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Abstract

Background

The guiding principle of many health care reforms is to overcome fragmentation of service

delivery and work towards integrated healthcare systems. Even though the value of integra-

tion is well recognized, capturing its drivers and its impact as part of health system perfor-

mance assessment is challenging. The main reason is that current assessment tools only

insufficiently capture the complexity of integrated systems, resulting in poor impact estima-

tions of the actions taken towards the ‘Triple Aim’. We describe the unique nature of simula-

tion modeling to consider key health reform aspects: system complexity, optimization of

actions, and long-term assessments.

Research question

How can the use and uptake of simulation models be characterized in the field of perfor-

mance assessment of integrated healthcare systems?

Methods

A systematic search was conducted between 2000 and 2018, in 5 academic databases

(ACM D. Library, CINAHL, IEEE Xplore, PubMed, Web of Science) complemented with

grey literature from Google Scholar. Studies using simulation models with system thinking

to assess system performance in topics relevant to integrated healthcare were selected for

revision.

Results

After screening 2274 articles, 30 were selected for analysis. Five modeling techniques were

characterized, across four application areas in healthcare. Complexity was defined in nine

aspects, embedded distinctively in each modeling technique. ‘What if?’ & ‘How to?’ scenar-

ios were identified as methods for system optimization. The mean time frame for perfor-

mance assessments was 18 years.
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Conclusions

Simulation models can evaluate system performance emphasizing the complex relations

between components, understanding the system’s adaptability to change in short or long-

term assessments. These advantages position them as a useful tool for complementing per-

formance assessment of integrated healthcare systems in their pursuit of the ‘Triple Aim’.

Besides literacy in modeling techniques, accurate model selection is facilitated after identifi-

cation and prioritization of the complexities that rule system performance. For this purpose,

a tool for selecting the most appropriate simulation modeling techniques was developed.

1. Introduction

The guiding principle of many health care reforms is to overcome fragmentation of service

delivery and work towards integrated healthcare systems (IHS) [1, 2]. Integrated healthcare

comes in the form of linkage and coordination of providers along the continuum of care [3].

By focusing on the nature and strength of the links between the system components, IHS rely

on and enhance the complexity of the health system [4] to achieve a threefold objective;

improve health of the population, improve patient (and carer) experience while reducing

healthcare costs (‘Triple Aim’) [5]. To reach the Triple Aim, IHS introduce solutions to ensure

the sustainability of health care provision through investment in preventive care and constant

improvements in clinical practice [3].

IHS success has been evidenced in numerous publications. However, healthcare managers

encounter problems when assessing the drivers of this success [6–8]. These challenges arise

because assessment tools are not specific to integrated care and don’t consider the unique

nature of the approach [9, 10]. Acknowledging a lack of specific assessment tools, the Expert

Group on Health System Performance Assessment of the EU created a standard framework

for performance assessment of integrated care [3, 6, 7]. The framework consists of a series of

key performance indicators in topics relevant to IHS. However, even though specific to IHS,

the indicators compiled by the expert group are insufficient to capture the full value of inte-

grated care. The problem is not in the completeness of the indicator list, but in monitoring

indicators as a performance assessment approach. Indicators are developed based on assump-

tions about the interrelation between a measure and the system objectives [11], but the causal

pathways are not described and are known to be multiple, non-linear, with changing causal

effects and affected by several individuals and contextual factors [12, 13]. In other words, the

traditional approach can’t capture the complexity of the health system [4]. Because IHS

enhance system complexity and strive for efficiency and accountability in every component of

the system, indicators alone are insuficient to guide improvement [9, 12].

Complex health policy issues can be better assessed with methods that enable research syn-

thesis and utilize a complex systems perspective [14, 15]. As defined by Petticrew et al. (2018)

[15]; a complex system perspective (or just ‘systems thinking’) is defined by acknowledging the

value arising from the relationships between the system components and their dynamic prop-

erties. When used for evaluating system performance, system thinking answers an essential

concern for IHS ‘how did the intervention reshape the system in favorable ways?’.

Simulation modeling (SM) is a discipline with the features necessary to implement systems

thinking when assessing performance of a health system [14, 16, 17]. A simulation is a virtual

recreation of a real system. It is used to test situations and understand the effect of
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interventions on the performance of the system over time. Combining expert opinion with

observational and experimental results, SM provides a relatively inexpensive way to estimate

individual and population-level effects of changes in the system’s determinants of

performance.

There is extensive literature reviewing simulation models in the healthcare sector. Salleh

et al. [18] published an umbrella review including 37 reviews, that together cover articles from

1950 to 2016 and explore the wide range of applications in healthcare, software tools and data

sources used in the field of healthcare simulation. Meanwhile, the paper by Günal & Pidd [19]

starts by narrating the historic progression of simulation modeling an its applications in

healthcare, giving some idea of the long history of the field. Most recently (2021), Roy et al.

[17] analyzed healthcare simulation literature of the past decade, addressing issues in various

healthcare service delivery levels and categorizing the literature accordingly. Altogether, litera-

ture in the field provides a comprehensive characterization of simulation models in healthcare,

including; the areas and types of application where the discipline has been used, the techniques

available, data sources, simulation software [18, 20, 21], type of outputs and level of insight,

inputs and resources required [22], relative frequency of use and level of implementation [23]

and specific aspects of a care facility operations where techniques are most common [17, 24,

25]. These topics are most commonly analyzed following a structure similar to the one best

represented by Mielczarek et al. [25], who creates a system of classification of health care topic

areas assessed with simulation methods. The objective is to investigate the usefulness of model-

ing techniques and their correlation with a corresponding health care application. While

authors add innovations to this common structure, such as the identification of research gaps

influencing the limited uptake of the discipline [20, 23, 24, 26] or exploring the link between

interventions and key performance indicators (KPI) [26], complexities in the relationships of

system components have been heavily underassessed. Roy [17] recognizes the complexity of

the health system and the ability of simulation modeling to address this complexity, but his

review focuses on capturing specific health issues addressed, operations management concepts

applied, simulation methods used, and identifying major research gaps—a framework similar

to the one by Mielczarek et al. [25]. Vanbrabant et al. [26] also acknowledges simulations as

the technique most suitable to capture the randomness and complexity of patient flow through

the emergency department. But the analysis is limited to providing insights into which inter-

ventions influence which KPI. In the same line, Laker [27] also recognizes the usefulness of

simulation models to integrate complexity, and provides an excellent summary of the proper-

ties of four simulation techniques. However, it fails on providing a common framework to

characterize and contrast the complexities that can be represented in each technique. Com-

plexity is also indirectly mentioned in identified research gaps, when both Vanbrand et al. and

Yousefi et al. [20] state the underuse of simulation models in multi-objective evaluations and

Brailsford et al. and Roy et al. [17, 24] suggests that healthcare is an area of application for

hybrid simulation due in part to increasing system complexity.

