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Abstract 

Lipids surrounding membrane proteins interact with different sites on the protein at varying 
specificities, ranging from highly specific to weak interactions. These interactions can 
modulate the structure, function, and stability of membrane proteins. Thus, to better 
understand membrane protein structure and function, it is important to identify the 
locations of lipid binding and the relative specificities of lipid binding at these sites. In our 
previous native mass spectrometry (MS) study, we developed a single and double mutant 
analysis approach to profile the contribution of specific residues toward lipid binding. Here, 
we extend this method by screening a broad range of mutants of AqpZ to identify specific 
lipid binding sites and by measuring binding of different lipid types to measure the selectivity 
of different lipids at selected binding sites. We complemented these native MS studies with 
molecular dynamics (MD) simulations to visualize lipid interactions at selected sites. We 
discovered that AqpZ is selective towards cardiolipins (CL) but only at specific sites. 
Specifically, CL orients with its headgroup facing the cytoplasmic side, and its acyl chains 
interact with a hydrophobic pocket located at the monomeric interface within the lipid 
bilayer. Overall, this integrative approach provides unique insights into lipid binding sites and 
the selectivity of various lipids towards AqpZ, enabling us to map the AqpZ protein structure 
based on the lipid affinity.  

Introduction 

Membrane proteins are important drug targets and play major physiological roles, such as 
signaling, transport, and catalysis.1–3 Lipids in the surrounding bilayer can modulate the 
structure, function, and stability of membrane proteins.4 These membrane protein-lipid 
interactions range from highly specific interactions at particular binding sites to nonspecific, 
transient interactions.5–7 However, it is challenging to map the specificity of different lipids 
to different potential binding sites on membrane proteins. 

Aquaporin Z (AqpZ, UniProt: P60844) is a water channel in E. coli.8 Previous studies have 
shown that AqpZ interacts with phosphatidylglycerol (PG) and cardiolipin (CL) lipids,9–11 and 
a study indicates that CL facilitates water transport activity.12 Molecular dynamic (MD) 
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simulations have localized PG and CL interactions towards exposed cationic residues, 
primarily on the cytoplasmic surface.11,13,14 Specifically, Schmidt et al. observed PG is more 
uniformly distributed around the protein, but CL tends to associate more closely with 
interfaces between monomers.11 Corey et al. found that CL headgroups interacted more with 
Arg than Lys residues.13 In contrast, a recent cryo-EM study modeled CL to lipid-like density 
on the periplasmic side of the membrane.15 Thus, additional experimental evidence is 
needed to determine the specific binding sites and the site selectivity towards different 
lipids.    

Native mass spectrometry (MS) has emerged as a valuable tool in studying membrane 
protein-lipid interactions. Native MS uses nondenaturing ionization conditions to preserve 
native protein conformations and noncovalent interactions for mass analysis.16–18 Previously, 
we developed a native MS approach to measure the thermodynamic contributions of 
specific amino acid residues on AqpZ toward CL binding by simultaneously analyzing a 
mutant protein and the wild type.6 We discovered that W14 residue contributes to the highest 
affinity binding site, and the R224 residue contributes to the second highest affinity binding 
site.6  

Here, we extended these studies by measuring thermodynamic contributions of an 
expanded set of amino acid mutations (Figure 1A–B) to map CL binding hotspots. We then 
evaluated the selectivity of these CL binding sites for other lipids by comparing binding of 
four different lipid types (Figure 1C–F) with the mutants. To complement the native MS 
studies, we conducted a series of coarse-grain MD simulations of wild-type AqpZ in a model 
bacterial membrane.19,20 The occupancy and residence time analyses of different lipids at 
each residue were compared to characterize the selectivity of different potential lipid 
binding sites observed using native MS. Combining the native MS and MD results, we 
construct a map of lipid binding and selectivity to AqpZ.  

