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A B S T R A C T

COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts
worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for
diagnosing COVID-19. All researchers focus their efforts on developing viable methods and rapid treatment
procedures for this pandemic. Fast and accurate automated detection approaches have been devised to
alleviate the need for medical professionals. Deep Learning (DL) technologies have successfully recognized
COVID-19 situations. This paper proposes a developed set of nine deep learning models for diagnosing COVID-
19 based on transfer learning and implementation in a novel architecture (SEL-COVIDNET). We include
a global average pooling layer, flattening, and two dense layers that are fully connected. The model’s
effectiveness is evaluated using balanced and unbalanced COVID-19 radiography datasets. After that, our
model’s performance is analyzed using six evaluation measures: accuracy, sensitivity, specificity, precision,
F1-score, and Matthew’s correlation coefficient (MCC). Experiments demonstrated that the proposed SEL-
COVIDNET with tuned DenseNet121, InceptionResNetV2, and MobileNetV3Large models outperformed the
results of comparative SOTA for multi-class classification (COVID-19 vs. No-finding vs. Pneumonia) in terms
of accuracy (98.52%), specificity (98.5%), sensitivity (98.5%), precision (98.7%), F1-score (98.7%), and MCC
(97.5%). For the COVID-19 vs. No-finding classification, our method had an accuracy of 99.77%, a specificity
of 99.85%, a sensitivity of 99.85%, a precision of 99.55%, an F1-score of 99.7%, and an MCC of 99.4%. The
proposed model offers an accurate approach for detecting COVID-19 patients, which aids in the containment
of the COVID-19 pandemic.
1. Introduction

The year 2020 was challenging for the entire planet and will be
considered a year unlike any other. The world has seen the emergence
of a unique coronavirus (COVID-19). The pandemic’s effect extends
beyond the loss of countless lives. It has far-reaching consequences for
mental health, a perpetual state of terror, economic misery, and social
disturbance, among other things. Worldwide, 594 million individuals
have been infected, with over 6.5 million fatalities and 566 million
recovery cases documented by August 08, 2022 [1]. Coronaviruses are
a family of viruses that can cause illnesses such as the common cold,
severe acute respiratory syndrome (SARS), and Middle East respiratory
syndrome (MERS) [2]. Signs and symptoms of 2019-nCoV may appear 2
to 14 days after exposure. After exposure to the virus and before symp-
toms appear, this period is called the incubation period [3]. It can still
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spread the COVID-19 infection before developing symptoms. Common
signs and symptoms may include fever, cough and tiredness, shortness
of breath or difficulty breathing, etc. Symptoms of COVID-19 can range
from very mild to severe. Some people have few symptoms [4]. COVID-
19 therapy sometimes does not eradicate the virus; instead, it helps
alleviate symptoms. Many approaches for detecting SARS-CoV-2 infec-
tion include real-time reverse transcription-polymerase chain reaction
(RT-PCR), isothermal nucleic acid amplification, and microarrays [5].
Most nations’ health authorities have adopted the RT-PCR technology,
which is widely considered the standard for molecular diagnosis of viral
and bacterial illnesses [6].

Doctors commonly use a reverse transcription-polymerase chain
reaction (RT-PCR) test on blood and sputum specimens to diagnose
COVID-19. This test detects evidence of the virus’s biologically-derived
vailable online 24 August 2022
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Fig. 1. Datasets distribution.
Table 1
A comparison of related work methods for detecting COVID-19 using CT scan images. (CAP) community-acquired pneumonia.

Study Number of cases Methods Performance %

Wang et al. [7] 44 COVID-19
55 Viral Pneumonia

M-Inception Accuracy of 73.1 for 2-classes

Zheng et al. [8] 313 COVID-19
229 No-findings

DeCovNet Accuracy of 90.1 for 2-classes

Li et al. [9] 1296 COVID-19
1735 Pneumonia
1325 Non-Pneumonia

COVNet Accuracy of 96 for 3-classes

Song et al. [10] 88 COVID-19
101 Bacteria Pneumonia
86 Healthy

DeepPneumonia Accuracy of 94.0 for 2-classes
Accuracy of 86.0 for 3-classes

Wang et al. [11] 325 COVID-19
740 Pneumonia

InceptionNet Accuracy of 89.50 for 2-classes

Shi et al. [12] 1658 Non-COVID
1027 CAP

Random Forest Accuracy of 87.9 for 2-classes

Li et al. [13] 1292 COVID-19
1735 CAP
1325 Non-Pneumonia

ResNet50 backbone Accuracy of 96.3 for 3-classes

Xu et al. [14] 219 COVID-19
224 Influenza-A
175 Healthy

Attention oriented model
based on ResNet18

Accuracy of 86.7 for 3-classes
Table 2
Hyperparameter configuration.

Parameters
Activation Function ReLU/Sigmoid/Sofmax

Base Learning Rate 0.001

Minimum Learning Rate 1e-5

Epochs 50

Batch Size 32

Optimizer Adam

Loss Function Binary Cross-Entropy for a binary classifier
Categorical Cross-Entropy for multi-class
classifier

Early Stopping patience 10

Monitor Validation accuracy

Factor 0.1

ReduceLROnPlateau patience 2

component in the patient’s blood. The virus’s remnants do not start
showing up effectively as a susceptible test. Numerous recent stud-
ies indicate that chest computer tomography (CT) works better than
laboratory tests in screening for COVID-19 [15]. Chest computed to-
mography (CT) is a more accurate, effective, and rapid method of
diagnosing COVID-19 than RT-PCR. Doctors commonly utilize chest CT
imaging to diagnose pneumonia [16]. CT scans are used to provide
comprehensive three-dimensional imaging of the lung. Doctors analyze
chest CT scans for fluid or pus in the lungs or any other signs consistent
2

with COVID-19 infection. Chest CTs are typically quick and painless to
do [16].

Likewise, owing to the cheap cost and rapid image capture approach
associated with chest radiograph (X-ray) image-based diagnostics, it
may be a more appealing and accessible tool for identifying the begin-
ning of the illness. Since technology has been used in medical research,
medical equipment and diagnostics have advanced to a new level.
In many different fields, including computer vision [17], healthcare
systems [18], and most recently, COVID-19 diagnosis [19,20], deep-
learning methods have been able to produce results that are considered
to be state-of-the-art. This is owing to their capacity to autonomously
extract representations from learning data that are important to their
predictions. The state-of-the-art IoT gadgets have simplified difficult
processes and aided in real-time monitoring—technology advances at
a breakneck pace [21]. Today, researchers can produce a diversified
and broad variety of substantial feature sets using deep learning, which
is impossible for a professional to do [22]. Machine learning (ML)
and deep learning (DL) have amassed a plethora of applications over
the last several decades and have shown to be invaluable in resolving
complex medical use cases [23]. For example, in order to comprehend
how to tell a healthy lung from an infected lung, machine learning
algorithms need to be organized and have a set of features to predict
the outcome [24,25].

