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We consider a problem that models fluid flow in a
thin domain bounded by two surfaces. One of the
surfaces is rough and moving, whereas the other is
flat and stationary. The problem involves two small
parameters ε and μ that describe film thickness
and roughness wavelength, respectively. Depending
on the ratio λ = ε/μ, three different flow regimes
are obtained in the limit as both of them tend to
zero. Time-dependent equations of Reynolds type
are obtained in all three cases (Stokes roughness,
Reynolds roughness and high-frequency roughness
regime). The derivations of the limiting equations are
based on formal expansions in the parameters ε and μ.

1. Introduction
The fundamental problem in lubrication theory is to
describe fluid flow in a gap between two adjacent
surfaces which are in relative motion. In the
incompressible case, the main unknown is the pressure
of the fluid. Having resolved the pressure it is possible
to compute other fundamental quantities such as
the velocity field and the forces on the bounding
surfaces. To increase the hydrodynamic performance
in various lubricated machine elements, for example
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journal bearings and thrust bearings, it is important to understand the influence of surface
roughness. In this connection, one encounters various approaches, commonly based on the
equation proposed by Osborne Reynolds in 1886 [1]. Although a number of averaging
methods considering surfaces roughness have been proposed over the last 40 years (e.g. [2–4]),
homogenization has prevailed as the proper way to average [5,6]. Homogenization is a rigorous
mathematical theory that takes into account information about local effects on the microscopic
level [7].

This study is concerned with the asymptotic behaviour of Stokes flow in a narrow gap
described by two small parameters ε and μ. The parameter ε is related to the distance between the
surface, whereas μ is the wavelength of the periodic roughness. In many problems involving two
small parameters, the way in which the parameters tend to zero is primordial and the limiting
equations may be different whether ε tends to zero faster, slower or at the same rate as μ. Using
formal asymptotic expansions in the evolution Stokes equations, we show that three different
asymptotic solutions, i.e. three different flow regimes, exist in the limit as ε > 0 and μ > 0 tend to
zero depending on whether the limiting ratio

λ = lim
(ε,μ)→(0,0)

ε

μ

equals zero, a positive number or ∞. In all three flow regimes, the limiting pressure is governed
by a two-dimensional equation of Reynolds type whose coefficients take into account the fine
microstructure of the surface, i.e. a homogenized equation. The situation can be summarized
as follows:

Stokes roughness regime. The case when 0 < λ < ∞. One finds that the coefficients of the
homogenized equation are obtained by solving three-dimensional so-called cell problems
which depend on the parameter λ.
Reynolds roughness regime. The case when λ = 0. The cell problems are two-dimensional
and the proposed averaged equation appears in, for example, [3,8,9]. The same limiting
equations are obtained if one lets λ → 0 in the Stokes roughness.
High-frequency roughness regime. The case when λ = ∞. We obtain a limiting equation of
very easy and cheap treatment. The same limiting equations are obtained if one lets λ →
∞ in the Stokes roughness.

This work is closely related to the studies by Bayada & Chambat [4,10] and Benhaboucha et al.
[11], who considered the stationary case, i.e. only the flat surface is moving. The main novelty
is the treatment of the unstationary case (the rough surface is moving) as well as the way that
ε and μ tend to zero. The paper is organized as follows: §2 is devoted to the formulation of the
problem and basic notations. Section 3 contains a summary of the main results of this work. In
§4, we define the formal asymptotic expansions, the corresponding change of variables, domains
and differential operators for the problem. Section 5 is concerned with the Stokes roughness, with
constant ratio ε/μ = λ. This is the case analysed in [4,10]. Section 6 is devoted to the case ε = μ2,
which corresponds to Reynolds roughness. We apply the asymptotic expansion method in one
parameter and derive the homogenized Reynolds equations. The last section deals with the case
μ = ε2, which belongs to the high-frequency roughness regime. We obtain the classical Reynolds
equations with truncated film thickness. We note that neither ε = μ2 nor μ = ε2 is covered in
[4,10], whereas [11] only covers ε = μ2. Evidently, as mentioned in [4,10], identical equations
are obtained if one lets λ → 0 and λ → ∞ in the Stokes roughness regime. However, from a
mathematical point of view, there is no apparent reason why taking limits in such different ways
would yield the same result.