Experimental Section 

AqpZ Mutagenesis, Expression, and Purification 

We selected residues to mutate based on three criteria that included: 1) mutants from prior 
studies6,11 that are known to affect lipid binding (W14), 2) hydrophobic residues that likely 
interact with the lipid tails (F10, F13, F196, W206, W209, and Y100), and 3) cationic residues 
at the lipid interface that could interact with anionic CL or PG headgroups (R3, R75, R224, 
K4, K79, and K155), as shown in Figure 1A, 1B. After selecting these 13 residues, we 
designed primers for the alanine mutants and performed site-directed mutagenesis, as 
previously described.6  
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The mutant plasmids were sequenced before transformation into E. coli OverExpress C43 
(DE3) competent cells (Sigma Aldrich). We followed the previously described protocol for 
expressing and purifying AqpZ proteins.6,12,21,22 Following purification, all the proteins were 
exchanged into buffer containing 0.2 M ammonium acetate with 0.5% tetramethylene glycol 
monooctyl ether (C8E4).6,11 

 

 

 

Figure 1. (A) Side-view and (B) top-view of AqpZ with mutant sites W14, W206, and W209 
(in blue); F10, F13, and F196 (in magenta); Y100 (green); R3, R75, and R224 (in yellow); 
and K4, K79, and K155 (in cyan) labeled, indicated with an arrow, and colored based on 
residue name. Four chains of the protein are shown in grey. PDB code: 1RC2. Structures 
of four lipid types: (C) POCL, (D) TOCL, (E) POPG, and (F) POPE. 
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Native MS Sample Preparation and Analysis 

We tested binding of four lipids: 1′,3′-bis[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho]-
glycerol (POCL), 1',3'-bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol (TOCL), 1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine (POPE). Their structures are shown in Figure 1C–F. Lipids 
were purchased from Avanti Polar Lipids, and lipid concentrations in chloroform were 
quantified using phosphate analysis.6,11,12 After drying off the chloroform, we prepared stock 
lipid solutions in 0.2 M ammonium acetate with 0.5% C8E4, and we performed another 
phosphate analysis for the accurate quantitation of the lipids in the detergent solutions.6 The 
stock concentrations were around 1–1.5 mM. 

Single mutant analysis was performed as previously described.6 Briefly, we mixed pairwise 
combinations of wild-type protein with each mutant approximately at a 1:1 molar ratio. We 
slightly adjusted the protein ratio to achieve roughly equal intensities on the mass spectrum 
for both proteins without lipids. Next, we added lipids from the detergent-solubilized stocks 
(Figure 2A). For POCL and TOCL, we used a 1:1:50 molar ratio to achieve up to 6–7 bound 
lipids in the native mass spectrum and avoid overlapping of charge states observed at higher 
amounts of lipids. For POPG and POPE, a molar ratio of 1:1:100 was necessary to observe 
enough lipids bound, indicating their weaker overall binding affinity.  

Native MS of the samples was performed using a Q-Exactive HF UHMR Orbitrap mass 
spectrometer (Thermo Fisher Scientific, Bremen) with a variable temperature source23 in 
positive ion mode. Key settings included a mass range of 4,000−15,000 m/z, spray voltage of 
1.2 kV, source fragmentation of 0–50 V, 75–85 V collision voltage, and a 15,000 resolution 
setting. Using a temperature ramp program, samples were equilibrated for 2 minutes before 
the acquisition of mass spectra for 1 minute from 15 to 35 °C at 5 °C intervals. We collected 
native MS data as single measurements from three replicate samples that were prepared 
separately for each mutant with each lipid. 

