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Abstract: Mn4+ activated LaMgAl11O19 (LMA/Mn4+) with red emitting phosphor was obtained by
sintering under air conditioning. The X-ray diffraction pattern Rietveld refinement results reveal that
three six-fold coordinated Al sites are substituted by Mn4+ ions. Furthermore, the chemical valence
state of manganese in the LMA host was further confirmed through X-ray photoelectron spectroscopy
(XPS) and electron paramagnetic resonance (EPR). Photoluminescence emission (PL) and excitation
(PLE) spectra of LMA/Mn4+ as well as the lifetime were measured, and the 663 nm emission is
ascribed to the 2Eg→4A2g from the 3d3 electrons in the [MnO6]8− octahedral complex. The emission
spectrum matches well with the absorption of phytochrome. Temperature-dependent PL spectra
show that the color changes of the phosphor at 420 K are 0.0110 for ∆x and −0.0109 for ∆y. Moreover,
doping Zn2+ and Mg2+ ions in the host enhances the emission intensity of Mn4+ ions. These results
highlight the potential of LMA/Mn4+ phosphor for a light-emitting diode (LED) plant lamp.
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1. Introduction

Indoor agriculture has attracted considerable attention because of its relatively stable grow
environment without outside interference [1,2]. Studies show that light distribution in blue
(400–500 nm) and red (600–690 nm) regions has significant implications for plants as it affects the
photosynthetic reaction along with the developmental processes of flowering [3–5]. Very recently,
phosphor converted light emitting diodes (pc-LEDs) have been recognized as the primary artificial light
source for indoor plant growth because of its unique advantages over the traditional gas-discharge
lamps, such as simple fabrication technology, being power-economical, low radiant heat output,
and the ease of controlling the spectral composition [6–10].

Currently, LED grow light could be produced by the blue-emitting LED, which is prepared
though packing of a red phosphor on the GaN chip surface using silicone [11]. Moreover, the plant
growth lamps are adjustable according to demand by changing the spectra and luminous efficacy of the
phosphor. In particular, the radiation at 650–750 nm wave-bands is necessary for plant growth, thus red
phosphor has a major effect on the plant lamps [4,7,12]. It is well known that the transition metal
ion Mn4+ (3d3 electronic configuration) presents broad and intense absorption in the near ultraviolet
(n-UV) and blue region, resulting from the 4A2→(4T1, 2T2, and 4T2) spin-allowed transitions, and emits
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red to near-infrared (NIR) light, arisen by the transition from 2E→4A2 in an octahedral coordination
environment [13–17]. Furthermore, the Mn4+ ion doped oxide red phosphors perform well as red
luminescent materials for LED plant lamps, as demonstrated in Ba2TiGe2O8 [5], La(MgTi)1/2O3 [18],
NaLaMgWO6 [7], Li2MgZrO4 [8], and so on. Besides, LaMgAl11O19 (LMA) with a magnetoplumbite
structure exhibits excellent physical and chemical stability and contains an amount of [AlO6] octahedral
sites to accept doped Mn4+ ions into the LMA lattice [19]. The LaMgAl11O19 host doped with Mn2+

ions has been reported in a great deal of research [20–23]. However, the related luminescence property
of LaMgAl11O19/Mn4+ (LMA/Mn4+) phosphor is rarely reported.

In this study, a promising red-emitting Mn4+-activated LMA phosphor for plant growth will
be reported. The chemical valence state of manganese in the LMA host was investigated by
electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). As expected,
the LMA/Mn4+ phosphor shows a broad excitation band in the UV-blue region, and a narrow
red light emission band peaking at 663 nm, which, in accordance with the absorption band of
phytochrome, is observed just under 467 nm. The optimal doping concentration of Mn4+ ion is
1 mol %, and the influence of the doping concentration of Mn4+ ions on luminescent property is
discussed. By introducing impurities to the LMA host, such as Zn2+ and Mg2+ ions, the luminescent
efficiency is significantly improved. All these results demonstrate the great potential of LMA/Mn4+

phosphors for application in the agriculture industry as red-emitting luminescent materials.