For clarity, the main results are presented as ‘theorems’ and their derivations as ‘proofs’,
although the method of formal expansion is not rigorous by mathematical standards. Choosing
this style, we hope to make the paper accessible to a wider audience. We stress, however, that all
calculations (including limit processes) can be made rigorous.
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2. Problem formulation and basic notations
This study is concerned with thin film hydrodynamic lubrication of rough surfaces. For simplicity,
we suppose that one of the surfaces is rough and moves with velocity v = (v1, v2, 0) and that the
other is flat and stationary. As the rough surface is moving, the film thickness varies in both
space and time, thus rendering the problem unstationary. A point in space (R3) is denoted as
x = (x1, x2, x3), and t is a time variable that belongs to the interval [0, T]. The problem considered
is the evolution Stokes system

∂u
∂t

− ν�u + ∇p = 0 (2.1)

and

div u = 0, (2.2)

where ν (viscosity) is a constant, and u = (u1, u2, u3) (velocity field) and p (pressure) are unknown.
We shall write

x′ = (x1, x2), z = x3

ε
, y′ = x′

μ
and τ = t

μ
, (2.3)

where ε and μ are two small parameters. The basic idea of the homogenization method is to treat
x′, y′, t and τ as independent variables. Equations (2.1) and (2.2) are assumed to hold in a moving
space domain Ωεμ(t), defined by

Ωεμ(t) =
{

x = (x1, x2, x3) ∈ R
3, x′ = (x1, x2) ∈ ω, 0 < x3 < εH

(
x′,

x′

μ
, t,

t
μ

)}
,

where ω is an open connected set in R
2 with smooth boundary, outward unit normally denoted

by n̂ and the function H(x′, y′, t, τ ) describes the geometry of the upper surface. H is assumed to be
Y-periodic in y′, Y = [0, 1] × [0, 1] being the cell of periodicity and T-periodic in τ . More precisely,

H(x′, y′, t, τ ) = h0(x′ − tv) + hper(y′ − τv),

where h0 describes the global film thickness, whereas the Y-periodic function hper represents the
roughness. Thus, ε is related to the film thickness, whereas μ is the wavelength of the roughness.
Moreover, we define the ‘minimum film thickness’

H∗(x′, t) = h0(x′ − tv) + miny′∈Yhper(y′).

The boundaries of Ωεμ(t) are

Σ+
εμ(t) =

{
x ∈ R

3 : x′ = (x1, x2) ∈ ω, x3 = εH
(

x′,
x′

μ
, t,

t
μ

)}
,

Σ−
εμ(t) = {x ∈ R

3 : x′ = (x1, x2) ∈ ω, x3 = 0}

and Σw
εμ(t) =

{
x ∈ R

3 : x′ = (x1, x2) ∈ ∂ω, 0 ≤ x3 ≤ εH
(

x′,
x′

μ
, t,

t
μ

)}
.

We assume the following no-slip boundary conditions:

u =
(

v1, v2, ε
(

∂H
∂t

+ v · ∇H
))

on Σ+
εμ(t),

u = 0 on Σ−
εμ(t)

and u =

⎛
⎜⎜⎜⎜⎜⎝

g1

(
x1, x2,

x3

ε

)
g2

(
x1, x2,

x3

ε

)
εg3

(
x1, x2,

x3

ε

)

⎞
⎟⎟⎟⎟⎟⎠ on Σw

εμ(t),
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where g = (g1, g2, g3) is some given function and the initial condition

u =

⎛
⎜⎜⎜⎜⎜⎝

U0
1

(
x1, x2,

x3

ε

)
U0

2

(
x1, x2,

x3

ε

)
εU0

3

(
x1, x2,

x3

ε

)

⎞
⎟⎟⎟⎟⎟⎠ on Ωεμ(0) × {0},

where ∇H = (∂H/∂x1, ∂H/∂x2, 0).
For convenience, we use the notation

f̄ y′ =
∫

Y
f dy′, f̄ z =

∫H

0
f dz and f̄ z∗ =

∫H∗

0
f dz

for integrals of a function f . Moreover, we denote by e1, e2, e3 the standard basis vectors in R
3.

Finally, to ensure the existence of u, we must require some compatibility between the boundary
conditions and H. To this end, it is assumed that g is a C1 vector field defined on R

3 such that
divg = 0, g(x1, x2, 0) = (0, 0, 0),

g1(x1, x2, H) = v1, g2(x1, x2, H) = v2 and g3(x1, x2, H) = ∂H
∂t

+ v · ∇H

and
∫
ω

∂H
∂t

dx′ +
∫
∂ω

(∫H

0
g dz

)
· n̂ dS = 0 (2.4)

for all (y′, t, τ ).