On the other hand, with DL, the classifier automatically identi-
fies healthy lungs from infected lungs using network characteristics
generated automatically [26]. With the ability to generate features
autonomously, DL has developed into a strong tool that eliminates the
need for human features extraction. DL algorithms have seen several
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Fig. 2. Flowchart of proposed SEL-COVIDNET schematic for classifying the COVID-19
status in chest images.

advances over the decades and are now widely employed to identify
problems in clinical imaging [27]. Therefore, deep learning algorithms
can tackle new problems by using previously acquired information.
When developing deep learning techniques with small datasets, areas of
interest in those images are often incorrectly identified, a problem that
is seldom covered in the current literature. As a result, we examined our
models’ performance and picked just the highest performing ones based
on their ability to identify Covid-19 seen on X-ray images correctly.

Additionally, prior work often fails to illustrate how their suggested
models function when confronted with unbalanced datasets, which is
frequently problematic. We diversify our study in this section by con-
sidering small, unbalanced, and balanced and provide a full discussion
of our findings. This article reviews current work on the subject and
considers the possibility of presenting a successful deep learning-based
screening technique for detecting patients with COVID-19 using chest
X-ray and CT scan images and how our model overcomes earlier re-
search’s limitations. The literature’s overwhelming studies fall into one
of two classes (COVID-19 vs. No-finding). However, just a few articles
addressed many classes. With expert-level automation, we anticipate
that this technology will aid in the testing of COVID-19 patients. The
following are the paper’s significant contributions:
3

Fig. 3. Confusion matrix of multi-class DL models used in the SEL-COVIDNET on X-ray
dataset 1. (0: COVID-19, 1: No-finding, 2: Pneumonia).

Fig. 4. Confusion matrix of binary-class DL models used in the SEL-COVIDNET on
X-ray dataset 1. (0: COVID-19, 1: No-finding).

• This work developed a collection of deep learning models in a

novel architecture (SEL-COVIDNET) to aid in the early identifica-

tion of patients with COVID-19 efficiently.
• Comprehensive experiments were conducted on chest X-ray and

CT scan images (Balanced dataset, Unbalanced dataset) to verify

the proposed method’s efficacy.
• Compared the proposed model to various state-of-the-art archi-

tectures in terms of deep feature extraction and categorization of

COVID-19 chest X-ray and CT scan images.
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Table 3
Evaluation performance of multi-class DL models used in the SEL-COVIDNET on X-ray dataset 1 (0: COVID-19, 1: No-finding, 2: Pneumonia).
The best overall accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-Score MCC Overall Acc (%)

DensNet121 0 0.991 0.971 0.993 0.931 0.950 0.946 94.70
1 0.953 0.935 0.968 0.961 0.948 0.906
2 0.950 0.954 0.945 0.937 0.945 0.899

InceptionV3 0 0.988 0.942 0.992 0.915 0.929 0.922 92.86
1 0.937 0.922 0.950 0.940 0.931 0.873
2 0.932 0.933 0.932 0.920 0.927 0.864

VGG19 0 0.964 0.783 0.981 0.794 0.788 0.769 88.55
1 0.909 0.895 0.921 0.905 0.900 0.816
2 0.898 0.895 0.900 0.883 0.889 0.794

InceptionResNetV2 0 0.996 0.971 0.999 0.985 0.978 0.976 96.43
1 0.967 0.957 0.975 0.970 0.963 0.933
2 0.966 0.970 0.961 0.955 0.963 0.931

ResNet50 0 0.990 0.913 0.997 0.969 0.940 0.935 92.86
1 0.937 0.906 0.964 0.955 0.929 0.874
2 0.930 0.954 0.909 0.899 0.926 0.861

ResNet101 0 0.983 0.899 0.991 0.899 0.899 0.889 92.36
1 0.936 0.919 0.950 0.939 0.929 0.871
2 0.929 0.933 0.925 0.913 0.923 0.857

MobileNetV2 0 0.993 0.942 0.997 0.970 0.956 0.952 94.83
1 0.952 0.960 0.946 0.937 0.948 0.904
2 0.952 0.938 0.964 0.956 0.947 0.903

MobileNetV3Small 0 0.995 0.957 0.999 0.985 0.971 0.968 95.57
1 0.958 0.946 0.968 0.962 0.954 0.916
2 0.958 0.965 0.952 0.945 0.955 0.916

MobileNetV3Large 0 0.995 0.957 0.999 0.985 0.971 0.968 96.31
1 0.967 0.957 0.975 0.970 0.963 0.933
2 0.964 0.970 0.959 0.953 0.961 0.928
Table 4
Evaluation performance of binary-class DL models used in the SEL-COVIDNET on X-ray dataset 1 (0: COVID-19, 1: No-finding). The best overall
accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 0.986 0.942 0.995 0.970 0.956 0.948 98.64
1 0.986 0.995 0.942 0.989 0.992 0.948

InceptionV3 0 0.984 0.913 0.997 0.984 0.947 0.939 98.41
1 0.984 0.997 0.913 0.984 0.991 0.939

VGG19 0 0.966 0.870 0.984 0.909 0.889 0.869 96.59
1 0.966 0.984 0.870 0.976 0.980 0.869

InceptionResNetV2 0 0.993 0.971 0.997 0.985 0.978 0.974 99.32
1 0.993 0.997 0.971 0.995 0.996 0.974

ResNet50 0 0.986 0.942 0.995 0.970 0.956 0.948 98.64
1 0.986 0.995 0.942 0.989 0.992 0.948

ResNet101 0 0.991 0.971 0.995 0.971 0.971 0.966 99.09
1 0.991 0.995 0.971 0.995 0.995 0.966

MobileNetV2 0 0.875 0.203 1.000 1.000 0.337 0.420 87.50
1 0.875 1.000 0.203 0.871 0.931 0.420

MobileNetV3Small 0 0.986 0.928 0.997 0.985 0.955 0.948 98.64
1 0.986 0.997 0.928 0.987 0.992 0.948

MobileNetV3Large 0 0.857 0.087 1.000 1.000 0.160 0.273 85.68
1 0.857 1.000 0.087 0.855 0.922 0.273
• Analyzed the proposed model’s performance using six evalua-
tion measures: sensitivity, specificity, precision, F1-score, accu-
racy, and Matthew’s correlation coefficient (MCC). Thus, the pro-
posed method outperforms relatively in comparison with SOTA
methods.

he rest of this paper is organized as follows: The related work is
etailed in Section 2. Material and methods are discussed in Section 2.
he experimental results of the proposed SEL-COVIDNET are presented

n Section 4. Comparative results and discussion are described in Sec-
ion 5. Finally, the conclusion and future direction are presented in
4

ection 6.
2. Related work

Deep learning has garnered much attention lately in the battle
against the Covid-19 epidemic. Numerous deep learning algorithms
have been recently presented as Covid-19 diagnostic tools to assist doc-
tors in making more informed medical decisions. This section discusses
much research that is relevant to this study.