2. Experimental Details

2.1. Sample Preparation

Sample LaMgAl11O19/xMn4+ (LMA/xMn4+) phosphors were prepared by the solid-state reaction
method. The starting raw materials were La2O3, Al2O3, MgO, MnCO3, and R (R = Li2CO3, Na2CO3,
MgO, CaO, ZnO, GeO2). LaMgAl11−x−yO19/xMn4+/yR (x = 0.02%~5.0%; y = 1% mol) was synthesized
by calcination of the mixture of starting materials at 1600 ◦C for 6 h in an ambient atmosphere.
The samples were prepared and then ground in an agate mortar.

2.2. Sample Characterization

Structural characterizations were executed by X-ray diffraction (XRD) measurements (X’ Pert PRO,
Cu Kα, λ = 1.5418 Å, PANalytical, Holland). The morphology and grain size of the LMA/0.01Mn4+

were investigated using a scanning electron microscope (SEM, Zeiss Sigma500, Jena, Germany).
The program Material Studio (MS 5.5, Biovia, San Diego, CA, USA) was used to analyze the crystal
structure and atomic position. The photoluminescence (PL) and photoluminescence excitation (PLE)
were recorded by Edinburgh Instruments (FLS 980; Livingston, UK) equipped with 450 W xenon
lamps as a lighting source. The quantum efficiency (QE) measurements were performed by the
spectrophotometer with a barium sulfate coated integrating sphere. The QE, which is defined as
the ratio of the total number of photons emitted (Iem) to the number of photons absorbed (Iabs),
is expressed as

η =
Iem

Iabs
=

∫
LS∫

ER −
∫

ES

where LS is the emission spectrum of the sample, and ES and ER are the spectra of the excitation
light with and without the sample in the integrating sphere, respectively. The diffuse refection
(DR) spectra of the samples were measured by a UV–Vis–NIR spectrophotometer (Lambda 950,
Pzserkin Elmer, Canton, MA, USA), using BaSO4 as a standard reference. The electron paramagnetic
resonance measurement was carried out using a Bruker A300 (Rheinstetten, Germany) with the
microwave frequency fixed at 9.8 GHz. The X-ray photoelectron spectroscopy (Thermo ESCALAB
250XI, Waltham, MA, USA) was conducted by Thermo Fisher Scientific. The first-principles
calculations for LMA were performed by CASTEP (MS 5.5, Biovia, San Diego, CA, USA) [24],
a plane-wave pseudopotential total energy package based on density functional theory (DFT) [25].
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The Perdew–Burke–Emzerhoff (PBE) function within the generalized gradient approximation (GGA)
form was adopted to describe the exchange-correlation energy. The optimized norm-conserving
pseudopotentials in the Kleinman–Bylander [26] form for all the elements were used to model the
effective interaction between atom cores and valence electrons. The high kinetic energy cutoff 1000 eV
and dense 5 × 1 × 5 Monkhorst–Pack [27] k-point meshes in the Brillouin zones were chosen for LMA.

3. Results and Discussion

3.1. Phase Purity and Crystal Structure Analysis

The XRD patterns of LMA/xMn4+ (x = 0, 0.01, 0.02, and 0.05) were conducted and are shown in
Figure 1a. It is obvious that all the XRD patterns of the as-prepared samples are consistent with the
standard data of LaMgAl11O19 (PDF #78-1845), indicating that there is not an observable change of the
crystal structure with Mn4+ ion doping. Then, the influence of the doping concentration of Mn4+ ion on
the crystal structure was studied by comparing the dominant diffraction peak at 36.16◦. Apparently, the
diffraction peak gradually shifts to the lower angles with the increased doping concentration of Mn4+

ion, which is the result of the bigger ions Mn4+ occupying the Al3+ ion sites in the LMA host lattice.
To achieve crystallographic data of the prepared samples, LMA/0.01Mn4+ was selected as

the representative to carry out XRD Rietveld refinement (Figure 1b). The refining adopted the
crystallographic data of LaMgAl11O19 (ICSD #48171) as an initial model and it converged to
Rwp = 11.5%, demonstrating the high reliability of the refined results [28]. Comparing the different
profiles between the experimental and calculated ones, we can confirm that the sample has a
hexagonal structure belonging to the P63/mmc space group. The lattice parameters of a = 5.5950(6) Å,
c = 21.9680(2) Å, α = 90◦(4), γ = 120◦(8), and cell volume V = 594.86(3) Å3 are consistent with reference
data, as listed in Table 1.
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Mg 0.33333 0.66667 0.02720 0.5 0.00240 4 
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Al2 0.00000 0.00000 0.25000 1 0.02305 5 
Al3 0.33333 0.66667 0.02720 0.5 0.00240 4 
Al4 0.33333 0.66667 0.18950 1 0.00228 6 
Al5 0.16740 0.33480 0.89200 1 0.00304 6 
O1 0.00000 0.00000 0.15100 1 0.00278  
O2 0.33333 0.66667 0.94200 1 0.00329  
O3 0.18000 0.36000 0.25000 1 0.00709  
O4 0.15200 0.30400 0.05300 1 0.00455  
O5 0.50500 0.010000 0.15100 1 0.00380  