3. Formal asymptotic expansion in ε andμ

We analyse the asymptotic behaviour of the equations of motion (2.1) and (2.2). We define the
following expansions for u and p:

u(x, t) =
∞∑

n=0

∞∑
m=0

εnμmun,m(x′, z, y′, t, τ )

and

p(x, t) =
∞∑

n=−2

∞∑
m=0

εnμmpn,m(x′, z, y′, t, τ ),

where x′, z, y′ and τ are defined by (2.3) though subsequently treated as independent variables. As
the roughness is periodic, it is assumed that un,m(x′, z, y′, t, τ ) and pn,m(x′, z, y′, t, τ ) are Y-periodic
in y′ and T-periodic in τ . It is convenient to define also the following domains:

Ω(y′, t, τ ) = {(x′, z) ∈ ω × R : 0 < z < H(x′, y′, t, τ )},
B(x′, t, τ ) = {(y′, z) ∈ Y × R : 0 < z < H(x′, y′, t, τ )},

B+H∗ (x′, t, τ ) = {(y′, z) ∈ Y × R : H∗(x′, t) < z < H(x′, y′, t, τ )},
Ω∗(t) = {(x′, z) ∈ ω × R : 0 < z < H∗(x′, t)},

B∗(x′, t) = {(y′, z) ∈ Y × R : 0 < z < H∗(x′, t)}
and Yz(x′, t, τ ) = {y′ ∈ Y : (y′, z) ∈ B(x′, t, τ )}.
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The boundaries of Ω(y′, t, τ ) and Ω∗(t) are

Σ+(y′, t, τ ) = {(x′, z) ∈ ω × R : z = H(x′, y′, t, τ )},
Σ−(y′, t, τ ) = {(x′, z) ∈ ω × R : z = 0},
Σw(y′, t, τ ) = {(x′, z) ∈ ∂ω × R : 0 ≤ z ≤ H(x′, y′, t, τ )},

Σ∗+(t) = {(x′, z) ∈ ω × R : z = H∗(x′, t)},
Σ∗−(t) = {(x′, z) ∈ ω × R : z = 0}

and Σ∗w(t) = {(x′, z) ∈ ∂ω × R : 0 ≤ z ≤ H∗(x′, t)}.
Note that B(x′, t, τ ) and B∗(x′, t) do not have lateral boundaries because of the periodicity of Y. The
boundary of Yz is denoted by

∂Yz(x′, t, τ ) = {y′ ∈ Y : z = H(x′, y′, t, τ )}.

(a) Differential operators
Assume u(x, t) = v(x′, z, y′, t, τ ). Then,

∂u
∂t

= ∂v

∂t
+ 1

μ

∂v

∂τ
,

∇u =
(

∂v

∂x1
,

∂v

∂x2
, 0
)

+ 1
μ

(
∂v

∂y1
,

∂v

∂y2
, 0
)

+ 1
ε

(
0, 0,

∂v

∂z

)

and �u =
(

∂2

∂x2
1

+ ∂2

∂x2
2

)
v + 2

μ

(
∂2

∂x1∂y1
+ ∂2

∂x2∂y2

)
v + 1

μ2

(
∂2

∂y2
1

+ ∂2

∂y2
2

)
v + 1

ε2

(
∂2

∂z2

)
v.

Define

∇x′ =
(

∂

∂x1
,

∂

∂x2
, 0
)

, ∇y′ =
(

∂

∂y1
,

∂

∂y2
, 0
)

and ∇z =
(

0, 0,
∂

∂z

)
and

�x′ = ∂2

∂x2
1

+ ∂2

∂x2
2

, �y′ = ∂2

∂y2
1

+ ∂2

∂y2
2

and �z = ∂2

∂z2 .

Moreover,
divx′v = ∇x′ · v and divy′v = ∇y′ · v.