MS data analysis was carried out using UniDec24 and custom Python scripts, as previously 
described.6 The deconvolution of raw mass spectra was performed using UniDec followed 
by 2D Grid Extraction to extract all the peak areas using the parameters described in Table 
S1. From the extracted peak areas for WT and mutant proteins with or without the lipids 
bound, we calculated the ratio of dissociation constant (K):  

𝐾 =  
𝐾𝐷,𝑊

𝐾𝐷,𝑀
=

[𝑊]×[𝐿]

[𝑊𝐿]
×

[𝑀𝐿]

[𝑀]×[𝐿]
=  

[𝑊]×[𝑀𝐿]

[𝑊𝐿]×[𝑀]
                                                                                                        (1) 
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where, W, M, and L are referring to the concentration of WT protein, mutant protein, and lipid, 
respectively. WL and ML refer to lipid bound states of the WT and mutant protein. The 
equations are written as concentration for simpliciy, but native MS signal intensity is used as 
a proxy for concentration when calculations are made. Then, difference in free energy (𝛥𝛥𝐺) 
is calculated: 

∆∆𝐺 =  −𝑅𝑇 ln 𝐾 =  −𝑅𝑇 ln
[𝑊]×[𝑀𝐿]

[𝑊𝐿]×[𝑀]
                                                                                                               (2) 

 

Figure 2. Schematic of the single mutant analysis using native MS for protein structure 
affinity mapping. (A) Wild-type (WT) and mutant proteins are mixed with lipids. Wild type 
and mutant are depicted as tetrameric squares colored green and blue, respectively, with 
lipids with two or four acyl chains represented in a gray graphic. Single mutant analysis 
calculates differences in relative binding affinity of the lipid for the wild-type and mutant 
proteins and illustrates (C) the differences in the Gibbs free energy change (ΔΔG) for 
binding of up to four lipids. Next, (D) the ΔΔG for the first lipid is extracted and compared 
across 13 different mutants, and the (B) the data are mapped on to the AqpZ structure to 
visualize the binding hotspots. 
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where, 𝑅 is the ideal gas constant, 𝑇 is the temperature in Kelvin, and 𝐾 is the equilibrium 
constant from Eq. 1 (Figure 2C). 

After calculating the 𝛥𝛥𝐺 values, we used a Python script to map the values into the Beta 
factor column of a PDB file of AqpZ protein. Using visual molecular dynamics (VMD)25 to 
visualize the data, we changed the graphics coloring style in the blue/white/red (BWR) 
method setting the midpoint at 0.5 and offset at 0. Blue indicates a favorable mutation, and 
red indicates an unfavorable mutation. White indicates no statistically significant effect of 
mutation on free energy differences. We used the values of 𝛥𝛥𝐺 and 95% confidence interval 
to calculate statistical significance. If the confidence interval crosses value 0, we consider 
the 𝛥𝛥𝐺 values to be 0 to map the residues based on free energy difference.  

Coarse-grain MD Simulations 

Using the crystal structure of the wild-type AqpZ protein (PDB ID: 1RC2),8 we embedded the 
protein in a 100 by 100 Å bilayer using the CHARMM-GUI membrane builder with the Martini 
22p force field.26,27 The membrane composition was defined to roughly model the E. coli lipid 
environment with 75% POPE, 20% POPG, and 5% CDL2 (CL) lipids in both the outer and inner 
leaflets.11,28  We added 0.15 M sodium chloride ions and set the pH to 7.0.26 Four separate 
replicates of the AqpZ membrane bilayer were prepared.  

We performed 30 µs of coarse-grain MD simulations on these membrane systems using 
GROMACS (version 2022.5).29,30 First, the system underwent an initial short energy 
minimization step with steepest descent algorithm, followed by a series of equilibration 
steps. During equilibration, various restraints on water, ions, and lipid molecules were  
gradually released to relax the uncorrelated initial system.20 An initial equilibration 
simulation was performed for each at 303.15 K and 1 bar with a 20 fs timestep for 3 µs. Final 
production simulations were run using same parameters for 30 µs. A similar procedure was 
followed to generate 4 replicate runs. 