Figure 1. (a) X-ray diffraction (XRD) pattern of LaMgAl11O19 (LMA)/xMn4+; (b) experimental
(black solid line) and calculated (yellow crossed symbol) XRD profiles of LMA/0.01Mn4+. The
difference profile (blue solid line) and Bragg position (vertical line) are also provided.

Many previous studies have proven that Mn4+ ions in octahedral geometry will produce red
emission [11]. Hence, the more [Al(O/F)6] octahedral sites the structure has, the greater the capacity
it will offer to adopt Mn4+ ions, which is beneficial to emit efficient red light. As shown in the LMA
structure built based on the refining results (Figure 2), the coordination environments of Al1−5 atoms
can be observed. It is worth noting that there are three six-fold coordinated Al sites (Al1, Al4, and Al5),
which are identical to the coordination situation in other Mn4+ ion doped oxide hosts. Correspondingly,
the Mn4+ ions could substitute for the Al1, Al4, and Al5 sites in the LMA host to form the [MnO6]8−

octahedral complex.
In order to assess the manganese (IV) center obtained in the phosphor, the EPR spectrum of

LMA/0.01Mn4+ at 77 K was conducted. As shown in Figure 3a, the typical hyperfine sextet doubly
degeneracy energy levels are observed, indicating the Mn ions possess a strong crystal field. The center
of the signals corresponding to the g value is 2.11 based on the following equation:
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hv = gβH (1)

where h is the Planck constant (6.626620 ×10−27 erg/s), ν is the microwave frequency, g is the
nondimensional spectral splitting factor (g value), and β is the Bohr magneton (9.27410×10−21 erg/G).
The result verifies that the magnetic dipolar transition of Mn4+ ions occupies symmetric octahedral sites.
Meanwhile, XPS was further used to confirm the chemical valence state of manganese in LMA/Mn4+.
The XPS spectra of LMA/0.01Mn4+, LMA/0.05Mn4+, MnCO3, and MnO2 are displayed in Figure 3b,
in which MnCO3 and MnO2 are used as the reference standards for Mn2+ and Mn4+ ions, respectively.
The peaks of the as-synthesized sample could be assigned to the Mn 2p3/2 and are close to the peaks
of MnO2. Meanwhile, the peak intensity increases with the increasing content of Mn as shown in
Figure 3b. All these results suggest that the oxidation state of manganese in the LMA host is +4 [29,30].

Table 1. Crystallographic data and refinement parameters of the LMA/0.01Mn4+.

Atom x y z Occ U Coordination Number

La 0.33333 0.66667 0.75000 1 0.00911
Mg 0.33333 0.66667 0.02720 0.5 0.00240 4
Al1 0.00000 0.00000 0.00000 1 0.00190 6
Al2 0.00000 0.00000 0.25000 1 0.02305 5
Al3 0.33333 0.66667 0.02720 0.5 0.00240 4
Al4 0.33333 0.66667 0.18950 1 0.00228 6
Al5 0.16740 0.33480 0.89200 1 0.00304 6
O1 0.00000 0.00000 0.15100 1 0.00278
O2 0.33333 0.66667 0.94200 1 0.00329
O3 0.18000 0.36000 0.25000 1 0.00709
O4 0.15200 0.30400 0.05300 1 0.00455
O5 0.50500 0.010000 0.15100 1 0.00380

Symmetry: hexagonal Space group: P63/mmc
Lattice parameters: a = b = 5.5950 Å; c = 21.9680 Å; α = β = 90◦; γ = 120◦; V = 594.86 Å3
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Figure 2. The crystal structure of LaMgAl11O19 and the octahedral AlO6 ligands.

Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) were
performed to further display the detailed morphological feature and elements of LMA/0.01Mn4+

particles. As shown in Figure 4a, the size of the selected particles is about 5–15 µm, illustrating the
good crystallization of the as-synthesized sample. The EDS analysis of the phosphors is presented
in Figure 4b. All the targeted peaks of the elements (lanthanum (La), magnesium (Mg), aluminum
(Al), and oxygen (O)) could be clearly observed. The elemental mapping was carried out to further
confirm the uniform distribution of elements. The EDS image shows the presence of La, Al, Mg, and O
in the sample, as well as the homogenous distribution of the corresponding elements in the phosphor
(Figure 4c).
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LMA/0.01Mn4+; (c) SEM and element distribution mapping of the corresponding sample.

3.2. Electronic Structure Calculations of LMA

The electronic structure of LaMgAl11O19 is presented in Figure 5a. The top of the valence band
(VB) maximum and the bottom of the conduction band (CB) minimum locate at different k-points,
revealing that LaMgAl11O19 is an indirect semiconductor with a band gap of 4.05 eV. The wide band
gap demonstrates that the LaMgAl11O19 is a good luminescent material for accommodating the 4A2g

and 2Eg states of Mn4+ ion [16]. Additionally, Figure 5b shows the partial density of states (DOS) of La,
Mg, Al, and O. Corresponding with the total DOS for LaMgAl11O19, the VB top is mainly composed of
O-2p, while La-4f states make a significant contribution to the CB top.
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3.3. Components Luminescent Properties of LMA/Mn4+

Figure 6a depicts the diffuse reflection (DR) spectra of LMA with different doping concentrations
of Mn4+ ion. Similar to the results reported previously, there is a characteristic intense spin-allowed
Mn4+/4A2g→4T2g transition peaking at ~470 nm and a weak recognizable spin-forbidden 4A2g→2T1g

one located at 390 nm [11,16]. However, the charge transfer band is too weak to separate from the
DR spectra.
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Figure 6. (a) The diffuse reflection (DR) spectra of LMA/xMn4+ (x = 0.005, 0.01, and 0.05);
(b) photoluminescence (PL) and PL excitation (PLE) spectra of LMA/0.01Mn4+ at room temperature
and the absorption spectrum of phytochrome PR (PR is defined as the red light absorbed by the
phytochrome).

Figure 6b shows the normalized photoluminescence (PL) and PL excitation (PLE) spectra of
the LMA/0.01Mn4+ at room temperature. Apparently, one prominent red emission band at 663 nm
caused by the anti-stokes and stokes transition 2Eg, 2T2g→4A2g of the 3d3 electrons from Mn4+ ions
in the [MnO6]8− octahedra is observed under excitation of 467 nm [11]. The chromaticity coordinate
of the LMA/Mn4+ sample in the Commission Internationale de L’Eclairage (CIE) 1931 color spaces
is calculated to be (0.725, 0.274), which is beneficial to the long-day plants. The PLE spectrum
of the sample comprises two ultraviolet peaks at 345 nm and 390 nm, and one distinguishable
blue band centered around 470 nm derived from the inner d–d transitions of Mn4+ ions. The peak
locations are the same as the absorption peaks in the DR spectra and the peaks originate from the
Mn4+–O2− charge-transfer band (CTB) 4A2g→4T1g and spin-allowed transitions 4A2g→4T2g of Mn4+

ions, respectively. The internal quantum efficiency of LMA/Mn4+ is measured to be 38.5% for the
excitation wavelength of 465 nm, as demonstrated in Figure S1. The value is comparable to the
one reported by Peng et al. [13]. These spectral features agree well with other previous studies
about Mn4+-doped aluminates, suggesting that the Mn4+ ions had been successfully incorporated
into the LMA host. The Tanabe–Sugano energy-level diagram illustrates the dependence of energy
levels of 3d3 on the parameters of Dq, B, and C, in which Dq is a parameter that characterizes the
strength of the octahedral crystal field, while B and C are Racah parameters. From the supplementary
Equations (1)–(4), the values of Dq, B, and C in the LMA/Mn4+ are then determined to be 2150 cm−1,
321 cm−1, and 4076 cm−1, respectively.