4. Stokes roughness
Figure 1 describes the case when ε and μ tend to zero with constant ratio 0 < λ < ∞. That is,
we assume that μ = ε/λ, where λ is a positive constant. We define the following asymptotic
expansions:

u(x, t) =
∞∑

n=0

εnun(x′, z, y′, t, τ ) (4.1)

and

p(x, t) =
∞∑

n=−2

εnpn(x′, z, y′, t, τ ). (4.2)

Inserting (4.1) and (4.2) into (2.1) and equating terms of the same order using

∂

∂t
→ ∂

∂t
+ λ

ε

∂

∂τ
,

∇ → ∇x′ + λ

ε
∇y′ + 1

ε
∇z

and � → �x′ + 2λ

ε

(
∂2

∂x1∂y1
+ ∂2

∂x2∂y2

)
+ λ2

ε2 �y′ + 1
ε2 �z
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global film thickness
rough and moving surface
flat and stationary surface

µ

Figure 1. Stokes roughness (μ = ε/λ). (Online version in colour.)

gives

1
ε3 : λ∇y′ p−2 + ∇zp−2 = 0, (4.3)

1
ε2 : −νλ2�y′ u0 − ν�zu0 + ∇x′ p−2 + λ∇y′ p−1 + ∇zp−1 = 0 (4.4)

and
1
ε

: λ
∂u0

∂τ
− ν

(
2λ

∂2u0

∂x1∂y1
+ 2λ

∂2u0

∂x2∂y2
+ �zu1 + λ2�y′ u1

)

+ ∇x′ p−1 + λ∇y′ p0 + ∇zp0 = 0. (4.5)

Similarly for (2.2), we have

1
ε

: λ divy′ u0 + ∂u0
3

∂z
= 0 (4.6)

and

ε0 : divx′ u0 + λ divy′ u1 + ∂u1
3

∂z
= 0. (4.7)

The boundary conditions are

ε0 : u0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
v1, v2, λ

(
∂H
∂τ

+ v · ∇y′ H
))

on Σ+

0 on Σ−

(g1, g2, 0) on Σw

and ε1 : u1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0, 0,

∂H
∂t

+ v · ∇x′ H
)

on Σ+

0 on Σ−

(0, 0, g3) on Σw

and initial conditions are

ε0 : u0 = (U0
1, U0

2, 0) on Ω × {t = 0}
and ε1 : u1 = (0, 0, U0

3) on Ω × {t = 0}.
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(a) Analysis of equations
The main result pertaining to the Stokes roughness is as follows.

Theorem 4.1. The leading term u0 in expansion (4.1) for u is given by

u0 =
2∑

i=1

∂p−2

∂xi
αi + α0, (4.8)

where αi(i = 0, 1, 2) is a solution of the periodic cell problems (4.12) and (4.13) and the leading term p−2 in
expansion (4.2) for ε2p is a solution of the boundary value problem

divx′ (Aλ∇x′ p−2 + bλ) + ∂H̄y′

∂t
= 0 in ω × (0, T] (4.9)

and

(Aλ∇x′ p−2 + bλ − ḡzy′
) · n̂ = 0 on ∂ω × (0, T], (4.10)

where Aλ and bλ are calculated by (4.17) and (4.18), respectively.

Proof. If we write (4.3) in component form, we obtain

∂p−2

∂y1
= 0,

∂p−2

∂y2
= 0 and

∂p−2

∂z
= 0,

hence p−2(x′, y′, z, t, τ ) = p−2(x′, t, τ ). We are looking for solutions u0 of the form (4.8) and p−1 of
the form

p−1 =
2∑

i=1

∂p−2

∂xi
qi + q0, (4.11)

where αi = αi(x′, z, y′, t, τ ) and qi = qi(x′, z, y′, t, τ ) are to be determined. Clearly, (4.8) and (4.11)
satisfy (4.4) and (4.6) if

νλ2�y′αi + ν�zα
i = λ∇y′ qi + ∇zqi + ei in B (i = 0, 1, 2) (4.12)

and

λ divy′αi + ∂αi
3

∂z
= 0 in B (i = 0, 1, 2). (4.13)

The above systems of equations are called cell problems, whose solutions αi and qi are Y-periodic,
and the boundary conditions are

αi =

⎧⎪⎨
⎪⎩
(

v1, v2, λ
(

∂H
∂τ

+ v · ∇y′ H
))

, (i = 0)

0, (i = 1, 2)
on S+

and αi = 0, (i = 0, 1, 2) on S−.