We calculated the occupancy and residence time of all three lipids—CL, POPE, and POPG—
at each amino acid residue in the production simulations using the PyLipID package.31 
Because AqpZ is a homo-tetramer, the occupancy and residence time values at each 
residue were averaged across all 4 chains and across the four replicate measurements, and 
the standard deviations were calculated and propagated (see SI Tables S3 and S4 for 
selected residues and Supporting Data for all residues). Based on these standard deviations, 
we calculated the confidence intervals at the 95% level and zeroed the values which are 
statistically insignificant. Using a Python script, we set the average occupancy or average 
residence time values as the Beta value in the AqpZ PBD file and visualized the simulations 
with VMD.25 In VMD, we changed the graphics coloring style in the blue/white/red (BWR) 
method setting the midpoint at 0 and offset at 0. 
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All-atom MD Simulations 

To investigate the bound poses of CL on AqpZ, atomistic bilayers were prepared using the 
CHARMM-GUI membrane builder with the CHARMM36 force field. As with the coarse-grain 
simulations, we inserted AqpZ into a 100 by 100 Å E. coli model bilayer consisting of 75% 
POPE, 20% POPG, and 5% POCL. All-atom MD simulations were carried out on NAMD     
3.0alpha software.32,33 Following a series of equilibration steps, final productions were run 
for 100 ns for each membrane bilayer system across three replicate runs. PyLipID analysis 
was performed on simulations to determine bound poses to observe CL binding sites. We 
picked an example bound pose that represents the site with the highest residence time, 
highest surface area, and lowest root mean square deviation (RMSD) between the four 
replicate simulations.  

Results and Discussion 

Previously, we developed a single and double mutant analysis approach with native MS to 
assess the thermodynamic effects of perturbing specific amino acids on CL binding to 
AqpZ.6 Here, our goal was to extend this method to screen a variety of different residues 
around the protein-lipid interface of AqpZ to test how these mutations affected binding of   
different lipids. We mutated, expressed, and purified a broad range of AqpZ mutants, each 
containing an alanine substitution at a selected amino acid residue on the AqpZ surface 
(Figure 1A–B). These mutants included bulky hydrophobic residues that could interact with 
lipid tails, such as tryptophan, tyrosine, and phenylalanine. We also mutated cationic 
residues that could interact with lipid headgroups, such as lysine and arginine. Finally, we 
conducted single mutant native MS analysis6 on the thirteen different mutants (Figure 1A-B) 
with four different lipid types (POCL, TOCL, POPG, and POPE) (Figure 1C–F) to explore the 
site selectivity and lipid specificity of AqpZ.  

Mutant Scanning Native MS with POCL 

First, we conducted single mutant experiments with POCL (Figure 1C) to measure the ΔΔG 
values for lipid binding to the mutant relative to the wild type (Figure 3A). A positive ΔΔG 
indicates decreased lipid binding to the mutant protein (unfavorable mutation). A negative 
value indicates enhanced lipid binding to the mutant (favorable mutation). Statistically 
insignificant values considering the 95% confidence interval crossing zero, indicate that the 
mutation had no impact on lipid binding, which could mean that either the mutated residue 
does not contribute to lipid binding or that the alanine substitution is not substantial enough 
to alter lipid binding.  

To highlight the hotspots of lipid binding, we mapped these ΔΔG values onto the protein 
structure and colored residues from red (positive ΔΔG) to blue (negative ΔΔG), with white 
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representing no significant change (Figure 3B). Note, our data generated ΔΔG values for 
multiple steps of lipid binding, but we focused on the first lipid bound because it had the 
greatest magnitude of effects. The second and third bound lipid gave similar profiles but with 
lower magnitudes (Figure S2). We then grouped these residues into four potential binding 
sites based on their location, type of interaction, and ΔΔG values (i–iv).  