The doping concentration of Mn4+ ion dependence of the PL integrated intensity is shown in
Figure 7a. Typically, the luminescence intensity increases gradually at first with the increase of the
doping concentration of Mn4+ ion, then approaches a maximum value at 0.01, and finally decreases
when the doping concentration of Mn4+ ion is slightly higher than 0.01. The exchange interaction
or multipole–multipole interaction within the nearest Mn4+ ions are ascribed to the concentration
quenching phenomenon. To clarify this point, it is necessary to calculate the critical transfer distance
(Rc) among the Mn4+ ions. Upon the Blasse mechanism [31], Rc is evaluated via the following equation:
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RC ≈ 2
(

3V
4πxcZ

) 1
3

(2)

In this work, V = 594.86 Å3, N = 28, xc = 0.01, and the critical Rc of Mn4+ ion in LMA is calculated
to be ~15.9 Å. The estimated Rc value is bigger than 5 Å, hence it is inferred that an exchange interaction
may not be the main possible approach.Materials 2018, 11, x FOR PEER REVIEW  7 of 11 
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Thus, the concentration quenching mainly relies on the electric multipolar interaction, which is
confirmed by Dexter’s theory [32]. The type of interaction between Mn4+ ions can be expressed by the
following equation:

I
x
= K

[
1 + β(x)

θ
3
]−1

(3)

where x is the activator concentration; K and β are constants; and θ is an indication of the electric
multipolar character in which θ = 6, 8, 10 corresponds to dipole–dipole, dipole–quadrupole and
quadrupole–quadrupole, respectively. Figure 7b depicts the dependence of log(x) and log(I/x) for the
LMA/Mn4+ phosphors. The linear slope is calculated to be ~2.12 and the value of θ is determined
as approximately 6. Consequently, the quenching mechanism is a dipole–dipole interaction in
LMA/Mn4+.

Generally, as a red color converter in blue-chips, the thermal stability of the sample is a
significant parameter in fundamental research, because the chip temperature usually undergoes
a high temperature (> 423K), which would degrade emission intensity and color quality. Figure 8a
gives the temperature-dependent emission spectra of LMA/0.01Mn4+ spanning from 300 K to 480 K
under excitation of 467 nm. Obviously, the emission intensity of the as-prepared sample decreases
monotonically with the increase of temperature. However, there is no distinct peak position shift
over 380 K. The integrated emission intensity is presented in Figure 8b. When the sample is heated
to 420 K, the integrated intensity retains only 36% of the emission intensity at 300 K. The thermal
quenching behavior may be affected by the oscillator strength and the distributed killer centers,
which could strengthen the nonradiative energy relaxation. Despite an obvious drastic emission loss,
the chromaticity coordinate variations at 420 K are 0.0110 and −0.0109, respectively, well satisfying
the requirement in LED applications [33]. Meanwhile, the temperature-dependent PL decay curves of
LMA/0.01Mn4+ at 663 nm were further measured. As shown in Figure 8c, the decay lifetimes seem to
be multiexponential. We found that there are three six-fold coordinated Al sites (Al1, Al4, and Al5)
in the structure of LMA. When Mn4+ ions substitute for the Al1, Al4, and Al5 sites in the LMA host,
three [MnO6]8− octahedral complex luminescence center formed, which would contribute to the decay
time with multiexponential function. Meanwhile, the doping concentration of Mn4+ ions also affect
the decay process via energy transfer. The distance between the activated centers is 2.658 to 5.59Å,
hence the energy transfer would lead to the deviation from linear of the decay curves. Moreover,
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the decay lifetimes also strongly rely on the temperature. The lifetimes are calculated according to the
equation below:

τ =

∫ ∞
0 I(t)tdt∫ ∞
0 I(t)dt

(4)

where τ is the decay time and I(t) is the luminescence intensity at time t. Based on Equation (4),
the average lifetime of LMA/0.01Mn4+ decreases gradually from 1.35 ms at 300 K to 0.46 ms at 480 K,
which is consistent with the change rule of the emission intensity. The decay of Mn4+ in the matrix
becomes faster and faster, owing to the increased nonradiative energy migration among Mn4+ ions at a
higher temperature.
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possible thermal quenching process.

The activation energy (∆E) for thermal quenching can be determined by the following
equation [34]:

IT = I0/[1 + c exp(−∆E/kT)] (5)

where I0 and IT stand for the initial emission intensity and the luminescence intensity at temperature T,
respectively; c is a constant for a designated host; and k is the Boltzmann constant. Thus, the activation
energy of the LMA/Mn4+ phosphor is calculated to be 0.38 eV. The thermal quenching mechanism can
be explained by the configurational coordinate diagram, as shown in Figure 8d.