It can be verified that each αi is uniquely determined by (4.12) and (4.13).
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Multiplying (4.7) by φ(x′) ∈ C1(ω̄) and integrating by parts using the Gauss–Green theorem,
we obtain

0 =
∫
ω

∫
Y

∫H

0

(
divx′ u0 + λ divy′ u1 + ∂u1

3
∂z

)
φ(x′) dz dy′ dx′

=
∫

Y

∫
Ω

divx′ u0φ dx′ dz dy′ +
∫
ω

∫
B

(
λ divy′ u1 + ∂u1

3
∂z

)
φ dy′ dz dx′

=
∫

Y

∫
Ω

−u0 · ∇x′φ dz dx′ dy′ +
∫

Y

∫
Σ+

φ(u0
1, u0

2, u1
3) · n̂ dS(x′, z) dy′

+
∫

Y

∫
Σw

φg · n̂ dS(x′, z) dy +
∫
ω

∫
∂B

φλ(u1
1, u1

2, 0) · n̂ dS(y′, z) dx′

=
∫

Y

∫
ω

−u0z · ∇x′φdy′ dx′ +
∫

Y

∫
∂ω

∫H

0
φg · (n̂1, n̂2, 0) dS(x′, z) dy

+
∫

Y

∫
ω

−v · ∇x′ Hφ +
(

∂H
∂t

+ v · ∇x′ H
)

φ dx′ dy

=
∫
ω

−u0zy′

· ∇x′φ + ∂H̄y′

∂t
φ dx′ +

∫
∂ω

φḡzy′
· n̂ dS(x′).

As φ is arbitrary, it holds that

divx′ u0zy′

+ ∂H̄y′

∂t
= 0 in ω × (0, T] (4.14)

and

(u0zy′

− ḡzy′
) · n̂ = 0 on ∂ω × (0, T]. (4.15)

By integrating (4.8), we obtain

u0zy′

=
2∑

i=1

∂p−2

∂xi
αi

zy′

+ α0zy′

= Aλ∇x′ p−2 + bλ, (4.16)

where

Aλ =

⎛
⎜⎜⎝

α1
1 α2

1 0

α1
2 α2

2 0

α1
3 α2

3 0

⎞
⎟⎟⎠

zy′

(4.17)

and

bλ =

⎛
⎜⎜⎝

α0
1

α0
2

α0
3

⎞
⎟⎟⎠

zy′

. (4.18)

Inserting (4.16) into (4.14) and (4.15), we obtain the homogenized Reynolds equation (4.9) with
the boundary (4.10). �
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5. Reynolds roughness
Figure 2 describes the case when the wavelength of the roughness is much greater than the film
thickness, i.e. μ 	 ε. This case can be studied by assuming that ε is a function of μ such that

lim
μ→0

ε(μ)
μ

= 0.

For simplicity, we shall assume that ε = μ2. We postulate the following expansions for u and p :

u(x, t) =
∞∑

n=0

μnun(x′, z, y′, t, τ ) (5.1)

and

p(x, t) =
∞∑

n=−4

μnpn(x′, z, y′, t, τ ). (5.2)

Plugging (5.1) and (5.2) into (2.1) and equating terms of the same order using

∂

∂t
→ ∂

∂t
+ 1

μ

∂

∂τ
,

∇ → ∇x′ + 1
μ

∇y′ + 1
μ2 ∇z

and � → �x′ + 2
μ

(
∂2

∂x1∂y1
+ ∂2

∂x2∂y2

)
+ 1

μ2 �y′ + 1
μ4 �z

gives

1
μ6 : ∇zp−4 = 0, (5.3)

1
μ5 : ∇y′ p−4 + ∇zp−3 = 0 (5.4)

and
1
μ4 : −ν

∂2u0

∂z2 + ∇x′ p−4 + ∇y′ p−3 + ∇zp−2 = 0. (5.5)

Similarly for (2.2), we have

1
μ2 :

∂u0
3

∂z
= 0, (5.6)

1
μ

: divy′ u0 + ∂u1
3

∂z
= 0 (5.7)

and μ0 : divx′ u0 + divy′ u1 + ∂u2
3

∂z
= 0. (5.8)
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m

global film thickness
rough and moving surface
flat and stationary surface

Figure 2. Reynolds roughness (μ 	 ε). (Online version in colour.)

