases, in order to make the
model more realistic, we divide the susceptible population into two types. One is vaccinated (Sv) and the other is not
vaccinated (Sn). An extended SIR model is obtained with death compartment.

2.2. The model with a general distribution of infectious period

In 2016, Feng et al. established a general distribution model using themethod of probability(Feng et al., 2016). Referring to
the research method, we establish the model described in Fig. 2: Sn and Sv inflow I class is given by

_Sn ¼ �bSnI; (2)

_Sv ¼ �ebSvI: (3)
Let S ¼ Sn þ Sv, then _S ¼ � IlðtÞ, where l(t) denotes the force of infection given by

lðtÞ ¼ bðeSv þ SnÞ: (4)
Total number of infected individuals at time t, I(t) is given by

IðtÞ ¼
Zt

0

lðsÞIMðt� sÞdsþ Ið0ÞMðtÞ: (5)
The first term in (5) represents the number of individuals who remain infectious after t� s time units since onset at time s
(0 < s < t). The second term in (5) represents the number of individuals infected at time 0 and still in I class at time t. Let gM ¼
� _MðsÞ represent the probability density function of M(s). Meanwhile, gM gives the rate of leaving I class. For more detailed
explanation, see Feng et al. (Feng et al., 2007) and Feng and Thieme(Feng & Thieme, 2000). Differentiating I(t):

_IðtÞ ¼ lðtÞI �
� Zt

0

lðsÞIgMðt� sÞdsþ Ið0ÞgMðtÞ
�
: (6)
In (6), the first term is individuals from the susceptible S to I classes, the second term is the infectious individuals leaving I
class. The total number of deaths at time t is:

DðtÞ ¼
Zt

0

p
� Zt

0

lðsÞIgMðt� sÞdsþ Ið0ÞgMðtÞ
�
dt: (7)
In brackets of (7), the former item denotes that the individuals are infected at time s and leave the I class at time t, and the
latter item denotes that the individuals are infected at the initial moment and leave the I class at time t. p is the infection
fatality rate (the proportion of individuals entering D class after leaving I class). Differentiating D(t):
Fig. 2. Extended SIR model transmission and progression flows.
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Fig. 3. Epidemic process of EDM.
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_DðtÞ ¼ p
� Zt

0

lðsÞIgMðt� sÞdsþ Ið0ÞgMðtÞ
�
: (8)
Similarly, the total number of recovered individuals at time t is:

RðtÞ ¼
Zt

0

ð1� pÞ
� Zt

0

lðsÞIgMðt� sÞdsþ Ið0ÞgMðtÞ
�
dt: (9)
The explanation of R(t) is similar to D(t). Differentiating R(t):

_RðtÞ ¼ ð1� pÞ
� Zt

0

lðsÞIgMðt� sÞdsþ Ið0ÞgMðtÞ
�
: (10)
With the above equation, we obtain the system of integral and differential equations for the general distribution model,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

_Sn ¼ �bSnI;
_Sv ¼ �ebSvI;

_IðtÞ ¼ lðtÞI �
� Zt

0

lðsÞIgMðt � sÞdsþ Ið0ÞgMðtÞ
�
;

_DðtÞ ¼ p
� Zt

0

lðsÞIgMðt � sÞdsþ Ið0ÞgMðtÞ
�
;

_RðtÞ ¼ ð1� pÞ
� Zt

0

lðsÞIgMðt � sÞdsþ Ið0ÞgMðtÞ
�
:

(11)

where l(t) is given in (4). The initial condition is (Sv(0), Sn(0), I(0), D(0), R(0))¼ (Sv0, Sn0, I0, D0, R0). We note that the infectious
period in the system (11) is general distribution. Next, we use exponential distribution and gamma distribution instead of
general distribution to obtain two ODE models with different distributions.

2.3. Exponential distribution model(EDM): explicit formula for peak time

LetM(t) ¼ e�gt, then gM(t) ¼ ge�gt, thus system (11)’s digram can be simplified as Fig. 3, and the model could be shown as
follows:
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Motivated to the method in 2021 (Turkyilmazoglu, 2021) on the derivation of the explicit formula for peak time of the
classic Kermack-McKendrick SIR model, now we will develop the techniques in (Turkyilmazoglu, 2021) and construct the
explicit formula for peak time and peak value of the above system.