By overlooking complexity, the advantages of simulation modeling and the challenges of

IHS performance assessment remain unmatched. Furthermore, simulation time frames and

optimization capabilities, standard knowledge for simulation experts but not for healthcare

managers [28], are also overlooked in reviews summarizing the use of SM in healthcare. The

gap results in simulation models not been systematically picked up by integrated healthcare

managers to assess performance of IHS. The issue was partially addressed in 2015 by the ISO-

POR task force [14, 29], who published a series of papers describing how three of the most

common simulation modeling techniques can be used to evaluate complex health systems and

provide descriptions and tools to implement them accurately. However, at the time there was

no common understanding of the drivers affecting IHS performance hence a clear explanation
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and exemplification of how these particularly complex health systems could make use of simu-

lation models to assess performance was not possible.

This literature review is intended to bring together the field of performance assessment of

integrated healthcare systems and the discipline of simulation modeling. We contribute to the

vast literature characterizing the use of simulation modeling in health system performance

assessment by focusing specifically on the discipline’s ability to implement a complex system

perspective in topics relevant to IHS. Our research is directed to readers that seek to expand

performance assessment tools while considering the enhanced complexity embedded in the

integrated care approach. We conclude our analysis with the creation of a practical tool for

selecting the most appropriate simulation modeling technique depending on the characteris-

tics of the system to be modeled.

2. Methods

2.1 Search strategy

A comprehensive search strategy was performed directed to find articles that allowed us to

understand how simulation modeling techniques implemented a complex system perspective

in topics relevant to IHS. The systematic search was conducted in 5 academic databases (ACM

Digital Library, CINAHL, IEEE Xplore, PubMed & Web of Science). Grey literature was

searched for in Google Scholar and only considered if articles complied with all the criteria in

the AACODS checklist for critically appraising grey literature [30]. Finally, papers were also

added through snowballing. The search was conducted for the period 01/01/2000–31/12/2018

as an increased interest in SM has been documented after this starting date, supported by tech-

nology advances [18]. The review was registered in PROSPERO (Registration number:

CRD42020149658).

A Boolean search code was developed with three scopes of terms. The first scope, “Tech-
nique”, filters for simulation modeling techniques and combines 17 systematic search strate-

gies extracted from the umbrella review by Salleh et al. [18] added to the list of simulation

modeling techniques described in Jun et al. [22]. The second scope, “Integrated healthcare sys-
tems topics of interest” is defined by 76 search terms, extracted from the indicator types and

domains stated in the framework for performance assessment of IHS developed by the Expert

Group of the European Commission [3, 6, 7], the systematic review of methods for IHS perfor-

mance assessment by Strandberg-Larsen et al. [31] and the “Care Coordination Measures

Atlas” by McDonald et al. [32]. Finally, the third scope refers to the healthcare sector. Terms in

the first scope (“Techniques”) were restricted to the title, and terms in the other scopes were

restricted to title/abstract. The complete list of terms can be found in S1 Table.

2.2 Selection criteria

Inclusion criteria. Only health system evaluations taking a complex system perspective

were considered. Furthermore, we only included articles that used a simulation model in the list

of techniques described in Salleh et al. [18] or in Jun et al. [22] as SM techniques or self-identi-

fied as such. Finally, articles further had to address the performance assessment of an IHS topic-

of-interest. The lists of SM techniques and IHS topics of interest can be found in S2 Table.

Exclusion criteria. We excluded studies that described non-computer-based simulation

models. Also, we excluded studies that were not calibrated and validated against data from a

real situation. Finally, we excluded from the data extraction and analysis studies whose report-

ing standards were insufficient to replicate the assessment or did not fully enable reviewers the

complete understanding of the implementation of systems thinking. To comply with the latter

criteria, only studies graded ‘A’ in quality assessment were selected.
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2.3 Quality assessment

Two independent reviewers (SW & NL) assessed the quality of papers during the screening

process. Using the quality assessment tool developed by Fone et al. [33] to appraise simulation

modeling studies, reviewers gave a score of 0, 1, or 2 in ten criteria and created four quality

groups (A to D). The quality assessment was followed with an assessment of the credibility and

relevance of the articles for the purpose of this review and aided reviewers to select articles for

revision. Given the focus of the review, an assessment of the risk of bias in the study’s results

was not considered.

2.4 Data extraction and analysis

Data extraction was made by the main author (NL), based on the template used by Brailsford

et al. in their analysis of simulation and modeling techniques for healthcare [23]. The final

extraction sheet was modified focusing on two main topics. First, to characterize the different

modeling techniques, their area of application, key features for implementation, together with

data requirements and outcomes. Second, to characterize the complex aspects of the health

system that each technique can represent. The detailed data extraction sheet can be found in

S3 Table.

The analysis was conducted in two phases. First, using a ‘Deductive a priori template

approach’ [34] articles were classified and characterized according to previous assessments of

SM made by Jun et al. [22], Salleh et al. [18], and Rueckel et al. [21]. Subsequently, in a ‘Data-

driven inductive approach’ [35], simulation modeling techniques were re-characterized in five

items following the objectives of this review. Item (1.) presents the IHS topics-of-interest

where SM has been successfully applied. The item aims to inform and exemplify in what situa-

tion of interest to IHS can the discipline be useful, in a similar structure of the analysis of previ-

ous literature. Even though the selection of articles is primarly intended to understand

simulation models’ ability to integrate the shortcomings of IHS performance assessment, and

not to identify the link between simulation technique and helathcare area, a similar analysis to

that of previous literature will allow us to validate our findinds when compared to conclusions

of other authors. In item (2.) we supported the analysis of the reviewed papers with further lit-

erature and present an introductory description of the identified simulation techniques,

explaining how they are applied in the topics of interest to IHS. The last three items were

selected to explore how simulation models deal with challenges that are particularly harmful to

integrated care and are not yet mirrored in traditional assessment tools [8]. Item (3.) presents

the modeled complexities in relationships between system components, summarized per

modeling technique. The item allows us to understand the capacities of each technique to cor-

rectly model causality paths and co-existing effects, essential concerns for several integrated

care interest areas [8, 10]. Item (4.) presents the identified optimization capabilities, essential

function of any tool guiding healthcare to the Triple Aim [3, 10, 11, 36]. Preventive medicine

and overall population health improvements are known to show effects only after several years

after intervention [7] and as they comprise an essential part of IHS, Item (5.) presents the time

frame of the selected papers to understand the capacity for long-term assessments.

3. Results

The search resulted in 2271 unique articles. Screenings at title/abstract and full text were made

by two separate reviewers (SW & NL) and resulted in seventy-six articles selected for quality

assessment. Out of these, thirty studies were included for data extraction and analysis because

of their reporting quality and detailed description of system thinking. Fig 1 presents the

PRISMA diagram of the selection process. Selected papers are described in Table 1.
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3.1 IHS topics-of-interest

Eleven IHS topics-of-interest were identified and classified in four areas of assessment. The first

area of assessment covers simulation models of Policy and Strategy. This comprises studies that

use simulation modeling for evaluating health policies and interventions directed to change or

improve the structure, assess incentives, goals, or values in the overall system; such as (1.) pay

for performance incentive scheme or (2.) national health reform evaluation. The second area of

assessment covers Chronic Disease Management. Studies in this area evaluated the effectiveness

of interventions or the evolution of chronic conditions, such as (3.) evaluating care management

and interventions of chronic conditions and (4). diabetes population dynamics. The third area

of assessment addresses Lifestyle Interventions, including evaluation of interventions directed

at lifestyle behavior, health risks, and social determinants of health, such as (5.) tobacco harm

policies, market control, and interventions or (6.) evaluation of public health interventions. The

last area of assessment addresses Health Resource Management and comprises studies that use

SM for resource management or system design to optimize healthcare service flow or forecast

demands. In this area topics were (7.) performance evaluation of community health, (8.) perfor-

mance measures evaluation in outpatient center, (9.) health facility operations simulation, (10.)

planning health force, and (11.) evaluation of information systems.