The boundaries conditions are

μ0 : u0 =

⎧⎪⎪⎨
⎪⎪⎩

(v1, v2, 0) on Σ+

0 on Σ−

(g1, g2, 0) on Σw,

μ1 : u1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0, 0,

∂H
∂τ

+ v · ∇y′ H
)

on Σ+

0 on Σ−

0 on Σw

and μ2 : u2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0, 0,

∂H
∂t

+ v · ∇x′ H
)

on Σ+

0 on Σ−

(0, 0, g3) on Σw

and initial conditions are

μ0 : u0 = (u0
1, u0

2, 0) on
⋃
y′∈Y

Ωy′,0,μ × {y′} × {0},

μ1 : u1 = 0

and μ2 : u2 = (0, 0, u0
3).

(a) Analysis of equations
The main result is as follows.

Theorem 5.1. The leading term u0 in expansion (5.1) for u is given by

u0 = z(z − H)
2ν

(∇x′ p−4 + ∇y′ p−3) + z
H

v, (5.9)

where p−4, the leading term in expansion (5.2) for μ4p, is a solution of the boundary value problem

divx′ (−A∇x′ p−4 + b) + ∂H
y′

∂t
= 0 in ω (5.10)

and

(−A∇x′ p−4 + b − ḡzy′
) · n̂ = 0 on ∂ω, (5.11)

where A and b are given by (5.22) and (5.23), and

p−3 =
2∑

i=1

∂p−4

∂xi
qi + q0, (5.12)

where qi (i = 0, 1, 2) is a periodic solution of the cell problems (5.16) and (5.17).
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Proof. Equations (5.3) and (5.4) say that

∂p−4

∂z
= 0,

∂p−4

∂y1
= 0,

∂p−4

∂y2
= 0 and

∂p−3

∂z
= 0.

Therefore,

p−4(x′, z, y′, t, τ ) = p−4(x′, t, τ ) and p−3(x′, z, y′, t, τ ) = p−3(x′, y′, t, τ ).

From (5.6), we deduce u0
3 = 0 in Ω because of the boundary conditions for u0

3. Thus, (5.5) in
component form becomes

−ν
∂2u0

1
∂z2 + ∂p−4

∂x1
+ ∂p−3

∂y1
= 0,

−ν
∂2u0

2
∂z2 + ∂p−4

∂x2
+ ∂p−3

∂y2
= 0

and
∂p−2

∂z
= 0.

Hence, the first two equations may be written as

− ν
∂2u0

∂z2 + ∇x′ p−4 + ∇y′ p−3 = 0. (5.13)

Integrating (5.13) with respect to z and taking into account the boundary values of u0, we get (5.9).
Integrating (5.9) once more, we obtain

u0z = − H3

12ν
(∇x′ p−4 + ∇y′ p−3) + H

2
v. (5.14)

Multiplying (5.7) with φ(y′) and integrating over B using the Gauss–Green theorem gives

0 =
∫
B

(
divy′ u0 + ∂u1

3
∂z

)
φ(y′) dy′ dz

=
∫
B
−u0 · ∇y′φ dy′ dz +

∫
S+

φ(u0
1, u0

2, u1
3) · n̂ dS(y′, z)

=
∫

Y

∫H

0
−u0 · ∇y′φ dz dy′

+
∫

Y
φ

(
v1, v2,

∂H
∂τ

+ v · ∇y′ H
)

·
(

− ∂H
∂y1

, − ∂H
∂y2

, 1
)

dy′ dz

=
∫

Y
−u0z · ∇y′φ + ∂H

∂τ
φ dy′

=
∫

Y

(
divy′ u0z + ∂H

∂τ

)
φ dy′,

for all smooth and Y-periodic φ. Hence,

divy′ u0z + ∂H
∂τ

= 0, in Y. (5.15)

Inserting (5.14) into (5.15), it is seen that p−3 can be written in the form (5.12), where qi is periodic
solutions of

divy′

(
− H3

12ν
(∇y′ qi + ei)

)
= 0, in Y (i = 1, 2) (5.16)

and

divy′

(
− H3

12ν
∇y′ q0 + H

2
v

)
+ ∂H

∂τ
= 0, in Y. (5.17)
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This implies

u0z = − H3

12ν

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

1 + ∂q1

∂y1

∂q2

∂y1

∂q1

∂y2
1 + ∂q2

∂y2

⎞
⎟⎟⎟⎠∇x′ p−4 + ∇y′ q0

⎤
⎥⎥⎥⎦+ H

2
v. (5.18)