We will first consider region i, comprised of three hydrophobic residues (W14A, F10A, and 
F13A) forming a binding pocket at the monomeric interface. Embedded inside the pocket 
(Figure 1A-B), W14A had the most substantial positive energy change at 0.69±0.03 kJ/mol 
(Figure 3A–B and Table S2), as previously observed.6 The adjacent F13A mutation was less 
pronounced but still had a statistically significant ΔΔG value of 0.35±0.04 kJ/mol. F10A had 
little impact on lipid binding. Given the hydrophobic nature of these residues and the 
significant effects of the W14A and F13A mutations, it is likely that the acyl chains of the 
POCL molecule insert into the pocket and interact with this region. A previous cryo-EM 
study15 also indicates that this hydrophobic pocket is a potential binding site where parts of 
the acyl chains of CL nestle, albeit in a different orientation than we propose below.  

Region ii consists of more exposed hydrophobic residues, W206 and W209, which may form 
hydrophobic interactions with lipids. Notably, both W206A and W209A mutations resulted 
in positive ΔΔG values of 0.43±0.04 kJ/mol and 0.30±0.01 kJ/mol, respectively (Figure 3A–B 
and Table S2). Thus, POCL tails may interact with these exposed and bulky hydrophobic 
residues. 

Region iii consists of a cluster of cationic residues—K4, K79, K155, R3, R75, and R224—that 
could interact with the anionic CL headgroup (Figure 1A and S1). Here, we observed that 
three arginine mutants at the monomer-monomer interface, R224A, R3A, and R75A, had 
significant positive ΔΔG values, losing 0.23–0.36 kJ/mol of POCL binding energy when 
mutated to alanine (Figure 3A–B and Table S2). Two lysine mutants, K79A and K4A, had 
slightly less positive ΔΔG values (0.14–0.20 kJ/mol), and K155 was insignificant, which is 
consistent with its location toward the center of the protein and away from the protein-lipid 
interface. Thus, a subset of these residues likely interacts with the CL headgroup. 

Finally, we examined F196 and Y100 in region iv, located on the periplasmic side of AqpZ.  
The same cryo-EM study suggested that the headgroup of CL is located at the 
hydrophilic/hydrophobic interface of the periplasmic-facing leaflet, potentially interacting 
with the F196 and F100 residues. However, unlike the other ΔΔG values, the F196A mutant 
showed a significant negative ΔΔG value of -0.35±0.02 kJ/mol (Figure 3A–B, and Table S2). 
Thus, mutation of the phenylalanine to an alanine enhanced binding of POCL. In contrast, 
Y100A had an insignificant ΔΔG value, indicating that the substitution of tyrosine with 
alanine at this position had no measurable effect on POCL binding. These observations 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.24.620105doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620105
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggest changes to region iv do not significantly disrupt POCL binding and can enhance it. 
Overall, these native MS data reveal how mutations to different types of residues in different 
regions affect POCL binding to AqpZ.  

Insights on AqpZ-CL Interactions Using MD Simulations 

To gain insights into these native MS data, we performed a series of coarse-grain MD 
simulations of the wild-type protein placed in a membrane bilayer with 75% POPE, 20% 

 
Figure 3. Illustrations of AqpZ-POCL interactions. (A) Difference in Gibbs free energy 
change (ΔΔG) for the first bound POCL at 25 °C for each mutant studied, clustered 
according to the identified regions. Red bars represent positive ΔΔG values, with the 
shade indicating its magnitude. Blue bars represent negative ΔΔG values, whereas white 
bars indicate statistically insignificant interactions. (B) AqpZ-lipid affinity maps 
developed based on single mutant analysis data using native MS, colored from red 
(positive ΔΔG) to blue (negative ΔΔG), with white representing no change. AqpZ-lipid 
affinity maps developed using MD data from (C) CL occupancy, colored from white 
(indicating no interactions) to red (indicating strong interactions), and (D) CL residence 
time, colored from white (indicating no interactions) to red (indicating stable 
interactions). 
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POPG, and 5% CL. Analyzing the simulations with PyLipID,31 we evaluated the occupancy 
(Figure 3C) and residence time (Figure 3D) of CL and other lipids (Figure 6). Occupancy 
calculates the percentage of frames in which each residue contacts a target lipid.31,34 
Residence time calculates the average length of time each residue contacts a target lipid, 
indicating stable interactions as bound lipids experience restricted diffusion.31  