3.2 Description of simulation modeling techniques in IHS

Five simulation modeling techniques were identified in the selected articles: Two Markov

Models (MM), eleven System Dynamics (SD), two Micro-Simulations (MS), twelve Discrete

Fig 1. PRISMA diagram.

https://doi.org/10.1371/journal.pone.0254334.g001
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Table 1. Selected papers.

Author Title IC topic-of-interest Model Aspects of

complexity

Optimization Time frame

Alonge et al.

2017 [37]

Improving health systems performance in

low- and middle-income countries: a system

dynamics model of the pay-for-performance

initiative in Afghanistan.

Pay for performance incentive

scheme

SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’; ‘How
to’ scenarios

5 to 8 years

Ansah et al.

2016 [38]

Projecting the effects of long-term care policy

on the labor market participation of primary

informal family caregivers of elderly with

disability: insights from a dynamic

simulation model.

Evaluating care management and

interventions of chronic

conditions—Performance

evaluation of community health

SD ˚ Dynamism

˚ Influence of

historical

occurrence

˚ Interaction

‘What if’
scenarios

17 years

Comans et al.

2017 [39]

The development and practical application of

a simulation model to inform

musculoskeletal service delivery in an

Australian public health service

Health facility operations

simulation—Planning Health

force

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interference

˚ Interaction

‘What if’
scenarios

5 years

Cooper et al.

2008 [40]

Use of a coronary heart disease simulation

model to evaluate the costs and effectiveness

of drugs for the prevention of heart disease

Evaluating care management and

interventions of chronic

conditions.

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interference

˚ Simultaneity of

events

˚ Interaction

˚ Dynamism

‘What if’
scenarios

20 years

de Andrade

et al. 2014 [41]

System Dynamics Modeling in the Evaluation

of Delays of Care in ST-Segment Elevation

Myocardial Infarction Patients within a

Tiered Health System.

Evaluating care management and

interventions of chronic

conditions.

SD ˚ Dynamism

˚ Interaction

˚ Influence of

historical

occurrence

‘What if’
scenarios

One care

case: ~4hr

Fialho et al.

2011 [42]

Using discrete event simulation to compare

the performance of family health unit and

primary health care center organizational

models in Portugal.

Performance evaluation of

community health

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interference

˚ Interaction

˚ Dynamism

‘What if’; ‘How
to’ scenarios

1 week (1/52

year)

Gao et al. 2013

[43]

Tripartite hybrid model architecture for

investigating health and cost impacts and

intervention tradeoffs for diabetic end-stage

renal disease

Evaluating care management and

interventions of chronic

conditions.

Hybrid ˚ Dynamism

˚ Soft Variables

˚ Intelligent

Adaptation

˚ Simultaneity of

events

˚ Influence of

historical

occurrences

˚ Interaction

˚ Individualization

‘What if’
scenarios

1 year

Getsios et al.

2013 [44]

Smoking cessation treatment and outcomes

patterns simulation: a new framework for

evaluating the potential health and economic

impact of smoking cessation interventions.

Tobacco harm policies. Market

Control and Interventions

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interaction

˚ Dynamism

‘What if’
scenarios

Lifetime

(since start

smoking)

Goldman et al.

2004 [45]

Projecting long-term impact of modest

sodium reduction in Los Angeles County

Evaluation of Public health

intervention

Micro ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interaction

‘What if’; ‘How
to’ scenarios

45 years�

(Continued)
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Table 1. (Continued)

Author Title IC topic-of-interest Model Aspects of

complexity

Optimization Time frame

Günal et al. 2011

[46]

DGHPSIM: Generic Simulation of Hospital

Performance

Health facility operations

simulation

DES ˚ Individualization

˚ Interference

˚ Interaction

˚ Dynamism

˚ Influence of

historical

occurrence

‘What if’; ‘How
to’ scenarios

2 years

Hill et al. 2017

[47]

A system dynamic modeling approach to

assess the impact of launching a new nicotine

product on population health outcomes.

Tobacco harm policies. Market

Control and Interventions

SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’
scenarios

50 years

Homer et al.

2010 [48]

Simulating and Evaluating Local

Interventions to Improve Cardiovascular

Health

Evaluating care management and

interventions of chronic

conditions.

SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’
scenarios

50 years

Jones et al. 2006

[49]

Understanding diabetes population dynamics

through simulation modeling and

experimentation.

Diabetes Population Dynamics SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’
scenarios

46 years

Kalton et al.

2016 [50]

Multi-Agent-Based Simulation of a Complex

Ecosystem of Mental Health Care.

Health facility operations

simulation

ABM ˚ Individualization

˚ Simultaneity of

events

˚ Influence of

historical

occurrence

˚ Interaction

˚ Emergence

˚ Dynamism

‘What if’; ‘How
to’ scenarios

3 years

Kang et al. 2018

[51]

A system dynamic approach to planning and

evaluating interventions for chronic disease

management

Evaluating care management and

interventions of chronic

conditions.

SD ˚ Dynamism

˚ Influence of

historic occurrences

˚ Interaction

˚ Soft variables

‘What if’; ‘How
to’ scenarios

10 years

Kotiadis 2006

[52]

Extracting a conceptual model for a complex

integrated system in health care

Health facility operations

simulation

DES ˚ Individualization

˚ Interaction

˚ Interference

‘What if’; ‘How
to’ scenarios

5 months

Laurence et al.

2016 [53]

Improving the planning of the GP workforce

in Australia: a simulation model

incorporating work transitions, health needs,

and service usage.

Planning Health force Markov ˚ Interaction ‘What if’; ‘How
to’ scenarios

10 years

Lay-Yee et al.

2015 [54]

Determinants and disparities: a simulation

approach to the case of child health care.

Performance evaluation of

community health

Micro ˚ Individualization

˚ Influence of

historical

occurrence

˚ Dynamism

˚ Interaction

‘What if’
scenarios

10 years

Lebcir et al.

2017 [55]

A discrete event simulation model to evaluate

the use of community services in the

treatment of patients with Parkinson’s disease

in the United Kingdom.

Performance evaluation of

community health

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interference

˚ Interaction

˚ Dynamism

˚ Simultaneity of

events

‘What if’; ‘How
to’ scenarios

3 years

Levy et al. 2016

[56]

Estimating the Potential Impact of Tobacco

Control Policies on Adverse Maternal and

Child Health Outcomes in the United States

Using the SimSmoke Tobacco Control Policy

Simulation Model.