Multiplying (5.8) with φ(x′) ∈ C1(ω) and integrating gives

0 =
∫
ω

∫
Y

∫H

0

(
divx′ u0 + divy′ u1 + ∂u2

3
∂z

)
φ(x′) dz dy′ dx′

=
∫

Y

∫
Ω

divx′ u0φ dy′ dx′ +
∫
ω

∫
B

(
divx′ u1 + ∂u2

3
∂z

)
φ dx′ dy′ dz

=
∫

Y

∫
Ω

−u0 · ∇x′φ dz dx′ dy′ +
∫

Y

∫
∂Ω

φ(u0
1, u0

2, u2
3) · n̂ dS(x′, z) dy′

+
∫
ω

∫
∂B

φ(u1
1, u1

2, 0) · n̂ dS(y′, z)

=
∫

Y

∫
Ω

∫H

0
−u0 · ∇x′φ dz dx′ dy′ +

∫
Y

∫
Σw

φg · n̂ dS(x′, z) dy′

+
∫

Y

∫
Σ+

φ

(
v1, v2,

∂H
∂t

+ v · ∇x′ H
)

· n̂ dS(x′, z) dy′

=
∫

Y

∫
ω

−u0z · ∇x′φ dx′ dy′ +
∫

Y

∫
ω

φ

(
−v · ∇x′ + ∂H

∂t
+ v · ∇x′ H

)
dx′ dy′

+
∫

Y

∫
∂ω

∫H

0
φg · n̂ dS(x′, z) dy′

=
∫
ω

−u0zy′

· ∇x′φ + ∂H
y′

∂t
φ dx′ +

∫
∂ω

φgzy′
· n̂ dS(x′, z).

As φ is arbitrary, it holds that

divx′ u0zy′

+ ∂H̄y′

∂t
= 0 in ω (5.19)

and

(u0zy′

− ḡzy′
) · n̂ = 0 on ∂ω, (5.20)

where

u0zy′

= A∇x′ p−4 + b, (5.21)

A =
∫

Y

H3

12ν

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + ∂q1

∂y1

∂q2

∂y1
0

∂q1

∂y2
1 + ∂q2

∂y2
0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

dy′ (5.22)

and

b =
∫

Y
− H3

12ν
∇y′ q0 + H

2
v dy′. (5.23)

Inserting (5.21) into (5.19) and (5.20), we obtain the homogenized Reynolds equation (5.10) with
boundary condition (5.11). �

Remark 5.2. The equations of theorem 5.1 can also be obtained by letting λ → 0 in the equations
of theorem 4.1.
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6. High-frequency roughness regime
Figure 3 illustrates the case when the roughness wavelength is small compared with the film
thickness, i.e. ε 	 μ. To this end, one assumes that μ is a function of ε such that

lim
ε→0

ε

μ(ε)
= ∞.

For simplicity, we shall assume μ = ε2. We postulate the following expansions:

u(x, t) =
∞∑

n=0

εnun(x′, z, y′, t, τ ) (6.1)

and

p(x, t) =
∞∑

n=−2

εnpn(x′, z, y′, t, τ ). (6.2)

Plug (6.1) and (6.2) into (2.1) and equating the terms of the same order using

∂

∂t
→ ∂

∂t
+ 1

ε2
∂

∂τ
,

∇ → ∇x′ + 1
ε2 ∇y′ + 1

ε
∇z

and � → �x′ + 2
ε2

(
∂2

∂x1∂y1
+ ∂2

∂x2∂y2

)
+ 1

ε4 �y′ + 1
ε2 �z

that gives

1
ε4 : −ν�y′ u0 + ∇y′ p−2 = 0, (6.3)

1
ε3 : −ν�y′ u1 + ∇zp−2 + ∇y′ p−1 = 0 (6.4)

and
1
ε2 :

∂u0

∂τ
− ν

(
2

∂2u0

∂x1∂y1
+ 2

∂2u0

∂x2∂y2
+ ∂2u0

∂z2 + �y′ u2

)

+ ∇x′ p−2 + ∇zp−1 + ∇y′ p0 = 0. (6.5)

Similarly for (2.2), we have

1
ε2 : divy′ u0 = 0, (6.6)

1
ε

: divy′ u1 + ∂u0
3

∂z
= 0 (6.7)

and ε0 : divx′ u0 + divy′ u2 + ∂u1
3

∂z
= 0. (6.8)

The boundary conditions are

ε0 : u0 =

⎧⎪⎪⎨
⎪⎪⎩

(v1, v2, 0) on Σ+

0 on Σ−

(g1, g2, 0) on Σw

and ε1 : u1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0, 0,

∂H
∂t

+ v · ∇x′ H
)

on Σ+

0 on Σ−

(0, 0, g3) on Σw
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global film thickness
rough and moving surface
flat and stationary surface

µ

Figure 3. High-frequency roughness regime (ε 	 μ). (Online version in colour.)

and with initial conditions

ε0 : u0 = (U0
1, U0

2, 0)

and ε1 : u1 = (0, 0, U0
3).