The occupancy data (Figure 3C and Table S3) of AqpZ-CL interactions revealed that the 
residues from three key regions, i–iii, demonstrate significant contacts with CL, with region 
iii showing the highest occupancy. Compared to other regions, region iv (Figure 3C and 
Table S3) showed a low percentage of frames that had contacts with CL.  

Visualization of CL residence time on AqpZ (Figure 3D and Table S4) highlights the binding 
pockets of CL on AqpZ. Here, regions i and iii have stable interactions with CL, suggesting 
these regions could be potential CL binding sites. Although the occupancy results are 
comparatively higher in region ii, the residence time visualizations suggest that they do not 
stably bind with CL in this region.  

Looking closely at region i, the F10 and F13 residues have significant occupancy (15–20%, 
Table S3), but W14 has low occupancy (1.37±1.04%, Table S3), despite presenting the most 
significant contribution in the native MS data (Figure 3A). Similarly, the residence time for 
F10 and F13 were higher (0.8–1.3 µs), but W14 had a lower residence time of 0.13±0.16 µs 
(Table S4). Our interpretation is that F10 and F13 directly interact with CL. In contrast, W14 
does not directly interact with CL but instead may play an important role in maintaining the 
binding pocket, providing a wedge to hold open the site for F10 and F13 to interact. 

To gain molecular insights into our proposed CL binding orientation of AqpZ based on native 
MS data, we constructed an all-atom model of the wild-type protein placed in a similar 
membrane bilayer and simulated for 100 ns using NAMD. Next, we analyzed the simulations 
using the PyLipID python package to extract bound poses of POCL.31 In line with the native 
MS data, we observed a binding conformation where the lipid tails interact predominantly 
with the hydrophobic pocket in region i at the monomeric interface and the headgroup 
interacts with positively charged residues on the cytoplasmic interface in region iii (Figure 
4). This binding pose had the highest residence times, highest surface area of contacts, and 
lowest RMSD, indicating it is likely the preferred orientation. It also agrees with prior 
molecular dynamics simulations on this system.11,13 

Additionally, another binding pose was found where the POCL tail interacts with the 
hydrophobic region ii and faces the periplasmic surface (Figure S3). However, this 
orientation was not consistently observed across replicates and generally had lower 
residence times, lower surface areas, and higher RMSD values than the top binding pose. 
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Thus, this pose suggests that region ii is not the highest affinity POCL binding site but may 
be a secondary lipid binding site. A previous cryo-EM structure15 also proposed a 
periplasmic orientation but had a different lipid position than seen here. Together, these data 
suggest that a lower affinity site could be present on the periplasmic side. 

Selectivity of Different Lipids for AqpZ Binding Sites 

After studying AqpZ interactions with POCL at different binding sites, we next explored the 
selectivity of these mutations towards different lipids using native MS. First, we investigated 
TOCL (Figure 1D), which has the same headgroup but different acyl chains. Then, we tested 
POPG (Figure 1E) and POPE (Figure 1F), which have the same tails but different headgroups.  

Effect of Lipid Tails 

TOCL is similar to POCL but with all four acyl chains unsaturated (18:1) (Figure 1D), which 
makes TOCL likely more fluid in bilayer environments and less tight when packing.35 We 

 

Figure 4. A representative POCL bound pose determined using PyLipID for the binding 
site 1 from an all-atom MD simulation of AqpZ wild-type protein in a bilayer mimicking E. 
coli lipids. The protein is colored in gray, and the selected residues are colored in their 
respective color as described in Figure 1. The CL lipid is shown in a ball-and-stick 
representation colored by atom name. 
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performed similar single mutant native MS analyses for each mutant with TOCL. The ΔΔG 
plot shows many similarities and some differences compared to POCL (Figure 5). 