Tobacco harm policies. Market

Control and Interventions

Markov ˚ Interaction

˚ Influence of

historical events

‘What if’
scenarios

50 years

(Continued)
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Event Simulations (DES), and two Agent-Based Models (ABM). Finally, one paper combined

three techniques, adding a sixth, Hybrid models (HM). Supported by complementary litera-

ture, we describe each technique features and use the selected papers to exemplify their

Table 1. (Continued)

Author Title IC topic-of-interest Model Aspects of

complexity

Optimization Time frame

Loyo et al. 2013

[57]

From model to action: using a system

dynamics model of chronic disease risks to

align community action.

Evaluating care management and

interventions of chronic

conditions.

SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’
scenarios

30 years

Matta et al. 2007

[58]

Evaluating multiple performance measures

across several dimensions at a multi-facility

outpatient center

Performance measures

evaluation

DES ˚ Individualization

˚ Interference

˚ Interaction

˚ Dynamism

‘What if’; ‘How
to’ scenarios

1 working

day

Milstein et al.

2010 [59]

Analyzing national health reform strategies

with a dynamic simulation model.

National Health Reform

Evaluation

SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’
scenarios

25 years

Nianogo et al.

2018 [60]

Impact of Public Health Interventions on

Obesity and Type 2 Diabetes Prevention: A

Simulation Study.

Evaluation of Public health

intervention

ABM ˚ Individualization

˚ Simultaneity of

events

˚ Influence of

historical

occurrence

˚ Interaction

˚ Emergence

˚ Intelligent

Adaptation

‘What if’
scenarios

Adult life

Norouzzadeh

et al. 2015 [61]

Simulation Modeling to Optimize Health

Care Delivery in an Outpatient Clinic

Health facility operations

simulation

DES ˚ Individualization

˚ Interference

˚ Interaction

˚ Dynamism

‘What if’; ‘How
to’ scenarios

2 years

Oh et al. 2016

[62]

Use of a simulation-based decision support

tool to improve emergency department

throughput

Health facility operations

simulation

DES ˚ Individualization

˚ Interference

˚ Interaction

˚ Dynamism

‘What if’; ‘How
to’ scenarios

2.5 years

Rashwan et al.

2015 [63]

Modeling behavior of nurses in a clinical

medical unit in a university hospital: Burnout

implications

Planning Health force SD ˚ Dynamism

˚ Soft variables

˚ Interaction

‘What if’; ‘How
to’ scenarios

1 working

day

Rejeb et al. 2018

[64]

Performance and cost evaluation of health

information systems using micro-costing and

discrete-event simulation.

Evaluation of Information

System

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interference

˚ Interaction

˚ Dynamism

˚ Simultaneity of

events

‘What if’; ‘How
to’ scenarios

1 to 5 years

Sugiyama et al.

2017 [65]

Construction of a simulation model and

evaluation of the effect of potential

interventions on the incidence of diabetes

and initiation of dialysis due to diabetic

nephropathy in Japan.

Evaluating care management and

interventions of chronic

conditions.

SD ˚ Dynamism

˚ Influence of

historic occurrences

˚ Interaction

‘What if’
scenarios

35 years

Vataire et al.

2014 [66]

Core discrete event simulation model for the

evaluation of health care technologies in

major depressive disorder.

Evaluating care management and

interventions of chronic

conditions.

DES ˚ Individualization

˚ Influence of

historical

occurrence

˚ Interaction

‘What if’
scenarios

1 to 5 years

� The model has been used in several projects and the time provided corresponds the one used most recently by Vidyanti et al. 2015 [67]

https://doi.org/10.1371/journal.pone.0254334.t001
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implementation in integrated care. Table 2 summarizes the simulation techniques in terms of

strengths, limitations, and estimation considerations and provides references for complemen-

tary literature.

Markov models. Markov models are state transition models. They have clearly defined,

exclusive states, and transitions between states are defined as quantities per cycle. States cannot

happen simultaneously for the same agent and transitions from one state to another depend

Table 2. Summary descriptions of simulation modeling techniques.

Models

[complementary

literature]

Strengths Limitations Estimation considerations

Markov Models [16,

73]

■ Discrete or Continuous time

■ Easy calculation

■ Statistically valid

■ Inclusion of multiple data sources

■ Transitions can be time-dependent

■ Aggregate transition rates cannot account

for individual behavior.

■ Markovian property is a strong

assumption.

■ Clearly defined states and transitions

■ ODE: Transition probabilities determine the

values in each state at each point in time

For estimation of Transition Matrix:

■ Maximum Likelihood Estimation (+Laplace)

■ Bootstrap approach

■ Maximum a posteriori

System Dynamics [14,

69, 74]

■ Based on a conceptual model of the

system, presented in a CLD & SFD.

■ Structure determines the performance

and behavior of the system.

■ Better suited for continuous processes,

where capturing information flow and

feedback are important considerations.

■ Discrete or Continuous time (time steps

can be short enough to be considered

continuous)

■ More suitable for modeling whole

systems

■ Cannot include discrete changes in

variables state.

■ Validity relies on usefulness, not statistical

accuracy.

■ Population-based model.

"Individualization" is only capable within the

structure limits.

■ Sensibility analysis needs to account for

possible trends or changing variables.

■ Sensitive to measurement errors.

Aggregate diff eq tend to smooth

fluctuations

■ Continuous-time: Ordinary differential

equations (ODE) for each variable value over

time, defined by functions for inflows and

outflows.

■ Euler

■ Runge-Kutta-Felberg method

■ Discrete-Time:

■ Difference equation

Microsimulations [70,

72, 75]

■ Structured as a state transition model.

■ Agent driven. But the structure is

important.

■ Stochastic estimation

■ Agents can be defined at multiple levels.

■ Good for modeling random or stochastic

behavior, like the ones found in aggregate

populations (patient groups)

■ Because of computational and conceptual

limitations, microsimulations results are

routinely provided without measures of

precision.

■ Microsimulation models are normally

computing, data, and human-intensive

■ Difficult to validate

■ The stochastic transitions between states are

defined by functions including the individual

factors of the agent moving through states.

■ In general, ODE is used (Similar calculation to

SD, but from the agent’s perspective)

Discrete Event

Simulation [14, 73, 74]

■ Process-centric. Described a clearly

defined chronological process.

■ More suited when individual history is

relevant for future events, or when queuing

is a driver of performance.

■ Produces statistically valid

representations of historical behavior.

■ Allows different cycle time lengths.

■ Discrete state, discrete time

■ Produces accurate and valid patient-level

assessments of multiple interventions

simultaneously, considering other

important causal effects

■ Needs a large amount of data and a

specialized interpreter.

■ Computationally and human-intensive

■ Rigid in statistical validity, cannot include

theories of qualitative relations.

■ More suitable as an assessment tool after a

detailed risk prediction per patient

■ODE with discrete states: discrete event system

■ There is a randomized sampling of time-to-

event of future events, organized chronologically,

that will determine the next action of the system.

The list is rewritten after every event

Agent-Based

Simulations [70, 75–

78]

■ Studies complex social phenomena

■ Describes system from the perspective of

its constituent units.

■ Agents can be defined at multiple levels.

■ Technically simple

■ Validation and calibration are based on

replicating real behavior.

■ Initial values are important

■ Constructed under fully simulated

conditions, some might discount the value of

findings.