From (12) and (13), dSvdSn
¼ e SvSn

, from which we are able to get:

SvðtÞ ¼ SenðtÞ
Sen0

Sv0: (17)

_ _
Since Sv and Sn <0 all t > 0, then Sv and Sn must obtain their maximum values at the initial moment. We observe (14) and
find that _I>0 if and only if b(eSv þ Sn) � g > 0. Therefore, there are only two cases of _I: one is positive first and then negative,
and the maximum value is obtained when _I changes sign. The other is always negative, which cannot constitute an epidemic,
so we neglect this case. Let's just focus on the first case. From (14) and (17), we get

_IðtÞ ¼ b

�
e
Sen
Sen0

Sv0 þ Sn

�
I � gI: (18)
Let the right hand of (18) equal to 0, we get

b

�
e
SenðtÞ
Sen0

Sv0 þ Sn

�
¼ g: (19)
The above equation (19) is a monadic equation on Sn, thus by solving this equation, there exists a unique implicit solution
for Sn, denoted as S*n. Therefore, I(t) reaches its peak value as SnðtÞ ¼ S*n holds true.

From (12) and (18), we get dI
dSn

¼ � e Sv0Sen0
Se�1
n � 1þ g

bSn
. Integrating t from 0 to t, then we have:

IðtÞ ¼ Sv0 þ Sn0 �
Sv0
Sen0

Sen � Sn þ g

b
ln

Sn
Sn0

þ I0bf ðSnÞ: (20)

*
Thus from (20) we obtain the peak value of I(t) when Sn ¼ Sn, that is

Imax ¼ Sv0 þ Sn0 �
Sv0
Sen0

S*n
e � S*n þ

g

b
ln

S*n
Sn0

þ I0:

dt 1
From (12) we get: dSn
¼ �bSnI

. Integrating t over 0 to t, we have:

t ¼ �
ZSnðtÞ

Sn0

1
bSnf ðSnÞdSn: (21)

*
Noting that Sn ¼ Sn corresponds to the peak time of the infectious, hence from (21) we obtain the following explicitly
formula for peak time, where f(Sn) was defined in (20):

tmax ¼
ZS*n

Sn0

1
�bSnf ðSnÞdSn:
By the next generation matrix method calculate basic reproductive number R0 (van den Driessche et al., 2008)

R0 ¼ bðeSv0 þ Sn0Þ
g

: (22)
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Final size Z is a quantitative value which reflects the impact of the epidemic(Arino et al., 2007), and is defined as
Z¼ S(0)� S(∞). From (12)e(14) we get dðSþIÞ

dt ¼ � gI. Thus Sþ I is decreasingwhenever I > 0. Since Sþ I is lower bounded by 0,
it has a limit. Hence,

lim
t/∞

dðSþ IÞ
dt

¼ 0;
so, I(∞) ¼ 0 (Ma & Earn, 2006). For (20) when t / ∞ we get

0 ¼ Sv0 þ Sn0 �
Sv0
Sen0

Senð∞Þ � Snð∞Þ þ g

b
ln

Snð∞Þ
Sn0

þ I0:
The equation is a monadic equation on Sn(∞), and solve to get Sn(∞). Therefore, final size Z

Z ¼ Sð0Þ � Sð∞Þ
¼ Sv0 þ Sn0 � Svð∞Þ � Snð∞Þ

¼ Sv0 þ Sn0 �
Sv0
Sen0

Senð∞Þ � Snð∞Þ:
2.4. Gamma distribution model(GDM)

LetMðtÞ ¼Pn
j¼1

ðng1tÞj�1e�ng1 t

ðj�1Þ! , then gMðtÞ ¼ ng1ðng1tÞn�1

ðn�1Þ! e�ng1t . Thus using on the similar arguments for the GDM in (Feng et al.,
2007, 2016), system (11) can be simplified to:
Previous studies have so far not given analytical solutions for peak value and time of infectious disease models with
multiple infectious compartments. Since the infectious disease models with gamma distribution for infectious period is
similar to infectious disease models with multiple infectious compartments, it is difficult to find the analytical solution of
peak value and time.