In a further experiment, the influence of M (M = Li+, Na+, Mg2+, Ca2+, Zn2+, Ge4+) ion on the
emission intensity of Mn4+/LMA was studied (Figure S2). The ionic radii of these M ions are 0.590 Å
for Li+ (CN = 4), 0.99 Å for Na+ (CN = 4), 0.720 Å for Mg2+ (CN = 6), 1.00 Å for Ca2+ (CN = 6), 0.60 Å for
Zn2+ (CN = 4), and 0.530 Å for Ge4+ (CN = 6), respectively [35]. When the impurity ions were co-doped
into LMA/Mn4+, the characteristic peaks in the emission spectra were not changed. The integrated PL
intensities of the samples into which the impurity ions were incorporated are presented in Figure 9a.
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Therein, Mg2+ and Zn2+ ions have the ability to enhance luminescence of LMA/0.01Mn4+, Na+ and
Ca2+ ions have no obvious impact on Mn4+ ion luminescence, and the Li+/Ge4+ doped LMA/0.01Mn4+

phosphors show weaker luminescence intensities under excitation of the same blue light. Specifically,
the ratio of the emission yields of LMA/0.01Mn4+ phosphors with and without Zn2+ ion doping are
measured to be 2.04, in favor of the conclusion that the luminescence intensity of LMA/Mn4+ can be
greatly strengthened via impurity doping. Moreover, the effect of co-dopants for improving Mn4+

luminescence follows the order of Zn2+ > Mg2+ > Na+. As discussed in Figure 8c, the substitution of
Mn for the Al1, Al4, and Al5 sites in the LMA host is attributed to the multiexponential function; the
co-doped model also presents similar decay curves. Similarly, the decay curves were tested to verify
this phenomenon. Figure 9b shows the lifetime of Mn4+ ion in phosphor with co-doping Zn2+ and
Mg2+ ions, and the result suggests that the lifetime becomes longer. The introduction of Mg2+/Zn2+

ions increases the PL intensity of Mn4+ ions, which is attributed to the replacement of Mn4+–Mn4+ pairs
by Mg2−–Mn4+ and/or Zn2+–Mn4+ ion pairs. Hence, the nonradiative depopulation of the 2Eg state is
decreased because the energy migration between the Mn4+–Mn4+ ion pairs is faster than Mg2−–Mn4+

and/or Zn2+–Mn4+ ion pairs, and thus the probability of the energy terminating at a killer site of the
Mn4+–Mn4+ ion pairs is greater. Moreover, the formation of Mg2+–Mn4+/Zn2+–Mn4+ pairs along with
the impurities of Mg2+/Zn2+ ions not only lengthen the emission lifetimes of the co-doped samples
compared with that of the LMA/0.01Mn4+ sample, but also lead to the decrease in the nonradiative
rate. [13,16].
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Figure 9. (a) Integrated intensity for the Mn4+ (0.01 mole)/LMA and Mn4+/M/LMA (M = Li+, Na+,
Mg2+, Ca2+, Zn2+, Ge4+) phosphors; (b) decay curves of Mn4+ with Mg2+, Ca2+, and Zn2+ doping as
well as without doping.

4. Conclusions

In summary, a red emitting phosphor LMA/Mn4+ for an LED plant growth lamp was synthesized
by the solid state reaction method and sintering at 1600 ◦C in the air directly. The crystal structure of
LMA/0.01Mn4+ was studied by the XRD Rietveld refinements. XPS and EPR spectra demonstrate that
the chemical valence of manganese is +4. The LMA/Mn4+ phosphor exhibits a red emission peaking
at 663 nm, which is attributed to the 2E→4A2 transition of Mn4+ ion in the [MnO6]8− octahedral
environment, and the QE is 35.8% under the blue-light excitation. The optimal doping concentration
of Mn4+ ion is 0.01 mole and the quenching mechanism is a dipole/dipole interaction. Moreover,
the chromaticity coordinate variations at 420 K are 0.0110 and −0.0109, respectively. Additionally,
the luminescence of LMA/Mn4+ could be greatly enhanced via impurity doping Zn2+ or Mg2+ ions.
These properties make LMA/Mn4+ a promising red emitting phosphor for plant growth LEDs.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1996-1944/12/1/86/s1.
Figure S1: The quantum efficiency of the LMA:0.01Mn4+ phosphor, Figure S2: PL spectra of LMA:0.01Mn4+,
0.01M+ powder.
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