■ Due to uncertainty in data inputs and

modeling process, ABM does not predict

well, results are better interpreted

qualitatively.

■ Computationally intensive; Each agent

needs a definition and if stochasticity is

used, computer usage is intensified

■ Discrete model; estimation over simulation

■ Agents have a set of rules defining their

behavior, and they are simulated to interact in an

environment.

■ The effect is measured throughout the

simulation

https://doi.org/10.1371/journal.pone.0254334.t002
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only on the current state (Markovian property). Time can be continuous or discrete, but in the

case of this review, both papers use discrete time. Markov models can define transition proba-

bilities differently for each time step, allowing the inclusion of trend factors, and together with

‘tunnel states’ (states with no possibility of remaining in the said state in time) time-depending

dynamism and partial influence of historic events are enabled. Laurence et al. [53] explore the

complexity of state transitions by constructing a model comprised of four separate parts

(demand, supply, productivity, and training) of the system determining the health force gap, a

common topic on integrated care initiatives. The demand and training parts of the model

define partial outcomes dependent on several variables. These outcomes are then used in a sec-

ond stage for the supply and productivity parts of the model, resulting in further partial out-

comes. The third stage studies the main outcome (workforce gap) influenced by the outcomes

of the previous stages. The structure enables the inclusion of mediated relationships between

the initial variables, their interaction with partial outcomes, and the main outcome. The SimS-

moke simulation, presented in Levy et al. [56] was developed in the early 2000s to estimate the

smoking population and the effects of possible lifestyle interventions. The model distinguishes

a population by age and gender evolving through birth and death rates. The population is fur-

ther divided into never, current, and former smokers. By differentiating models for different

strata of the population and including tunnel states, the author can represent the influence of

historical events, having portions of the population ‘jumping’ to the next model when an event

happens.

System dynamics. The objective of system dynamics is to capture all determinant vari-

ables, causal pathways, and feedback loops of the system to be analyzed [48]. In SD structure

determines performance, and the primarily goal is to evaluate the effect of an intervention

over the qualitative nature of system performance (e.g. growth function, overshoot and col-

lapse, oscillations, chaotic response, etc.) [27, 68]. To conceptualize the structure, relevant ele-

ments and the direction and nature of their inter-relations must be known. This information

is extracted from the system’s stakeholders underlying knowledge of the way the system oper-

ates [37, 59]. This way, Homer et al. [48] and Loyo et al. [57] integrate the most important risk

factors of several chronic diseases in a single model. The model calculates the expected preva-

lence and indirect cost effect of these diseases in the population. Milstein et al. [59] include all

relevant causal pathways related to health reform policies in the US. Kang et al. [51] and Sugi-

yama et al. [65] use the same approach to model the care of chronic kidney disease and the

effect of interventions over diabetes and dialysis. The inclusion of all known determinants and

causal pathways is complemented with the possibility to include “soft” variables, enabling the

exploration of aspects of a system behavior particularly relevant to integrate care such as

“Gaming”, “Extrinsic motivation” [37], “Insurance complexity”, “Care coordination” [59],

“Staff resistance to new policies” or “Workload pressure” [63]. This flexibility is essential to

capture the influence of important variables but limits the statistical validity of the results [69].

Loyo et al. [57] undermine this limitation stating that ‘community decisions need to be made

even though the data are disparate and incomplete’.

The model structure is represented in a causal loop diagram. There is a special focus on cap-

turing the correct feedback loops affecting the system behavior. Feedback loops are what

makes the system dynamic, by influencing the nature of the relationship between variables as

the system progresses.

In the area of chronic disease management, Jones et al. [49] use causal loops to model the

states of the disease itself, understanding that a key determinant in diabetes care is the rein-

forcement loop generated by the relation between the disease diagnosis behavior and detri-

mental consequences. When assessing the effect of a new nicotine product, Hill et al. [47]

integrate the feedback effect of ‘normality of smoking’ to predict smoking initiation and
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quitting rates, while Alonge et al. [37] introduce the negative feedback loop of gaming to

understand the failure of a pay for performance incentive scheme in Afghanistan.

The structure of the system is transformed into a stock-and-flow-diagram, defining the

nature of the elements presented in the causal loop diagram. Stocks (elements that accumulate

value) and variables that influence flows (functions that determine the growth or decline of the

value in stock) are differentiated. Functions are established for flows and initial quantities are

assigned to stocks, so that differential equations can be used to determine the values in the

stocks over time. Ansah et al. [38] uses this structure to set up the labor market for long term

care, and uses a deterministic approach to study the effect of policies to reduce unwanted mar-

ket disturbances. de Andrade et al. [41] use system dynamics to represent the different stages

of the maturing process related to the management of a myocardial infarction case in a hospi-

tal environment. This type of structure is known as “Aging Chains” and is useful to gather

information about how long the modeled entity stays in each stage and test delays-improving

policies.

Microsimulations. As Markov Models, microsimulations are also state transition models,

but they describe the population dynamics at individual levels and can be used to describe

interactions between policies and individual decision-making units [70]. As state transition

models, they are structured by clearly defined states. Transitions between states are generated

by stochastic processes out of the parametrization of transition evidence, differentiating from

the rational responses following an objective of Agent-Based Models or the time to event of

Discrete Event Simulations [70, 71]. Even though the structure is similar to Markov models,

they do not share some of the limitations. Besides the interaction of relevant variables, the indi-

vidual approach adds the possibility of including ‘tracking variables’, to account for historical

occurrences. Modeling the complexity of factors contributing to health care cost is the key

objective of the “Future elderly model” created by Goldman et al. [45]. In said model, individu-

alization and influence of historical occurrences allows for the inclusion of a multidimensional

characterization of health status accounting for risk factors such as smoking, weight, age and

education, along with lagged health and financial states. In their dynamic form, microsimula-

tion models allow individuals to change their characteristics due to endogenous factors within

the model [72]. In this sense, they are more suitable for modeling processes and large popula-

tion dynamics, like the model Lay-Yee et al. [54] uses for estimating child health utilization.

The authors modeled a child with a set of attributes as a starting point. Using equations

derived from statistical analysis of real longitudinal data, they set the rules for the individual in

the system and stochastically simulate changes in status over time. In other words, the model

generates a set of diverse synthetic health histories for a starting sample of children. Then it

uses the simulated sample as a counterfactual for estimation including the effect of

interventions.

Discrete event simulation. Discrete event simulation is a process-centric simulation

methodology that describes a chronological sequence of events affecting an entity. The entity

(e.g., patients) carries its information, individualizing the type of relationship with each event.

Vataire et al. [66] and Cooper et al. [40] use this characteristic for individualizing treatments

for major depressive disorder, and to realistically assess the response to the prescription of pre-

vention drugs for cardiovascular disease, respectively. All occurrences are registered in the

entity’s information, enabling the influence of historical events in future outcomes [74]. Get-

sios et al. [44] use this feature to model the effect of smoking cessation attempts in tobacco-

related outcomes.