Fortunately, Feng et al., in 2007 proposed a new peak value(Feng, 2007), which can be solved analytically for infectious
disease models with multiple infectious compartments. Next, we try to extend the peak value to infectious disease models
with multiple susceptible compartments. Consider the system:

8>>><
>>>:

_S1 ¼ �bbxa1S1;
_Sj ¼ �bbxajSj; for j ¼ 2…n
_x ¼ PbbxaS� Vx;
_R ¼ wx:

(29)

Here, a ¼ ða1; a2;…; anÞT is a row vector with the components representing the rate at which different susceptible com-

partments are infected (reflecting different immunity); y ¼ (S1, S2, …, Sn) is a column vector whose components are different
susceptible compartments; S ¼ Pn

j¼1Sj is the total number of susceptible populations. Other the notations are adopted from
(Feng, 2007). In the system (29), we get the force of infection L(x) ¼ bbx and the reproductive number R ¼ bbV�1P. A new
peak value is defined as,

Y ¼ 1
RbbV�1x;

then Y satisfies the following differential equation,
800
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_Y ¼ LðxÞ
�
ay� 1

R
�
:

In GDM system, the transmission ability is equal for Ij(j¼ 1… n), thenwe have b ¼ (1, 1,…, 1)2 Rn, a¼ (1,e)T 2 R2, y ¼ (Sn,
Sv) 2 R2,

x ¼

0
BBBB@

I1
I2
«

In�1
In

1
CCCCA;P ¼

0
BBBB@

1
0
0
«
0

1
CCCCA;V ¼

0
BBBB@

ng1 0 / 0 0
�ng1 ng1 0 1 0
0 �ng1 1 0 0
« 1 �ng1 ng1 0
0 / 0 �ng1 ng1

1
CCCCA

n�n

:

Here, the force of infection is LðxÞ ¼ b
Pn I ¼ bI and the reproductive number is R ¼ b , and then the peak value is
j¼1 j g1

YðtÞ ¼
Xn
j¼1

cjIj; where cj ¼
nþ 1� j

n
:

_
�

1
�

YðtÞ ¼ bI eSv þ Sn �R : (30)
Similar to I(t) in EDM, when _Y ¼ 0, the maximum value of Y(t) is obtained.
From (17) and (30), we get the value of Sn satisfying _Y ¼ 0, written as ~Sn. From (17), (23) and (30), Y and Sn satisfy the

equation

dY
dSn

¼ �e
Sv0
Sen0

Se�1
n � 1þ g1

bSn
:

Integrating over 0 to t:

YðtÞ ¼ Sv0 þ Sn0 �
Sv0
Sen0

Sen � Sn þ g1
b
ln

Sn
Sn0

þ Y0; (31)

when Sn ¼ ~Sn, we get peak value Y
max

Ymax ¼ Sv0 þ Sn0 �
Sv0
Sen0

~Sn
e � ~Sn þ g1

b
ln

~Sn
Sn0

þ Y0:
However, for the peak time, we cannot give the analytic formula using the previous method because of the difference
between the defined Y(t) and I(t). It can only be numerically solved.

By the next generation matrix method, we can get basic reproductive number R0 (van den Driessche et al., 2008)

R0 ¼ bðeSv0 þ Sn0Þ
g1

: (32)
For final size, Y(∞) ¼ 0. For (31) when t / ∞ we get

0 ¼ Sv0 þ Sn0 �
Sv0
Sen0

Senð∞Þ � Snð∞Þ þ g1
b
ln

Snð∞Þ
Sn0

þ Y0:
The equation is a monadic equation on Sn(∞), and solve to get Sn(∞). Therefore, final size Z

Z ¼ Sð0Þ � Sð∞Þ
¼ Sv0 þ Sn0 � Svð∞Þ � Snð∞Þ

¼ Sv0 þ Sn0 �
Sv0
Sen0

Senð∞Þ � Snð∞Þ:
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3. Comparison of EDM and GDM based on actual data

In this section, we apply EDM and GDM (n¼ 2,3) to the COVID-19 (Omicron) epidemics in Spain and Norway to investigate
the differences between EDM and GDM in describing disease transmission and evaluating control strategies (see Fig. 4).