Researchers have been concentrating their efforts on deep learning
algorithms for identifying COVID-19 in chest X-rays. According to Das
et al. [28], utilizing a DL-based network in lieu of CT scan scanners
is a cost-effective option. Ozturk et al. [29] developed an architecture
named DarkNet, a classifier model for classifying positive and negative

COVID-19 chest X-ray images and a multi-class classifier for detecting
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Table 5
Evaluation performance of multi-class DL models used in the SEL-COVIDNET on X-ray dataset 2 (0: COVID-19, 1: No-finding, 2: Pneumonia).
The best overall accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 1.000 1.000 1.000 1.000 1.000 1.000 98.52
1 0.985 0.965 0.992 0.975 0.970 0.960
2 0.985 0.991 0.975 0.987 0.989 0.967

InceptionV3 0 0.998 1.000 0.997 0.975 0.987 0.986 97.75
1 0.980 0.950 0.990 0.968 0.959 0.945
2 0.977 0.985 0.963 0.981 0.983 0.949

VGG19 0 0.988 0.922 0.994 0.938 0.930 0.923 94.95
1 0.956 0.912 0.970 0.909 0.910 0.881
2 0.956 0.967 0.933 0.966 0.967 0.901

InceptionResNetV2 0 0.998 1.000 0.998 0.983 0.991 0.991 98.29
1 0.984 0.959 0.993 0.977 0.968 0.958
2 0.983 0.989 0.970 0.985 0.987 0.962

ResNet50 0 0.999 1.000 0.999 0.991 0.996 0.995 97.98
1 0.981 0.950 0.991 0.971 0.960 0.947
2 0.980 0.988 0.963 0.981 0.985 0.955

ResNet101 0 0.998 0.983 1.000 1.000 0.991 0.990 97.67
1 0.978 0.953 0.987 0.959 0.956 0.941
2 0.977 0.985 0.961 0.980 0.982 0.948

MobileNetV2 0 0.999 1.000 0.999 0.991 0.996 0.995 97.44
1 0.975 0.927 0.991 0.970 0.948 0.932
2 0.973 0.988 0.941 0.974 0.981 0.938

MobileNetV3Small 0 1.000 1.000 1.000 1.000 1.000 1.000 98.45
1 0.984 0.962 0.992 0.974 0.968 0.958
2 0.984 0.991 0.972 0.986 0.988 0.965

MobileNetV3Large 0 0.998 1.000 0.998 0.983 0.991 0.991 98.52
1 0.986 0.959 0.995 0.984 0.971 0.962
2 0.986 0.993 0.972 0.986 0.990 0.969
Table 6
Evaluation performance of binary-class DL models used in the SEL-COVIDNET on X-ray dataset 2 (0: COVID-19, 1: No-finding). The best overall
accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 0.998 1.000 0.997 0.991 0.996 0.994 99.77
1 0.998 0.997 1.000 1.000 0.998 0.994

InceptionV3 0 0.998 1.000 0.997 0.991 0.996 0.994 99.77
1 0.998 0.997 1.000 1.000 0.998 0.994

VGG19 0 0.968 0.939 0.978 0.939 0.939 0.917 96.76
1 0.968 0.978 0.939 0.978 0.978 0.917

InceptionResNetV2 0 0.995 0.991 0.997 0.991 0.991 0.988 99.54
1 0.995 0.997 0.991 0.997 0.997 0.988

ResNet50 0 0.991 1.000 0.987 0.966 0.983 0.977 99.07
1 0.991 0.987 1.000 1.000 0.994 0.977

ResNet101 0 0.984 0.983 0.984 0.958 0.970 0.959 98.38
1 0.984 0.984 0.983 0.994 0.989 0.959

MobileNetV2 0 0.993 0.983 0.997 0.991 0.987 0.982 99.31
1 0.993 0.997 0.983 0.994 0.995 0.982

MobileNetV3Small 0 0.995 1.000 0.994 0.983 0.991 0.988 99.54
1 0.995 0.994 1.000 1.000 0.997 0.988

MobileNetV3Large 0 0.993 1.000 0.991 0.975 0.987 0.983 99.31
1 0.993 0.991 1.000 1.000 0.995 0.983
COVID-19, pneumonia, and normal images. Khan et al. [30] utilized
the ImageNet dataset for training the Xception model as a pre-trained
network. Apostolopoulos et al. [31] trained a model from scratch and
retrieved features for the classification task using MobileNet. Ucar
et al. [32] employed the Bayesian optimization approach to optimize
the SqueezeNet model on the COVID-19 diagnostic.

Loey et al. [33] constructed the model using generative adversarial
networks (GANs) and transfer learning with multi-class classifiers for
detecting COVID-19, pneumonia, and normal images. Luz et al. [34]
improved the EfficientNet model to classify COVID-19 using chest X-ray
images.

Chhikara et al. [35] built a deep transfer learning-based model
5

using Inception-V3-Net to detect COVID-19 from chest X-rays and CT
scans. Apostolopoulos et al. [36] introduced a deep learning-based
diagnostic method for COVID-19. A binary classifier model and a
multi-class classifier were conducted for COVID-19 detection. Hemdan
et al. [37] developed a COVIDX-Net model for COVID-19 detection
using seven distinct deep models. Mehmood et al. [38] proposed a DL-
based technique using batch normalization for classifying three binary
classes. Abugabah et al. [39] proposed a COVID-3D-SCNN model and
attained promising results for multi-classification of COVID-19.

As a result, many researchers have proposed deep learning methods
for detecting COVID-19 based on X-ray images [38,40–47]. More infor-
mation about other work methods for detecting COVID-19 using X-ray
images is depicted in Table 11 (see in Appendix).
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Fig. 5. Confusion matrix of multi-class DL models used in the SEL-COVIDNET on X-ray
dataset 2. (0: COVID-19, 1: No-finding, 2: pneumonia).