Events are listed in order after random sampling over the parametrization of time-to-event

evidence, rewriting the list after each occurrence. Events have their own associated time that

passes when the event occurs, hence DES is best suited to model discrete processes. As events
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have different duration, the cycle lengths are not necessarily equal. Several authors [42, 46, 55,

62] find this structure convenient for modeling the care pathway of a health facility. The tim-

ing structure of a DES model allows the assessment of multiple and competing risks, as they

will be organized in the future events list by time-to-event [79], with no immediate restriction

for two events to happen simultaneously [73]. Kotiadis [52] and Norouzzadeh et al. [61] take

advantage of this characteristic to model different times for referrals depending on medical

factors while tracing key indicators in the system. DES also allows for the status of variables in

the system to affect the nature of the relationships of an individual with the rest of the system.

Günal et al. [46], Oh et al. [62] and Comans [39] uses the interference feature to evaluate the

queues and backlogs at different stages of the patient pathway, understanding waiting time as a

change in the manner a patient interacts with a provider, given the providers’ status (e.g.,

‘Occupied’). By fixing the maximum waiting time allowed in concordance with national guide-

lines, the authors can assess the requirements in the rest of the system to reach this goal.

As Microsimulations, Discrete Event Simulations aim at producing statistically valid esti-

mations out of the documented behavior of a system. This rigidity poses an important trade-

off compared to other techniques as it needs detailed, well-defined processes, accurate histori-

cal data, and high intellectual, computer, and data management capabilities. Standfield et al.

[73] conclude that if individualization or interference is not an important driver of the perfor-

mance of the system, including these characteristics would be an unnecessary over-specifica-

tion and unlikely to be informative to decision-makers.

Agent-based models. Agent-based models focus on the activities of the agents composing

the system. Each agent is individually defined with a set of rules and an objective, that may be

described from heuristics to the optimization of a utility function. Kalton et al. [50] use this

technique to model how mental patients engage with medical and social ecosystems while

studying the effect of coordination capabilities. The individualization allows the agents to be

influenced by their history and external variables. At the same time, agency focus allows the

technique to capture emergent population phenomena [76].

The system is modeled in a simulated space, adding the possibility to include spatial vari-

ables. Nianogo et al. [60] exploit these characteristics when understanding the dynamics of the

diabetes population in L.A, USA. The ‘Virtual Los Angeles Obesity’ model simulates a cohort

of patients with different characteristics that interact differently with different environments.

By assigning rules for the relations with the environment, the model seeks to describe the

trends in obesity and diabetes out of the behavior of the agents, and at the same time test inter-

ventions by changing the environmental conditions or characteristics of said agents.

Agent-based models also allow for the inclusion of random factors to consider the bounded

rationality that is present in agents’ behavior. Finally, as agents can be affected by spatial or

other types of determinants, and because the rules commanding agent’s behavior can be set as

thresholds, endogenous and time-dependent feedback loops are also possible. In advanced

models, agents can evolve and learn with methods like neural networks and other forms of

machine learning [29, 77, 78].

As with System Dynamics, authors use proxies and expert opinions when hard evidence is

not available [46]. This flexibility makes them appropriate to test behavioral theories and under-

stand complex population phenomena. On the other hand, statistical validity is not usually the

first concern in either technique, where the usefulness of the assessment is more important.

Hybrid simulations. Hybrid simulations can combine the strengths of two or more mod-

els. Gao et al. [43] developed a tripartite model combining System Dynamics, Agent-Based

Models, and Discrete Event Simulations. He uses a previously developed System Dynamics

model to understand the progression of diabetes up until the early stage of renal disease. As

described by Jones et al. [49], the model properly describes diabetes progression by including
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key feedback loops. Constructing from this model, Gao et al. [43] include two different types

of hybrid relationships. First, there is an upstream-downstream relation between the original

model and an Agent-Based Model for the populations that flows into a particular state (diabe-

tes) to become individualized agents. The ABM model can study the incidence of a complica-

tion (early-stage renal disease) by simulating key behaviors in the development of the disease.

In parallel, the second hybrid relation integrates DES for monitoring the different status of the

patients and tracks the evolution of healthcare processes and resource availability and usage.

3.3 Complexity

To understand and compare the representation of complexity in simulation models we first

compiled 13 distinct features of complex systems identified by Randall [80] and Wilenksy &

Rand [81]: Undetermined or fuzzy boundaries, the possibility of being open, possibility of hav-

ing nested sub subsystems, dynamism in the network of relationships with different scales of

interconnectivity, emergent phenomena, nonlinear relationships, feedback loops, leverage

points, memory/path dependence, sensitivity to initial conditions, robustness, diversity and

heterogeneity, interconnectedness and interactions. Building from the previous section, we

identified the characteristics of the described modeling techniques that can represent features

of complex systems specifically related to relationships between system components. The mod-

eled complexities were classified into one framework with definitions that could be applicable

across methodologies. The exercise resulted in nine aspects of complex relations that can be

represented with simulation models. We present the nine aspects of complex relations together

with the characteristics in each discipline to represent them. In parenthesis, we show the num-

ber of papers modeling each complexity. Among the complexities identified, four are non-line-

arities (1 to 4), and they were the most commonly modeled. Table 3 summarizes the aspects of

complexity enabled in each modeling technique.

1. Interactions (30/30): We understand this complexity as the dependence of the causal effect

of one component (A) to another (B) on the effect of (C) over (A). i.e. mediated effects. For

MM, SD, and MS interactions are embedded in the state transitions–chain structure. For

DES and ABM, interactions between components are stored in their individualized infor-

mation and will affect their effect on other components [70, 73, 75]. Homer’s [69] model of

policies aimed at chronic conditions presents a good example of interaction. The policies in

question affect a risky behavior, which in time affects the status of the disease, which in

Table 3. Complexity aspects enabled per simulation modeling technique.

Markov Model System dynamics Micro-Simulations Discrete Event Simulation Agent-Based Models

Individualization X X ✓ ✓ ✓

Dynamism ✓1 ✓ ✓ ✓ ✓

Interaction ✓ ✓ ✓ ✓ ✓

Interference X X X ✓ ✓

Intelligent Adaptation X X X X ✓

Soft variables X ✓ X X ✓

Simultaneity of events X X X ✓ ✓

Influence of historical occurrences X2 ✓ ✓ ✓ ✓

Emergence X X X X ✓

1 The technique can incorporate dynamic changes over time, but not endogenous feedback loops.
2 Even though the ‘Markovian Property’ defines that transition probabilities will depend only on the current state and not on previous states thus eliminating the

possibility of having ‘Memory’, researchers can overcome this by incorporating tunnel states and parallel models.

https://doi.org/10.1371/journal.pone.0254334.t003
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time affects healthcare provision. By interacting, each component affects the final outcome

according to its particular characteristics and those of the previous component.

2. Dynamism (23/30): Dynamism represents the circular causality of a system. If component

(A) changes the nature of its relations in the system as the system progresses, then we say

the system presents dynamism. Besides the dynamics produced by the passing of time, rela-

tions can be influenced by the changing conditions of any other component, producing

endogenous feedback loops. In methods where estimation correspond to ordinary differen-

tial equations, the value of component (A) will be determined by a function of the state of

other components (B, C) [74]. For MM the other components (B, C) can only be time,

hence no endogenous feedback loops are possible [73]. For ABM, conditions ruling the

behavior of agents can change depending on other components of the system or time as

programmed by the modeler [74]. In Alonge’s [37] model for a pay for performance incen-

tive scheme, dynamism is clear when understanding the effect of ‘volume of service’ over

the reduction in ‘quality’ and the increase of ‘revenue’, which in time affect the ‘volume of

service’ downwards and upwards respectively.