3.1. Data

In December of 2021, COVID-19 (Omicron) epidemic surged in Europe. We acquire the real data for Spain from December
23, 2021 to March 4, 2022 and Norway from January 8 to March 29, 2022 from Worldometer(Norway COVID, 2022; Spain
COVID, 2022). The histograms of daily active infectious individuals and cumulative deaths are shown in Fig. 5.

3.2. Parameter estimation

Previous studies in the transmission of COVID-19 (Omicron) have given the information for most of parameter values.

3.2.1. Infectious period
The average length of infected individuals from infectious till recovery is 6.5 day(Yuan et al., 2022).

3.2.2. Infection fatality rate (IFR)
Research findings and statistics show a strong relationship between IFR and the percentage of the elderly population(-

Starke et al., 2020; COVID-19 Weekly Cases and Deaths, 2022). In order to be able to effectively estimate the IFR in Spain
(18.49% of seniors over 65 years old(Spain Age structure, 2022)) and Norway (17.43% of seniors over 65 years old (Norway Age
structure, 2022)), we use the IFR in Ontario, Canada (18.1% of seniors over 65 years old (Ontario population projections, 2022))
which has a similar proportion of elderly people as Spain and Norway, thus IFR ¼ 0.03% (Ulloa et al., 2022) (see Table 1).

3.2.3. Vaccine effectiveness
Vaccine effectiveness can be calculated from the weighted average of vaccination proportion and effectiveness. Assume

that uptake of one dose is completely ineffective, the effectiveness of uptake of primary course is 35.5%, and the effectiveness
of uptake one booster dose is 71.4%(Andrews et al., 2021). European Centre for Disease Prevention and Control provides the
primary course rate (PCR) and booster dose rate (BDR) during the outbreak in Spain and Norway(COVID-19 Vaccine Tracker |
European, 2022), see Tables 2 and 3.

Vaccine effectiveness in Spain:

VEspain ¼ PCR� BDR
PCR

*35:5%þ BDR
PCR

*71:4%

¼ 55:6%:
(33)
Vaccine effectiveness in Norway:

VEnorway ¼ PCR� BDR
PCR

*35:5%þ BDR
PCR

*71:4%

¼ 60%:
(34)
Fig. 4. Epidemic process of EDM.
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Fig. 5. (a) and (b) show the daily active infectious individuals and cumulative deaths in Spain from December 23, 2021 to March 4, 2022. (c) and (d) show the
daily active infectious individuals and cumulative deaths in Norway from January 8 to March 29, 2022.
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3.2.4. Initial values
First, we get that the total population of Spain is around 4.6*107 (Spain Population, 2022) and the total population of

Norway is around 5.51*106 (Norway Population, 2022). Sv0 and Sn0, the initial value of Sv and Sn, can be calculated by (35) and
(36). I0 and D0, the initial value of I and D, can be obtained from Fig. 5.
What we need to estimate is the transmission coefficients b. Through the least square method, we fit the first 15 days of
data in Fig. 5 and each of the three models (EDM, GDMwith n ¼ 2, GDM with n ¼ 3). The results of the fit are shown in Fig. 6
and Tables 4 and 5.

3.3. Analysis of results

Define the average relative error from day 1 to day n as

Error ¼ 1
2n

Xn
i¼1

�����Îi � Ii
Ii

j þ jD̂i � Di

Di
j
�
; (37)

where Îi and D̂i denote the number of active infections per day and cumulative deaths predicted by themodel, Ii and Di denote
the number of active infections per day and cumulative deaths in the real data.