Fig. 6. Confusion matrix of binary-class DL models used in the SEL-COVIDNET on
X-ray dataset 2. (0: COVID-19, 1: No-finding).

Additionally, other studies have indicated deep learning algorithms
for COVID-19 detection based on CT scans. Wang et al. [7] developed
the M-Inception model for classifying viral pneumonia and COVID-19.
Their method attained a total accuracy of the test dataset of 73.1%.
Zheng et al. [8] introduced a novel deep learning model (DeCovNet)
that achieved a 90.1% accuracy rate. Li et al. [9] presented the COVNet
model trained using ResNet50. The experimental findings indicated
that the COVNet model had an accuracy of 0.96 for the COVID-19
classification. Song et al. [10] created a deep learning model (DeepP-
neumonia) for COVID-19 detection. The model’s overall accuracy for
6

Fig. 7. Confusion matrix of multi-class DL models used in the SEL-COVIDNET on X-ray
dataset 3. (0: COVID-19, 1: No-finding, 2: Pneumonia).

Fig. 8. Confusion matrix of binary-class DL models used in the SEL-COVIDNET on
X-ray dataset 3. (0: COVID-19, 1: No-finding). The best overall accuracy is reported in
bold red.

COVID-19 vs. bacterial pneumonia classification was 86.0%, while its
overall accuracy for COVID-19 vs. healthy person classification was
94.0%. Table 1 has more information about other work methods for
detecting COVID-19 with CT scans.

3. Material and methods

This section describes datasets and the pre-trained CNNs utilized to
complete the proposed SEL-COVIDNet architecture.
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Fig. 9. Confusion matrix of DL models used in the SEL-COVIDNET on CT dataset 4.
(0: COVID-19, 1: No-finding).

3.1. Dataset description

COVID-19 infection cases have now surpassed 457 million world-
wide, with an estimated 6 million deaths [1]. However, severely con-
taminated nations have attempted to openly share clinical and radio-
graphic data. Thereby, we have used three publicly available datasets,
including as follows:

(a) X-ray-Dataset 1: We collected this data from two different
sources; source one is named ‘‘X-ray Image DataSet [48]’’ with
125 COVID-19, 500 no-findings, and 500 pneumonia. The sec-
ond source was obtained by a team of researchers from different
universities [49]. It is worth mentioning that the first release of
this source was used, which has 219 COVID-19 positive images,
1341 no-findings, and 1345 pneumonia images. To sum up,
dataset 1 consists of three classes, including COVID-19, No-
finding, and pneumonia. The total number of images is 344,
1841, and 1845, respectively.

(b) X-ray-Dataset 2: Unbalanced data divided into three classes [50].
The total number of images for the COVID-19, No-findings, and
pneumonia classes is 576, 1583, and 4273.

(c) X-ray-Dataset 3: Balanced data is divided into three classes [51].
6939 samples were collected, with 2313 samples being utilized
in each category.

(d) CT-Dataset 4: This dataset, named the ‘‘SARS-CoV-2’’ CT scan
dataset, has 1252 CT scans of patients tested positive for
(COVID-19) and 1229 CT scans of patients who tested negative
for COVID-19, totaling 2481 CT scans. These statistics were gath-
ered from genuine patients in Sao Paulo, Brazil-hospitals [52].

Fig. 1 illustrates the distribution of the used datasets.

3.2. Pre-trained CNNs

(a) VGGNet:
VGGNet was developed by Karen Simonyan and Andrew Zisser-
man based on the CNN architecture [53]. The VGGNet func-
tioned magnificently on the imageNet dataset. To increase image
extraction capabilities, the VGGNet employed smaller filters of
7

3 × 3, as opposed to the AlexNet filter of 11 × 11. VGG16
and VGG19 are two variants of this deep network design with
varying depths and layers. VGG19 is a deeper version of VGG16.
However, the amount of parameters in VGG19 is greater, making
it more costly to train the network than in VGG16.

(b) InceptionV3:
Inception v3 is an improved version of the Inception family’s
CNN design, and it was introduced by Szegedy et al. [54], which
is the third version of Google’s Inception CNN. Inceptionv3 was
designed to allow for deeper networks while limiting the number
of parameters to ‘‘around 25 million’’ compared to 60 million for
AlexNet [55].

(c) InceptionResNetV2:
InceptionResNet-V2 derives from the Inception V3 model, and it
is far deeper than the InceptionV3. It has 164 layers and is com-
posed of Inception and residual connections. InceptionResNet-V2
is trained on images from the ImageNet collection totaling over
a million [56].

(d) Residual Network (ResNet):
ResNet was first developed in 2015 by Kaiming He et al. [57]
at Microsoft. ResNet’s central concept is to provide an ‘‘identity
shortcut connection’’ that bypasses one or more layers. ResNet
comes in various variations that all operate on the same principle
but have various layers, such as ResNet-34, ResNet-50, and
ResNet-101.

(e) MobileNetV2:
MobileNetV2 was first developed by Sandler et al. [58]. It is
optimized for systems with limited processing capacity. It is
built on an inverted residual structure, with residual connections
between bottleneck layers.

(f) MobileNetV3:
MobileNetV3 is a new generation of MobileNetV2 that was first
developed by Howard et al. [59]. It has been tailored to mobile
phone Processors using a combination of hardware-aware net-
work architecture search (NAS) and the NetAdapt algorithm and
then enhanced further using innovative architectural advance-
ments. MobileNetV3 comes in two terminologies that operate on
the same principle, MobileNetV3-Large, and MobileNetV3-Small.
Compared to MobileNetV2, the authors in [59] stated that the
MobileNetV3-Large is 3.2% more accurate in ImageNet classi-
fication while reducing latency by 15%. MobileNetV3-Small is
4.6% more accurate than MobileNetV2 while lowering latency
by 5%.

(g) DenseNet:
DenseNet was first developed in 2016 by Huang et al. [60]. It
solves the vanishing gradient problem, makes feature propaga-
tion stronger, encourages feature reuse, and significantly reduces
the number of parameters.

3.3. Proposed SEL-COVIDNET description

We developed a novel classification model for determining the
COVID-19 status in 2D chest images. Fig. 2 displays the whole pro-
cess of our proposed SEL-COVIDNET, which is built on nine distinct
DL architectures: DenseNet121, VGG19, InceptionV3, InceptionRes-
NetV2, ResNet50, ResNet101, MobileNetV2, MobileNetV3-Small, and
MobileNetV3-Large.