3. Interference (10/30): We understand interference as the dependence of the causal effect of

one component (A) to another (B) on the effect of a third component (C) over (B). i.e

queueing. DES handles interference by given the components of the system mutable states.

The particular state will affect the relationship with other components, and at the same time

mutations between states are triggered by these relations. Similarly, ABM can define differ-

ent behaviors of its agents depending on current or past relations with the rest of the system

[70, 75]. The best example of interference is the change from available to occupied of rooms

modeled by Günal [46]. Because a patient is occupying a room, other patients have to

change their behavior to that room and wait.

4. (Intelligent) Adaptation (2/30): Adaptation is the ability of a component to change the

nature of its behavior to contingency happening in the system. This ability presumes the

intelligence of components to make decisions. ABM can integrate this complexity when

specifying agents’ behavior not only as a function of other system components but also as

conditions and operations in said function such as ‘ifs’ and optimization [14, 75]. For exam-

ple, in Kalton’s model [50] patients can make up to 40 decisions based on logic and prefer-

ences developed during their life process, care experience and health status. Decisions

include taking their medicine, looking for employment, starting to abuse substances, etc.

5. Soft variables (9/30): Refers to the possibility of incorporating simplified proxies for diffi-

cult-to-measure variables. Allows the inclusion of behavioral and qualitative relations. The

possibility of using soft variables in ABM [82] and SD [76] responds to each methodology

obtaining outputs focusing on agents’ behavior and system structure respectively, instead of

mathematical correctness to represent phenomena. A good representation of a soft variable

is “Workload pressure” modeled by Rashawn et al. [63] as the ratio between the actual

nurse-to-patient ratio and the standard nurse-to-patient ratio.

6. Individualization (17/30): Integrates the possibility of including individual-level character-

istics. Comprehends the complex system features of heterogeneity and diversity. DES and

MS use a sample of individual units, each with a unique set of attributes [73, 75]. ABM can

program each agent with different characteristics [82]. Individualization is notable in the

model by Lay-yee et al. [54], where data is granular at patient level, with variables such as

gender, ethnicity and housing status. Each of these variables affects the subject’s number of

doctor visits, reading ability and conduct problems.
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7. Simultaneity of events (5/30): Possibility of two or more events happening in parallel for

the same component of the system. The concept is related to the possibility of having nested

systems within a complex system. Modelers of ABM can create parallel behavior rules for

the same component. Similarly, events triggering a particular state can overlap in DES, cre-

ating parallel situations for the same component. A clear example is the case of Parkison

disease treatmeant as modeled by Lebcir et al. [55], where one or a combination of the difer-

ent treatment schemes are possible for distinct patients. When a combination is chosen, the

treatment sections of the model happen in parallel.

8. Historical occurrences / Memory (18/30): Also known as hysteresis, the concept includes

path dependence. It refers to the influence of past states on the nature of the relationships

of the current state. In methods that allow individualization, events can be stored in the

individual’s characteristics. For SD, the influence of events is stored in the stocks. A good

example is the model by Vataire et al. [66], where the number of previous depression events

updates the model attributes.

9. Emergence (2/30): Characteristics of a system to develop new behaviors, different from

those of the sum of its parts. ABM enables this characteristic by allowing agents to interact

freely, only following the programmed behavior [82]. For example, in Nianogo’s model for

policies to treat population obesity [60], researches realize that their agents would change

non objective behaviors because of the interventions, making them ineffective. Also, agents

would quickly go back to the undesirable behavior after the intervention was finished (in

despite of the intervention objective), diminishing the long-term effect.

3.4 Optimization capabilities

All simulation modeling techniques used ‘what if?’ scenarios, defined as to gain information

about the performance of the system (or parts of the system) when simulating the change of a

variable from its original value, while using as counterfactual the baseline model. Fourteen

(out of 30) articles complemented the assessment with ‘how to?’ scenarios, defined as fixing a

variable’s value as a goal and focusing on how the other variables change from the baseline val-

ues to meet this condition.

3.5 Long term assessment

The studies had different time lengths in their assessment. While some papers had a closer

look at the activities on a working day (3/30), the majority had assessments of at least 5 years

(21/30). The mean number of years in the assessments was 18 years (standard deviation 20).

Lifelong simulations (2/30) were considered as 60 years and working hours of a working day

as 10 hours.

4. Discussion

We have characterized the use of simulation models for IHS performance assessment. First, by

exposing topics of interest to IHS that can be modeled, and the techniques to model them. Sec-

ond, by exposing how these techniques can implement system thinking in said topics of inter-

est, while enabling features befitting of integrated care performance assessment.

To characterize the ability of the reviewed simulation models to implement system think-

ing, we have created a common framework with 9 complexity features enabled differently

across modeling technique. These complexity features allow for the correct understanding of
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causality paths in a system’s performance. For integrated care, this means enabling accurate

accountability for system components and consequently, creates a better position to guide sys-

tem improvement. Accurate accountability is necessary for value-based care, and especially

value-based payment schemes, two key elements of integrated care initiatives [4, 11]. Further-

more, disentangling the complex relations between system components is the key to deal with

comorbidities, identifying consumed resources, and implementing ad-hoc interventions [11].

While accurately representing the complex relations of the system is essential for the model

structure, simulation models can optimize interventions by testing ‘what if?’ & ‘how to?’ sce-

narios. These scenarios simulate changes (or fix values, respectively) anywhere in the system

and compare it to a baseline value of system performance. By doing so, SM provides an easy

way to compare the value of multiple interventions, understand the value of each component

and identify bottlenecks and other deficiencies in the system. At the same time, the term

of assessment is manageable in function of the objective of the study. Short and long-term

interventions aimed at improving efficiency, changing health behavior, and preventive care

are an important part of the toolbox of IHS, and the possibility of assessing them and optimize

their implementation in the correct time frame is expected when in pursuit of the Triple Aim

[3].

The application areas identified in the review were in line with the findings of previous

work focused on characterizing applications areas of simulation modeling in healthcare [18].

Likewise, the simulation techniques covered in this work are the most used and studied in lit-

erature. Markov Models are the simplest among simulation models, because of relatively low

computer, human, and data needs. It is the preferred methodology when assessing situations

with low complexity. System Dynamics models add the possibility of including feedback effects

and soft variables with a population perspective, characteristics that make it more prevalent in

the “Policy and Strategy” area, a realization in line with results of extensive reviews aimed at

linking simulation methods and healthcare areas of application [22, 25]. Microsimulations and

Discrete event simulations extend the complexity into individual-level assessments, which in

place enables the influence of past events. The main difference between the two is that Discrete

Event Simulations add the possibility of including interference. This characteristic makes it

more suitable to understand health processes that require queuing, a common feature in the

topic of “Health Resource Management”. Furthermore, several authors coincide in that Dis-

crete Event Simulation is the most common technique for evaluating the operation manage-

ment of care facilities [19, 22, 25]. Agent-Based Models understand the behavior of the system

out of the behavior of its agents. This simple definition allows the study of complex phenom-

ena with a relatively simple technical construction. The technique can include all the described

complexities, but the fact that works in an entirely simulated environment diminish the valid-

ity of its results.