The comparison of final size, peak value and other parameters with the real data is shown in Tables 6 and 7. The final size
from the statistics is much lower than that from the model results, so we speculate that the statistics may have been
underestimated due to the excess of asymptomatic. It is easy to find that for Spain, the EDM better describes the COVID-19
(Omicron) transmission process than the GDM, in contrast, for Norway, the GDM ismore consistent with the actual data. Also,
the same conclusion is shown in Fig. 6. Thus, we speculate that the same infectious disease has different distribution for the
infectious period in different countries or regions (may be due to medical conditions, age structure, physical condition of
susceptible groups, climate temperature, etc.). Therefore, the distribution for the infectious period must be more cautiously
examined, when we use mathematical models to describe the transmission process of infectious diseases.
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Table 1
Explanation of symbols.

Symbol Description

M(t) Probability that an individual remains infectious for t time units since being infected
l(t) Force of susceptibility at time t
L(x) Force of infection
1 � e Vaccine effectiveness
1/g Mean infectious period with exponential distribution
1/g1 Mean infectious period with Gamma distribution
В Transmission coefficient
P Infection fatality rate
N Total number of people in the system
Sn Susceptible population without vaccination
Sv Susceptible population with vaccination
D Death population
R Recovered population
Z Final size
PCR Primary course rate, two doses in total
BDR Booster dose rate, three doses in total

Table 2
The PCR and BDR in Spain(COVID-19 Vaccine Tracker | European, 2022).

week 2021-W52 2022-W2 2022-W4 2022-W6 2022-W8 Mean

PCR 75% 75.3% 75.5% 76.2% 77% 75.8%
BDR 30.1% 37.4% 45% 48.8% 50.5% 42.36%

Table 3
The PCR and BDR in Norway(COVID-19 Vaccine Tracker | European, 2022).

week 2022-W2 2022-W4 2022-W6 2022-W8 2022-W10 2022-W12 Mean

PCR 73.7% 74.2% 74.6% 74.7% 74.8% 74.8% 74.47%
BDR 42.0% 49.9% 52.6% 53.5% 53.8% 54% 50.97%

1 Individuals with uptake booster dose have gotten primary course.
2 The mean PCR and BDR are used to calculate the vaccine effectiveness.

Fig. 6. (a), (b) and (c) show the fitting results of EDM, GDM (n ¼ 2), GDM (n ¼ 3) for Spanish data, respectively. (d), (e) and (f) show the fitting results of EDM,
GDM (n ¼ 2), GDM (n ¼ 3) for Norwegian data, respectively. In the figure, the asterisk * represents the number of active infectious individuals per day and the
circle ◦ represents cumulative deaths. Where the red markers are the data used for the fit and the blue are the data not used.
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Table 4
Parameter values in Spain.

Parameters Values Unit Definitions Reference

b1 9.1376*10�9 1/(individual � day) Transmission coefficient of EDM Fitting
b2 8.5194*10�9 1/(individual � day) Transmission coefficient of GDM (n ¼ 2) Fitting
b3 8.3008*10�9 1/(individual � day) Transmission coefficient of GDM (n ¼ 3) Fitting
e 44.4% dimensionless Vaccine lose effectiveness (33)
G 1/6.5 1/day Recovery rate of infected individuals in EDM Yuan et al. (2022)
g1 1/6.5 1/day Recovery rate of infected individuals in GDM Yuan et al. (2022)
Sn0 1.0959*107 persons Initial number of Sn (35)
Sv0 3.4326*107 persons Initial number of Sv (36)
I0 6.26678*105 persons Initial number of I Fig. 5
D0 8.9019*104 persons Initial number of D Fig. 5
P 0.03% dimensionless Infection fatality rate Ulloa et al. (2022)

Table 5
Parameter values in Norway.