The SEL-COVIDNET framework consists of several steps that enable
the classification of novel COVID19. Firstly, starting with preprocess-
ing, all chest images are collected in a single dataset and scaled to a
fixed size of 224 × 224 pixels. The preprocessed dataset is divided 80–
20 to begin the training phase of one of nine deep learning models
that have been tuned. Thereby, 20% of images will be exploited during
the testing stage. It is worth mentioning that we use the pre-trained

ImageNet weights for the tuned model.
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Table 7
Evaluation performance of multi-class DL models used in the SEL-COVIDNET on X-ray dataset 3-Balanced (0: COVID-19, 1: No-finding, 2:
Pneumonia). The best overall accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 0.993 0.994 0.992 0.985 0.989 0.984 95.82
1 0.962 0.950 0.968 0.936 0.943 0.914
2 0.962 0.931 0.977 0.954 0.942 0.914

InceptionV3 0 0.994 0.994 0.995 0.989 0.991 0.987 96.11
1 0.965 0.965 0.965 0.933 0.949 0.923
2 0.963 0.924 0.982 0.962 0.943 0.915

VGG19 0 0.968 0.955 0.974 0.948 0.952 0.927 93.23
1 0.948 0.946 0.949 0.903 0.924 0.885
2 0.949 0.896 0.975 0.947 0.921 0.884

InceptionResNetV2 0 0.991 0.983 0.996 0.991 0.987 0.981 95.68
1 0.961 0.959 0.962 0.927 0.943 0.913
2 0.961 0.929 0.977 0.953 0.941 0.912

ResNet50 0 0.993 0.989 0.995 0.989 0.989 0.984 95.17
1 0.955 0.957 0.955 0.913 0.934 0.901
2 0.955 0.909 0.978 0.955 0.931 0.899

ResNet101 0 0.994 0.989 0.996 0.991 0.990 0.985 95.03
1 0.954 0.942 0.960 0.922 0.931 0.897
2 0.953 0.920 0.970 0.938 0.929 0.894

MobileNetV2 0 0.991 0.983 0.995 0.989 0.986 0.979 94.81
1 0.955 0.935 0.964 0.929 0.932 0.898
2 0.951 0.927 0.963 0.927 0.927 0.890

MobileNetV3Small 0 0.993 0.985 0.997 0.993 0.989 0.984 95.89
1 0.963 0.972 0.959 0.922 0.946 0.919
2 0.962 0.920 0.983 0.964 0.941 0.914

MobileNetV3Large 0 0.994 0.987 0.997 0.993 0.990 0.985 96.25
1 0.967 0.974 0.963 0.930 0.951 0.927
2 0.965 0.927 0.984 0.966 0.946 0.920
Table 8
Evaluation performance of binary-class DL models used in the SEL-COVIDNET on X-ray dataset 3-Balanced (0: COVID-19, 1: No-finding). The
best overall accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 0.991 0.991 0.991 0.991 0.991 0.983 99.14
1 0.991 0.991 0.991 0.991 0.991 0.983

InceptionV3 0 0.982 0.985 0.978 0.979 0.982 0.963 98.16
1 0.982 0.978 0.985 0.985 0.982 0.963

VGG19 0 0.965 0.972 0.959 0.959 0.966 0.931 96.54
1 0.965 0.965 0.972 0.972 0.965 0.931

InceptionResNetV2 0 0.983 0.987 0.978 0.979 0.983 0.965 98.27
1 0.983 0.978 0.987 0.987 0.983 0.965

ResNet50 0 0.983 0.981 0.985 0.985 0.983 0.965 98.27
1 0.983 0.985 0.981 0.981 0.983 0.965

ResNet101 0 0.987 0.981 0.994 0.993 0.987 0.974 98.70
1 0.987 0.994 0.981 0.981 0.987 0.974

MobileNetV2 0 0.853 0.706 1.000 1.000 0.828 0.739 85.31
1 0.853 1.000 0.706 0.773 0.872 0.739

MobileNetV3Small 0 0.992 0.989 0.996 0.996 0.992 0.985 99.24
1 0.992 0.996 0.989 0.989 0.992 0.985

MobileNetV3Large 0 0.994 0.994 0.994 0.994 0.994 0.987 99.35
1 0.994 0.994 0.994 0.994 0.994 0.987
The output of the tuned pre-trained model is used without the top
utput layers; after that, it runs through the Global Average Pooling
GAP) layer. GAP has some advantages, like making sure that feature
aps and categories match up. Another benefit of global average
ooling is that there is no parameter to optimize, so over-fitting is
ot a problem at this layer, i.e., GAP sums up the spatial information,
o it is more resistant to changes in the input that move the data
round [68]. Then, the output layer is flattened in order to stack two
ully connected dense layers with nodes of 512 and 512, respectively.
he dense layer provides learned features derived from the preceding

ayer’s combinational features. These two fully connected dense layers
ontain ‘ReLU’ as an activation function. Hence, the number of classes
8

o be predicted is two for the binary classifier model and three for a
multi-class classifier. Therefore, we add a final output fully connected
layer having two/three nodes using ‘Sigmoid’ as an activation function
for the binary classifier and ‘Softmax’ as an activation function for the
multi-class classifier.

The SEL-COVIDNET model is based on DL, which uses different
hyperparameters for training. We used the categorical cross-entropy
loss function and Adam optimizer as an optimization algorithm for
controlling sparse gradients on noisy issues for a multi-class classifier.
While a binary cross-entropy for a binary-class classifier.

4. Experiments and analysis

The SEL-COVIDNET framework, including deep learning models,
has been implemented using Python in the Google Colab notebook
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Table 9
Evaluation performance of binary-class DL models used in the SEL-COVIDNET on CT dataset 4 (0: COVID-19, 1: No-finding). The best overall
accuracy is reported in bold red.

Model Class Acc Sen Spc Ppv F1-score MCC Overall Acc (%)

DensNet121 0 0.992 0.996 0.989 0.989 0.992 0.984 98.59
1 0.992 0.989 0.995 0.996 0.992 0.984

InceptionV3 0 0.986 0.992 0.980 0.980 0.986 0.972 98.59
1 0.986 0.980 0.992 0.992 0.986 0.972

InceptionResNetV2 0 0.978 0.980 0.976 0.976 0.978 0.956 97.79
1 0.978 0.976 0.980 0.980 0.978 0.956

ResNet50 0 0.946 0.924 0.967 0.967 0.945 0.892 94.57
1 0.946 0.967 0.924 0.926 0.946 0.892

ResNet101 0 0.950 0.932 0.967 0.967 0.949 0.900 94.97
1 0.950 0.967 0.932 0.933 0.950 0.900

MobileNetV2 0 0.988 0.984 0.992 0.992 0.988 0.976 98.79
1 0.988 0.992 0.984 0.984 0.988 0.976

MobileNetV3Small 0 0.980 0.988 0.972 0.973 0.980 0.960 97.99
1 0.980 0.972 0.988 0.988 0.980 0.960

MobileNetV3Large 0 0.988 0.992 0.984 0.984 0.988 0.976 98.79
1 0.988 0.984 0.992 0.992 0.988 0.976
Table 10
Comparison between the SEL-COVIDNET model and SOTA methods. CAP denotes community-acquired pneumonia.