A common characteristic of all the simulation modeling techniques is the inclusion of data

from multiple sources and the possibility of a probabilistic estimation. Twenty out of the 27

papers performed a probabilistic sensitivity analysis, either with Monte Carlo simulations or

other. A probabilistic estimation is not included as an aspect of complexity as we don’t con-

sider uncertainty to be unique to complex systems, and for the same reason, Monte Carlo sim-

ulations are not included as a SM technique to assess complex systems. However, the

possibility to include probabilistic estimations allows the inclusion of uncertain evidence,

which is essential for the comprehensiveness of the models. Validation is key for the usefulness

of the simulation results. Described in detail elsewhere [29], typically, a five steps approach is

used in SM, comprising: Face validity, internal validity, cross validity, external validity, and

predictive validity.
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Model selection

A system is most appropriately modeled by the technique that allows the inclusion of the most

important characteristics of said system. The selection of the most appropriate simulation

modeling technique to assess performance must consider the characteristics of the system and

the capabilities of each technique. It is important that only essential characteristics are consid-

ered so there is not an over-specification that hinders the analysis. In this line, identifying and

prioritizing the complexities that rule the system to be modeled will help evaluators in selecting

the most appropriate simulation model. Using our framework for complexity for this purpose,

we created a conceptual map (Fig 2) that aids evaluators in selecting a simulation model to

produce an accurate assessment of situations where complex relations are important. The tool

is a summary of the results and characterization presented in this paper. The first step is to

identify the most important complexity of the system to be modeled. Following a few key

Fig 2. Visual aid to select simulation modeling technique.

https://doi.org/10.1371/journal.pone.0254334.g002
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questions, the tool points to the technique with fewer inputs and technical difficulties that is

appropriate to model said system.

To help readers navigate the tool, we use the evaluation of a pay for performance incentive

scheme by Alonge et al. [37] as an example. We start by assuming that the most important

characteristics of the issue are (1.) the feedback loops that performance bonuses generate over

the revenue and quality of services and (2.) the effect of “Gaming” (a soft variable) of the staff

over this new payment scheme. Starting from the center and navigating through the figure we

could go to either “Important feedback loops” or “Soft variables” and if individual effects are

not considered essential, the tool takes us to System Dynamics—that is the approach used by

the author. Another example is the evaluation of interventions for reducing waiting time in a

health facility. Queues and backlogs are assumed the most important characteristic. If we con-

sider non-essential the intelligent behavior of the agents, then the tool points to Discrete Event

Simulation. Otherwise, an Agent-Based Model would be the most appropriate.

Sometimes the complexities of a system cannot be ranked according to their importance. If

this is the case, evaluators should repeat the exercise starting from all the identified complexi-

ties as if each were the most important one. If the different runs result in different modeling

techniques, a hybrid model is to be considered. This is the case for the paper by Gao et al. [43].

In this case the authors seek to model three elements of diabetes care. First, diabetes progres-

sion at the population level, with feedback loops being the most important complexity. Select-

ing important feedback loops in the figure takes you directly to System Dynamics (when

individualization is not important). Second, disease complication, where individualization of

risk factors and healthy behavior is crucial. After individual effects, the figure passes through

agent behavior towards Agent-Based Models. Finally, the authors study the status of every

patient to track the use of resources. In this case, individualization is the priority complexity,

but as agent behavior is not important for this element, the user will lean in favor of simultane-

ity of events, arriving at Discrete Event Simulation. As selected by the authors, the tool guides

each situation following the characteristics and prioritization of complexities to the appropri-

ate modeling technique.

Limitations

By focusing only on simulation modeling, the review overlooks many analytical methods to

assess complex systems. Several authors have described other analytical methods for studying

different aspects of complexity in health systems, including network analysis, marginal struc-

tural models, queuing theory, Petri nets [22], and artificial intelligence [83]. Previous work by

Jun et al. [22] characterizes and compares a wider set of modeling methods. However, it does

not consider the distinctive characteristics of the system to be modeled or describe how do

they apply system thinking. Our review focuses solely on simulation models because of the

advantages they present in the assessment of integrated care systems. Network Analysis pro-

vides an assessment of the structure of the (complex) relations in a system but does not con-

sider causal pathways. Marginal structural models and queuing theory are useful to represent

time-dependent covariates and interference (as defined in this paper) respectively, but they are

limited to these capacities. SM and Artificial intelligence methods, such as Machine Learning,

differ in that the latter constructs a model from patterns in the data, while SM constructs from

the structure of the system and then populates the model with data. Besides making the estima-

tions more comprehensible, this characteristic of SM allows policymakers to test structure

changing interventions, such as the ones in integrated care. In any case, the mentioned analyti-

cal approaches are complementary to SM, as they can provide the necessary inputs to build

and populate the simulation model. Comparisons between different analytical methods,
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understanding their capacities to represent complex system characteristics, is scarce and

should be further assessed in future research.

It is important to highlight that the approach to find IHS topics-of-interest is not the extent

of subjectivity, as there are multiple definitions for integrated care [3]. In this sense, it is proba-

ble to encounter multiple other IHS topics-of-interest that can be successfully modeled with

SM techniques. In the same line, our selection criteria focused on finding papers that allowed

us to understand the implementation of a complex system perspective, criteria that resulted in

fewer reviewed papers than previous literature linking simulation modeling and healthcare

performance assessment. Nevertheless, we are confident that the selection of papers in the

review together with the complementary literature used, allowed us to accurately characterize

the field of simulation modeling in their ability to use system thinking in integrated

healthcare.

Finally, clarify that our work does not provide an in-depth description of the different sim-

ulation modeling techniques. We acknowledge that such a task would be impossible to under-

take with our study design. Instead, we provide readers with an introduction to the identified

simulation modeling techniques and highlight the characteristics that allow them to imple-

ment system thinking. We encourage readers that find a solution in this work to the challenges

they encounter when assessing the performance of a complex health system to learn in detail

the technique that our paper has pointed towards. For this purpose, we recommend starting

with the complementary literature that we include for each technique in Table 2.

5. Conclusion

Simulation modeling techniques can use system thinking and evaluate performance emphasiz-

ing the complex relations between system components, in topics of relevance for integrated

healthcare systems. By using simulation models to complement the performance assessment

of integrated health systems, managers can correctly attribute causality to system components,

optimize interventions, and create long term assessments. All these are important advantages

over traditional assessment methods. Adding simulation models to the performance assess-

ment tools at disposition of health authorities may be the key to understand the full value of

integrated care. Selecting a simulation technique is facilitated when both the characteristics of

the modeling techniques are understood, and the complexities ruling the system performance

are identified and prioritized. To facilitate the use of the discipline, we consolidated complexity

features of different modeling techniques into one framework and provide future performance

evaluators with a visual aid to guide the selection of the most appropriate model for the assess-

ment of complexity-enhanced systems, such as integrated healthcare.
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