Considering region i (Figure 5C–D), the W14A mutation that had the most significant impact 
with POCL also had the highest contribution with TOCL (Figure 5C and Table S2). However, 
the contribution of F13A became insignificant, and the small ΔΔG observed for F10A with 
POCL became significantly lower negative ΔΔG (p-value=0.003, Figure 5C and Table S2). 
These effects indicate that the acyl chain significantly affects interactions to hydrophobic 
residues in region i, consistent with the structure in Figure 4.  

Although the ΔΔG values are slightly different, region ii is not dramatically affected by lipid 
tail differences between TOCL and POCL (Figure 5C and Table S2). Similarly, in region iii, 
mutants R75A (p-value=0.0008), R224A (p-value=0.0066), and K4A (p-value=0.001) exhibit 
statistically significant differences in TOCL binding compared to POCL, but R3A, K79A, and   
statistically significant differences in TOCL binding compared to POCL, but R3A, K79A, and  
K155A show no significant differences (Figure 5C and Table S2). As above, K155 serves as a 
negative control that likely does not interact with lipids. Overall, lipid tail differences 
between TOCL and POCL do not dramatically affect interactions in region iii, which are 
instead likely driven by headgroups.  

In region iv, the ΔΔG values for Y100A and F196A became more negative from POCL to TOCL. 
Both Y100A (p-value=0.005) and F196A (p-value=0.003) mutants are more favorable to TOCL 
binding compared with POCL (Figure 5C and Table S2). Together, these data indicate that 
CL binding in some sites is unaffected by lipid tails, particularly with cationic residues in 
region iii. However, the differences in the acyl chain do affect how the lipid interacts with 
some hydrophobic binding regions, especially i and iv.  

Effect of Lipid Headgroups  

Next, we investigated whether these AqpZ sites are specific for CL headgroups compared to 
other lipid types. To study this lipid specificity, we used phospholipids with similar acyl 
chains (16:0_18:1) but with different headgroups, including anionic PG (Figure 1E) and 
zwitterionic PE (Figure 1F). By comparing the ΔΔG values and maps generated for each lipid 
(Figure 5), we observed a significant reduction (p-values<0.05) in the absolute value of ΔΔG 
for almost all the mutants with POPG and POPE compared to POCL (Figure S4). This overall 
reduced ΔΔG indicates that the mutations cause the greatest disturbance for CL binding 
compared to PG and PE, which suggests that these residues showed higher specificity 
towards CL over other lipids.  
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First, we compared POCL with POPG to evaluate the effects of mutations on two anionic 

 

Figure 5. Single mutant analysis data using native MS for (A, B) POCL, (C, D) TOCL, (E, F) 
POPG, and (G, H) POPE. Left panel indicates ΔΔG changes for the first bound lipid at 25 °C 
for each mutant studied, clustered according to the identified regions. Red bars represent 
positive ΔΔG values. Blue bars represent negative ΔΔG values, and white bars indicate 
statistically insignificant interactions. Right panel indicates AqpZ-lipid affinity maps, 
colored from red (positive ΔΔG) to blue (negative ΔΔG), with white representing no change. 
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lipids with similar structures. Here, the ΔΔG values were comparable but reduced in 
magnitude in regions i, ii, and iv. In region iii, the effect of all mutations was reduced 
compared to POCL, but a few retained positive ΔΔG values. Thus, POPG can be affected by 
mutation of some of the positively charged amino acid residues on the cytoplasmic 
interface, but mutations to these sites affect CL binding more dramatically.  