Model Dataset Type Overall Acc (%) Ppv (%) Ses (%) F1-Score (%)

Wang et al. [11] X-ray (Normal vs. COVID-19
vs. Pneumonia)

93.3 90.9% 96.8% N/A

Wang et al. [7] CT Scans (COVID-19 vs.
Non-COVID-19)

89.5 N/A 0.87 N/A

Al-Falluji et al. [61] X-ray (Normal vs. COVID-19
vs. Pneumonia)

96.37 100% 94% N/A

Singh et al. [62] X-ray (Normal vs. COVID-19
vs. Pneumonia)

95.8 96.16 95.60 95.88

Abbas et al. [63] X-ray (Normal vs. COVID-19
vs. SARS)

95.12 N/A 97.91 N/A

Ozturk et al. [29] X-ray (Normal vs. COVID-19
vs. Pneumonia)

87.02 N/A N/A N/A

Luz et al. [34] X-ray (Normal vs. COVID-19
vs. Pneumonia)

93.51 100.0% 80.6% N/A

Montalbo [64] X-ray (Normal vs. COVID-19
vs. Pneumonia)

97.99 98.38 98.15 98.26

Abugabah et al. [39] X-ray (Normal vs. COVID-19
vs. Pneumonia)

96.70 N/A 96.62 N/A

Shi et al. [12] CT (COVID-19 vs. CAP) 87.9 N/A 90.70 N/A

Qjidaa et al. [65] X-ray (Normal vs. COVID-19
vs. Pneumonia)

98 98.66 98.33 98.30

Chhikara et al. [35] X-ray and CT scans (Normal vs.
COVID-19 vs. Pneumonia)

97.70 97.6 97.6 97.6

Montalbo [66] X-ray and CT scans (Normal vs.
COVID-19 vs. Pneumonia)

97.41 97.59 97.52 97.55

Saad et al. [67] X-ray and CT scans
(COVID-19 vs. Non-Covid)

99.3 99.79 98.8 99.3

Li et al. [13] CT Scans (COVID-19 vs.
CAP vs. Non-Pneumonia)

96.3 N/A 90 N/A

Xu et al. [14] CT Scans (COVID-19 vs.
Influenza-A vs. Healthy)

86.7 86.9 86.7 86.7

Proposed SEL-COVIDNET
(Tuned DenseNet121)

X-ray and CT scans (COVID-19 vs.
No-finding vs. Pneumonia)

98.52 98.7 98.5 98.6
using the graphical processing unit (GPU). It is worth mentioning that
all the models are trained for 50 epochs. As a result, this study used
a callback function called Reduce LR on Plateau (RLRoP) to improve
the models’ grasp and flexibility throughout training without putting
a significant demand on computer resources [69]. We employed the
early stopping that the model can stop training once the validation
error reaches the minimum. Table 2 shows the hyperparameters for
the proposed method.
9

We employed six different metrics to examine the accuracy of
COVID-19 categorization in the testing chest images to determine the
efficacy of each DL model in the SEL-COVIDNET. The accuracy (Acc),
sensitivity (Sen), specificity (Spc), positive predictive value-precision
(Ppv), F1-score, and Matthew’s correlation coefficient (MCC) quantify
the actual and predicted classes represented in Eq. (1)- 6, respectively.
Mathematically, each performance statistic is denoted as follows:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁 (1)

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
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Table 11
An overview comparison of related work methods for detection of COVID-19 using chest X-ray images.

Study Number of cases Methods Performance

Ozturk et al. [29] 125 with COVID-19
500 normal
500 pneumonia

DarkCovidNet Accuracy of 87.02 for 3-classes
Accuracy of 98.08 2-class

Khan et al. [30] 290 COVID-19
1203 Normal
931 Viral Pneumonia
660 Bacterial Pneumonia

CoroNet Accuracy of 95 for 3-classes
Accuracy of 89.6 for 4-classes

Apostolopoulos et al. [31] A large-scale dataset
of 3905 7-classes

MobileNet v2 Accuracy of 87.66 for 7-classes
Accuracy of 99.18 for 2-classes

Loey et al. [33] 69 COVID-19
79 Normal
79 Bacterial Pneumonia
79 Pneumonia

GAN transfer learning models
(Alexnet, Googlenet, Resnet18)

Accuracy of 80.56 for 4-classes
Accuracy of 85.19 for 3-classes
Accuracy of 100 for 2-classes

Luz et al. [34] 152 COVID-19
7966 Normal
5421 Pneumonia

EfficientNe Accuracy of 93.9 for 3-classes

Chhikara et al. [35] 2313 COVID-19
2313 Normal,
2313 Viral Pneumonia

Inception-V3 Accuracy of 84.95 for 3-classes

Apostolopoulos et al. [36] 224 COVID-19
700 Bacterial Pneumonia
504 Normal

VGG19 Accuracy of 98.75 for 2-classes
Accuracy of 93.48 for 3-classes

Hemdan et al. [37] 25 COVID-19
25 Non-covid

COVIDX-Net Accuracy of 90 for 2-classes

Maia et al. [40] 217 COVID-19
108 Other Diseases
112 Healthy

Convolutional SVM Accuracy of 98.14 for 3-classes

Ibrahim et al. [41] 371 COVID-19
4237 Non-COVID-19
4078 Bacterial Pneumonia
2882 Healthy

AlexNet Accuracy of 99.62 for 2-classes
Accuracy of 94.00 for 3-classes
Accuracy of 93.42 for 4-classes

Sethy et al. [42] 25 COVID-19
25 Non-Covid

ResNet50+SVM Accuracy of 95.38 for 2-classes

Suat et al. [43] 331 COVID-19
1050 Pneumonia
1050 Non-Covid

CapsNet Accuracy of 97.24 for 2-classes
Accuracy of 84.22 for 3-classes

Zhang et al. [44] 70 COVID-19
1008 Pneumonia

CNN+Backbone network Accuracy of 95.2 for 2-classes

Ghoshal et al. [45] 68 COVID-19
2786 Bacterial Pneumonia
1583 Normal
1504 Viral Pneumonia