Parameters Values Unit Definitions Reference

b1 7.5348*10�8 1/(individual � day) Transmission coefficient of EDM Fitting
b2 7.0752*10�8 1/(individual � day) Transmission coefficient of GDM (n ¼ 2) Fitting
b3 6.9124*10�8 1/(individual � day) Transmission coefficient of GDM (n ¼ 3) Fitting
e 40% dimensionless Vaccine lose effectiveness (34)
G 1/6.5 1/day Recovery rate of infected individuals in EDM Yuan et al. (2022)
g1 1/6.5 1/day Recovery rate of infected individuals in GDM Yuan et al. (2022)
Sn0 4.0484*106 persons Initial number of Sn (35)
Sv0 1.3879*106 persons Initial number of Sv (36)
I0 7.2318*104 persons Initial number of I Fig. 5
D0 1.379*103 persons Initial number of D Fig. 5
P 0.03% dimensionless Infection fatality rate Ulloa et al. (2022)

Table 6
Comparison of the three model fitting results with the real data in Spain.

Error Peak value Peak time Final size

Real data 0 3.846305*106 2022/1/28 5.382421*106

EDM 6.10% 3.530329*106 2022/1/26 2.4673966*107

GDM (n ¼ 2) 11.86% 3.469738*106 2022/1/24 2.2322434*107

GDM (n ¼ 3) 14.32% 3.435796*106 2022/1/24 2.1317022*107

1 Final size is taken as the cumulative number of infected individuals from December 23, 2021 to March 4, 2022.
2 Error is given by Equation (37) from January 8 to March 4, 2022.
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3.4. Effectiveness of different interventions on EDM and GDM

In this section, wewill use EDM and GDM to evaluate the effectiveness of different interventions in this epidemic in Spain
and Norway. We examine how the models may provide different evaluations on the effectiveness of different interventions.
Three control strategies are proposed for Spain and Norway, respectively. Some of the main indicators used to assess the
effectiveness of the control strategy include the final size, peak value and peak time of the outbreak. The simulation results are
shown in Figs. 7e10.

Figs. 7 and 8 show the numerical simulations of EDM, GDM (n ¼ 2) and GDM (n ¼ 3) based on Spanish and Norwegian
parameters. It plots active infectious individuals (thin solid curve), cumulative infections (thick solid curve) and cumulative
deaths (dashed curve). The four rows compare for scenarios based on wearing masks to reduce transmission rates (b) and/or
increasing the rate of vaccination(PCR, BDR). It includes one baseline scenario and three strategies. See Table 8 for details.

We observe from (7) and (8) that when the transmission coefficient (b) is reduced (Baseline scenario and Strategies I), all
three models for two countries show reductions in final size and peak value as well as delayed peak time (see rows 1e2). All
threemodels also show similar (Spain) or stronger (Norway) effects for Strategies I and II (see rows 2e3), which suggests that
increasing the rate of vaccination and reducing the transmission coefficient have similar effects. Strategy III contains both
Strategy I and Strategy II. Comparing Strategy I and Strategy II (see rows 2e4), we can see that the two measures work
together (Strategy III) best.

Fig. 9 shows a more detailed comparison of the final size, peak value and time for the three control strategies in Spain and
Norway. In particular, if we compare Strategy I, Strategy II and Strategy III, they all lead to smaller disease sizes, but Strategy III
leads to a earlier peak time. More importantly, we find that the three models provide a consistent assessment of the control
strategy.We also observe that EDM has larger final size, peak time and smaller peak value, while GDM, especially GDM (n¼ 3)
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Table 7
Comparison of the three model fitting results with the real data in Norway.

Error Peak value Peak time Final size

Real data 0 3.21288*105 2022/2/10 9.67323*105

EDM 11.52% 3.37202*105 2022/2/13 2.637953*106

GDM (n ¼ 2) 6.39% 3.28280*105 2022/2/11 2.360852*106

GDM (n ¼ 3) 9.54% 3.23695*105 2022/2/10 2.244447*106

1 Final size is taken as the cumulative number of infected individuals from January 8 to March 29, 2022.
2 Error is given by Equation (37) from January 23rd to March 29th, 2022.