To test the effects of headgroup charge, we compared anionic POCL against zwitterionic 
POPE. Here, the ΔΔG trends were comparable between POCL and POPE in regions i, ii, and 
iv, albeit with lower overall magnitudes of ΔΔG with POPE. However, in region iii, most 
residues showed insignificant ΔΔG values for POPE, indicating that interactions with the 
positive amino acid residues are not substantial. This observation further confirms that 
region iii has a significant influence on lipid headgroup interactions through salt bridge 
interactions with anionic lipids like PG and CL. 

Overall, mutations to specific AqpZ residues affect CL more dramatically compared to both 
POPG and POPE (Figure S4).  Mutants in regions i and iii are more affected by lipid headgroup 

 

Figure 6. Coarse-grain MD illustrations of AqpZ-lipid interactions. The average 
occupancy (top) and average residence time (bottom) at selected residues on different 
wild-type AqpZ by CL (left), POPG lipids (middle), and POPE lipids (right). The maps are 
colored from white (indicating no interactions) to red (indicating strong/stable 
interactions). 
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than other potential binding regions. Furthermore, among other residues, the contributions 
from W14 and F196 for each lipid binding remain notable, possibly indicating a global role 
these residues play in the structural arrangement of the binding sites/pockets.  

Insights into Lipid Specificity of AqpZ Binding Sites Using MD Simulations 

To evaluate lipid selectivity in the MD simulations, we conducted PyLipID analysis for POPE 
and POPG lipids using the same simulations described above. Because CL has lower 
abundance in the membrane (5%), the occupancy data were consistently lower compared 
to the other two lipids (Figure 6). Thus, we will focus our attention on the residence time 
data.  

The residence time data clearly demonstrates that between these three lipids studied, CL 
had significantly higher (p-value<0.05) residence times at many of the selected residues 
compared to POPG and POPE. Thus, CL forms the most kinetically stable interactions with 
AqpZ (Figure 6), which is consistent with our native MS data and confirms that AqpZ shows 
selectivity towards CL in these sites.  

Considering the location of lipid binding, each lipid type tends to interact more stably in 
regions i and iii compared to regions ii and iv (Figure 6 and Table S4). This observation 
suggests that the site formed by regions i and iii may serve as a lipid binding site. In contrast, 
regions ii and iv show comparatively small residence times for all three lipids (less than 0.1 
µs), indicating relatively weak lipid binding ability.  

Combining both native MS and MD simulation observations, we found that AqpZ forms more 
stable interactions with CL relative to PG and PE, which is consistent with the CL binding in 
previous research using lipid exchange-MS9 and prior molecular dynamics studies.11,13 
Looking closely at tail interactions and headgroup interactions, it appears that interactions 
with hydrophobic residues at the hydrophobic pocket in region i and the electrostatic 
interactions with cationic residues in region iii are the most important interactions for lipid 
stability.  

Conclusions 

Here, we profiled the lipid binding sites of AqpZ and explored its lipid specificity, creating a 
lipid binding map through an integrated approach combining native MS and MD simulations. 
Our data revealed that AqpZ binds to CL with the greatest specificity, and it is less specific 
for PG and PE. When CL binds to AqpZ in its tightest location, the CL acyl chains likely 
interact with the hydrophobic pocket at the monomeric interface with the headgroup 
orienting towards cationic residues at the cytoplasmic surface of AqpZ. This site was 
selective for CL and the primary site with stable lipid binding. 
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Our screening of single mutants revealed that the W14 residue plays a crucial role in lipid 
binding. Interestingly, W14 does not seem to directly interact with the lipid itself, but it likely 
facilitates the structural arrangement of a binding pocket that interacts with CL. Thus, 
residues may facilitate the formation of lipid-binding sites without direct interactions. These 
observations provide new insights into membrane protein-lipid interactions that can be 
captured through experimental techniques but can be challenging to capture in simulations 
alone. Together, combining the results from both native MS and MD enabled us to achieve a 
broader perspective on AqpZ lipid binding sites and their specificity. 
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