Bayesian CNN+Dropweights Accuracy of 92.90 for 4-classes

Panwar et al. [46] 142 COVID-19
142 Normal

nCOVnet Accuracy of 88 for 2-classes

Rahman et al. [47] 3616 COVID-19
8851 Normal
6012 Non-COVID

DenseNet201 Accuracy of 95.11 for 3-classes

Mehmood et al. [38] 1290 COVID-19
1946 Normal

CNN-based technique using batch
normalization

Accuracy of 96.6 for 2-classes

Montalbo [64] 1281 COVID-19
3270 Normal
4657 Pneumonia

Truncated DenseNet Accuracy of 97.8 for 3-classes

Abugabah et al. [39] 575 COVID-19
1200 Non-COVID
1400 Pneumonia

COVID-3D-SCNN Accuracy of 96.7 for 3-classes

Saad et al. [67] 2628 COVID-19
1620 Non-COVID

Deep feature concatenation
technique (DFC)

Accuracy of 99.3 for 2-classes
M

𝑆𝑒𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

𝑆𝑝𝑐 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

𝑃𝑝𝑣 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑝𝑣 × 𝑆𝑒𝑛 (5)
10

𝑃𝑝𝑣 + 𝑆𝑒𝑛 f
CC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(6)

Where ‘‘TP’’, ‘‘TN’’, ‘‘FP’’, ‘‘FN’’ stand for true positive, true negative,
alse positive, and false negative, respectively.
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Fig. 10. Receiver operating characteristic of DL models used in the SEL-COVIDNET on X-ray dataset 1. The top side illustrates the 3-class classification, and the bottom side shows
the 2-class classification.
4.1. Performance evaluation on X-ray-Dataset 1

Among all 3-class DL models used in the SEL-COVIDNET, the VGG19
model had the lowest accuracy of 88.55%, while the InceptionRes-
NetV2 and MobileNetV3Large models had the highest accuracy scores,
96.43% and 96.31%, respectively. Regarding individual class accuracy,
the InceptionResNetV2 had an accuracy of 99.6% for the COVID-
19 class, followed by MobileNetV3Small. Both MobileNetV3Small and
MobileNetV3Large had nearly identical accuracy for the other two
11
classes. Table 3 depicts a detailed comparison of multi-class DL models
using X-ray-Dataset 1. Moreover, for the binary-class DL models used in
the SEL-COVIDNET, the MobileNetV2 model had the lowest accuracy
of 87.5%. In contrast, the InceptionResNetV2 model had the highest
accuracy scores, 99.32%, followed by the ResNet101 model. Similarly,
the same model had the best accuracy of 99.3% for the COVID-19 class
for individual class accuracy. Table 4 depicts a detailed comparison
of binary-class DL models using X-ray-Dataset 1. The confusion matrix
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Fig. 11. Receiver operating characteristic of DL models used in the SEL-COVIDNET on X-ray dataset 2. The top side illustrates the 3-class classification, and the bottom side shows
the 2-class classification.
of the DL models used in the SEL-COVIDNET on the test X-ray-Dataset
1 is shown in Figs. 3 and 4.

4.2. Performance evaluation on X-ray-Dataset 2

Here, all models showed an overall accuracy of above 94%. And
out of these models, both DensNet121 and MobileNetV3Large outper-
formed the rest of the models with an overall accuracy of 98.52%. Re-
garding COVID-19 class accuracy, the DenseNet121 and
12
MobileNetV3Small models performed well. All models showed an
overall accuracy of above 98% for the binary class. And out of these
models, both DensNet121 and InceptionV3 outperformed the rest of
the models with an overall accuracy of 99.77%. Tables 5–6 depict
a detailed comparison of multi-class and binary-class DL models using
X-ray-Dataset 2. The confusion matrix of the DL models used in the
SEL-COVIDNET on the test X-ray-Dataset 2 is shown in Figs. 5 and 6
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Fig. 12. Receiver operating characteristic of DL models used in the SEL-COVIDNET on X-ray dataset 3. The top side illustrates the 3-class classification, and the bottom side shows
the 2-class classification.
4.3. Performance evaluation on X-ray-Dataset 3

On the balanced X-ray-Dataset 3, all models showed an overall ac-
curacy of above 93%. And out of these models, the MobileNetV3Large
outperformed the rest of the models with an overall accuracy of
96.25%. For the individual class accuracy, the same model performed
well. Concerning binary-class classification on the same dataset, all
models showed an overall accuracy of above 96%, except the Mo-
bileNetV2 model attained an accuracy of 85.31%. Tables 7–8 compare
13
multi-class and binary-class DL models using X-ray-Dataset 3. The
confusion matrix of the DL models used in the SEL-COVIDNET on the
test X-ray-Dataset 3 is shown in Figs. 7 and 8

4.4. Performance evaluation on CT-Dataset 4

Out of the DL models used in the SEL-COVIDNET on the test
CT-Dataset, both MobileNetV3Large and MobileNetV2 models outper-
formed the rest with an overall accuracy of 98.79%, followed by
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Fig. 13. Receiver operating characteristic of DL models used in the SEL-COVIDNET on CT dataset 4.
DensNet121 with an overall accuracy of 98.55%. It is worth mentioning
that the VGGNET has been omitted for this experiment due to its bad
performance. Table 9 depicts a detailed comparison of DL models
using CT-Dataset. The confusion matrix of the DL models used in the
SEL-COVIDNET on the test CT-Dataset is shown in Fig. 9.

4.4.1. Analysis of the DL models’ receiver operating characteristic (ROC)
curves on the used datasets:

ROC is a critical assessment statistic for determining the success of
any classification model. Besides, the area under the curve (AUC) rep-
resents the degree or measure of separability. It indicates the capability
of the model for discriminating between classes. The larger the AUC,
the more accurately the model predicts. This subsection analyzes the
AUC-ROC for used DL models in the SEL-COVIDNET for the conducted
dataset.

Fig. 10 (see in Appendix). shows the AUC-ROC for used DL models
in the SEL-COVIDNET on X-ray dataset 1. It can be observed from
the left side of this figure that all of the models achieved amaz-
ing performances across all of their respective classes. Despite this,
the VGG19 model had attained the lowest macro average of 0.97
and had noisy oscillations on its graph. Similarly, for binary class
classification on the right side of the exact figure, the MobileNetV2
and MobileNetV3Large models had noisy oscillations on their graphs.
In particular, DenseNet121, InceptionV3, InceptionResNetV2, RenNet,
and MobileNetV3Small models achieved AUROCs of 1.00 across all
regions, indicating that they outperformed the other DL models.