Fig. 7. Comparison of the epidemic sizes generated by the models EDM, GDM (n ¼ 2) and GDM (n ¼ 3) based on Spanish parameters for the baseline scenario (top
row) and strategies I, II and III (rows 2, 3 and 4, respectively).
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has smaller final size, peak time and larger peak value. Therefore, when we use a mathematical model to describe disease
transmission, we will get an overestimation of the peak value and an underestimation of the final size and peak time,
assuming the gamma distribution for the infectious period (the truth is an exponential distribution). In contrast, we will
underestimate the peak value and overestimate the final size and peak time, assuming the exponential distribution for the
infectious period (the truth is a gamma distribution).

From (22) and (32), it is clear that GDM and EDM have the same R0 (because of g ¼ g1). Fig. 10 shows the contour plot
(when b is fixed as Baseline scenario) ofR0 and the surface plot forR0 ¼ 1. Above the surface meansR0 <1 (the disease will
not break out), below the surface means the disease will break out. Panel (a) shows that disease outbreaks can be stopped by
vaccination only, and panel (b) shows that vaccination can reduce the R0 to below 1 more quickly if it is accompanied by a
lower transmission coefficient.
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Fig. 8. Comparison of the epidemic sizes generated by the models EDM, GDM (n ¼ 2) and GDM (n ¼ 3) based on Norwegian parameters for the baseline scenario
(top row) and strategies I, II and III (rows 2, 3 and 4, respectively).

Fig. 9. Comparison of the final size (a), peak value (b) and peak time (c) generated by the three models under the baseline scenario and the three control
strategies I, II and III, in Spain and Norway.
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Fig. 10. Panel (a) shows the scenario of prevention and control only through vaccine without affecting people's normal travel life. Panel (b) includes vaccines and
restrictions on life travel.

Table 8
Three control strategies in Spain and Norway.

Spain Norway

Baseline scenario b ¼ 8.5*10�9 and PCR ¼ 75.8%,BDR ¼ 42.36% b ¼ 7.0*10�8 and PCR ¼ 74.47%,BDR ¼ 50.97%
Strategy I b ¼ 7.5*10�9 and PCR ¼ 75.8%,BDR ¼ 42.36% b ¼ 6.5*10�8 and PCR ¼ 74.47%,BDR ¼ 50.97%
Strategy II b ¼ 8.5*10�9 and PCR ¼ 85.8%,BDR ¼ 52.36% b ¼ 7.0*10�8 and PCR ¼ 84.47%,BDR ¼ 60.97%
Strategy III b ¼ 7.5*10�9 and PCR ¼ 85.8%,BDR ¼ 52.36% b ¼ 6.5*10�8 and PCR ¼ 84.47%,BDR ¼ 60.97%
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4. Conclusions

In the present paper, we propose and analyze two SIR epidemic models with exponential and gamma distribution for
infectious period (EDM and GDM, respectively). Theoretically, we derive the analytic formulas for basic reproduction number,
peak value, peak time as well as final size of EDM; For GDM, we obtain its basic reproduction number, maximum epidemic
size value as well as its final size of GDM.

We perform the methods of least-squares fits to the EDM and GDM using data from the COVID-19 (Omicron) epidemic in
Spain and Norway, respectively. From Tables 6 and 7 and Fig. 6, we find that the COVID-19 (Omicron) epidemic in Spain is
more suitable for the EDM model, while the COVID-19 (Omicron) epidemic in Norway is more suitable for the GDM model.
Therefore, we speculate that the same infectious disease has different distribution for the infectious period in different
countries or regions, which also suggests that the assumption of distribution for the infectious period has significant
effectiveness, when we use mathematical models to describe disease transmission, the assumptions for distribution of the
infectious period must be carefully made.

Finally, we evaluate the effect of EDM and GDM on control strategies. Using the Spanish and Norwegian data as the basic
parameters for the numerical simulations, we consider three different control strategies. The numerical simulation results
show that the assessment of the three strategies by EDM and GDM is synchronous. However, EDM may result in larger final
size, peak time and smaller peak value compared to GDM. Therefore, in infectious disease models, if we make unreasonable
assumptions about the distribution for the infectious period, we may over- or underestimate peak value, final size and peak
time.

The models in this paper are the simplest SIR models, and it remains open whether the more general (realistic) model
would yield the same conclusions, which we leave as our future work.
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