The AUC-ROC for X-ray dataset 2 is shown in Fig. 11 (see in
Appendix). We can observe that all of the models attained remarkable

results across their respective classes. In 2-class classification (COVID-
19 vs. No-finding), all models except the VGG19 model had AUROCs
of 1.00 in all regions except for the VGG19 model.

Regarding X-ray dataset 3, Its AUC-ROC figure is shown in Fig. 12
(see in Appendix). The lowest macro-average of 0.98 was attained by
the VGG19 model for 3-class classification (COVID-19 vs. No-finding
vs. pneumonia) and the MobileNetV2 model for 2-class classification
(COVID-19 vs. No-finding). As noted, the model derives its lowest
AUROC of 0.97 from X-ray images of patients infected with pneumonia
14
at lower thresholds. The truncation’s unfavorable impacts were also
seen in most graphs of the DL models concerning pneumonia class.

The AUC-ROC graph on CT scan dataset 4 is depicted in Fig. 13
(see in Appendix). It can be observed that DenseNet121, InceptionV3,
InceptionResNetV2, MobileNetV2, and MobileNetV3 all had AUROCs
of 1.00 across all regions, which means they did better than the other
DL models.

5. Discussion

COVID-19 has resulted in significant public health and safety con-
cerns and has therefore become a worldwide issue [70]. Despite the
paucity of PCR tests and their high cost [6], it was beneficial to make
access to healthcare staff an artificial intelligence-based approach for
rapidly and correctly predicting COVID-19. In this paper, we proposed
an automated health monitoring system for the early diagnosis of
COVID-19 using chest images that is less expensive, more accessible
to rural populations, and has an easily disinfected, cleaned, and main-
tained acquisition apparatus. The SEL-COVIDNET model employs deep
learning through nine pre-trained CNNs derived from the ImageNet
database. Each network will predict a class based on the input image’s
classification. Our approach has the benefit of assigning a score to each
class prediction.

Furthermore, it was conducted on balanced and balanced datasets.
Through a thorough examination, the tuned InceptionResNetV2, Mo-
bileNetV3Large, and DenseNet121 models preserved the highest overall
accuracy among other DL models. In that, the tuned InceptionResNetV2
achieved better performance for 3-class classification (COVID-19 vs.
No-finding vs. Pneumonia) on dataset 1 with an overall test accuracy
of 96.4%, an F1-score of 96.8%, a Sen of 96.6%, a Spc of 97.8%, a
Ppv of 97%, and an MCC of 94.6%. Moreover, for the binary-class
classification (COVID-19 vs. No-finding) on the same dataset, they had
an accuracy score of 99.3%, an F1-score of 98.7%, a Sen of 97.4%, a
Ppv of 99%.

The SEL-COVIDNET model with tuned DenseNet121 outperformed
for 3-class classification on dataset 2 with an overall test accuracy of
98.52%, an F1-score of 98.6%, a Sen of 98.5%, a Spc of 98.9%, a Ppv
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of 98.7%, and an MCC of 97.6%. And for the 2-class classification, we
achieved an accuracy score of 99.8%, an F1-score of 99.7%, a Sen of
99.9%, and a Ppv of 99.6%.

Further, the tuned MobileNetV3Large model outperformed other
DL models for 3-class classification on dataset 3 (balanced data) with
an overall test accuracy of 96.25%, an F1-score of 96.2%, a Sen of
96.3%, a Spc of 98.1%, a Ppv of 96.3%, and an MCC of 94.4%. And for
the 2-class classification, they attained an accuracy score of 99.35%,
an F1-score of 99.4%, a Sen of 99.4%, and a Ppv of 99.4%. Prateek
et al. [35] attained an overall test accuracy of 97.70%. In [30], the
authors introduced the CNN approach, in which they implemented the
experiment on binary-class and multi-class classifications and attained
98.08% and 87.02% accuracy for binary and multiclassification, re-
spectively. Montalbo et al. [64] proposed a model based on truncated
DenseNet and achieved an accuracy of 97.7% for 3-class classification.
In [66], the researcher proposed a truncation method based on deep
CNNs and achieved promising results, with 97.4% accuracy in 3-class
classification.

For dataset 4 (CT-scan), the tuned MobileNetV3Large and Mo-
bileNetV2 models outperformed other DL models in the binary-class
classification (COVID-19 vs. No-finding) with an overall test accuracy
of 98.79%, an F1-score of 98.8%, a Sen of 98.8%, a Spc of 98.8%, a
Ppv of 98.8%, and an MCC of 97.6%. Wang et al. [7] proposed a DL
model for screening COVID-19 based on CT-Scan images and achieved
an accuracy of 89.5%. In [67], researchers described a technique for
classifying 2-class CT-Scan images based on deep feature concatenation.
Their model attained an accuracy of 99.3%. However, Table 10 com-
pares the proposed SEL-COVIDNET model to state-of-the-art (SOTA)
methods from a broader perspective. The suggested SEL-COVIDNET
model achieved a remarkable 98.52% accuracy. However, there is no
direct comparison since each model has been trained on various classes
and different datasets of examples of either X-ray or CT scan diagnosis.
Thus, despite having a more challenging task, the SEL-COVIDNET
architecture with the tuned model approach may be more effective and
valuable in most cases than the previous research provided.

6. Conclusions

This study aimed to develop an intelligent method for early COVID-
19 identification utilizing chest imaging. Due to the limited avail-
ability of PCR and CT testing in some developing nations, we have
proposed a DL-based technique for early detection of COVID-19 us-
ing chest X-ray/CT images in this work. To do this, we employed
transfer learning models for two-class classification (COVID-19 vs. No-
finding) and three-class classification (COVID-19 vs. No-finding vs.
Pneumonia), utilizing the transfer learning idea. We have fine-tuned
nine pre-trained architectures, including DenseNet121, VGG19, and
InceptionV3, InceptionResNetV2, ResNet50, ResNet101, MobileNetV2,
MobileNetV3Small, and MobileNetV3Large. We use the tweaked nine
models to create a stacking model that outperforms all other models. On
the basis of the findings and analyses from the performed research, this
study concludes that the suggested SEL-COVIDNET model can achieve
superior results in diagnosing COVID-19 from chest image modalities.
The presented model outperformed all other SOTA approaches.

In future works, we intend to test our approach in more medical
areas, such as dementia and Alzheimer’s disease, and breast cancer.
Additionally, we plan to utilize this model to identify COVID-19 in-
fections produced by genetically mutated viruses. We are also going
to incorporate salience maps in order to increase the interpretability
of the model, which is vital not only for clinical treatment but also
for research. We intend to train the model on an intensified dataset
comprised of different X-ray images. As a result, the model’s accuracy
15

and generalizability could be improved.
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