(a) Analysis of equations
The main result is as follows.

Theorem 6.1. The leading term u0 in expansion (6.1) for u is given by

u0 = z(z − H∗)
2ν

∇x′ p−2 + z
H∗ v, (6.9)

where p−2, the leading term in expansion (6.2) for ε2p, is a solution of the boundary value problem

divx′

(
−H∗3

12ν
∇x′ p−2 + H∗

2
v

)
+ ∂H∗

∂t
= 0 in ω (6.10)

and (
−H∗3

12ν
∇x′ p−2 + H∗

2
v − gz∗

)
· n̂ = 0 on ∂ω. (6.11)

Proof. Multiplying (6.3) with φ(y′) = (φ1, φ2, φ3) such that φ(y′) vanishes near ∂Yz and
integrating over Yz gives

0 =
∫

Yz

−ν�y′ u0 · φ + ∇y′ p−2 · φ dy′

=
∫

Yz

ν

3∑
i=1

∇y′ u0
i · ∇y′φi − p−2 divy′φ dy′.

If z < H∗, then Yz = Y and ∂Yz = ∅ so we can choose φ = u0. By (6.6), we obtain

0 =
∫

Y

3∑
i=1

|∇y′ u0
i |2 dy′ 
⇒ ν∇y′ u0 = 0 in Y;

if z ≥ H∗, then we can choose φi = u0
i − vi. Thus,

0 =
∫

Yz

3∑
i=1

|∇y′ u0
i |2 dy′ = 0 
⇒ u0

i = vi in Yz (i = 1, 2).

In both cases, ∇y′ p−2 = 0. Summing up, it holds that

∇y′ u0
i = 0 in Y if z < H∗ (i = 1, 2, 3), (6.12a)

u0
i = vi in Yz if z ≥ H∗ (i = 1, 2) (6.12b)
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and
∇y′ p−2 = 0 in B. (6.12c)

Integrating (6.7) and using the Gauss–Green theorem gives

0 =
∫
B+z′

divy′ u1 + ∂u0
3

∂z
dy′ dz

=
∫
∂B+z′

(u1
1, u1

2, u0
3) · n̂ dS

=
∫

Yz′
(u1

1, u1
2, u0

3)|z=z′ ·(0, 0, −1) dy′

= −u0
3(x′, z′, t, τ )|Yz′ |.

Thus, u0
3 = 0 for all 0 < z′ < H. Thus, (6.4) and 6.7 become

− ν�y′ u1 + ∇y′ p−1 + ∇zp−2 = 0 in B (6.13a)

and
divy′ u1 = 0 in B (6.13b)

with the boundary conditions

u1 =

⎧⎪⎨
⎪⎩
(

0, 0,
∂H
∂t

+ v · ∇x′ H
)

on S+

0 on S−.

Multiplying (6.13a) with φ(y′, z) = (φ1, φ2, φ3) vanishing on S+ ∪ S− and integrating over B gives

0 =
∫
B

(
−ν�y′ u1 + ∇y′ p−1 + ∇zp−2

)
· φ dy′ dz

=
∫
B
ν

3∑
i=1

∇y′ u1
i · ∇y′φi − p−1 divy′φ − p−2 ∂φ3

∂z
dy′ dz.

Choosing φ = (u1
1, u1

2, 0) gives

0 =
∫
B
ν

2∑
i=1

|∇y′ u1
i |2 dy′ dz 
⇒ ∇y′ u1

i = 0 in B, (i = 1, 2).

Inserting this into (6.13a) yields ∇y′ p−1 = 0 in B. The third component of (6.13a) reads

− ν�y′ u1
3 + ∂p−2

∂z
= 0 in B

and u1
3 =

⎧⎨
⎩

∂H
∂t

+ v · ∇x′ H on Σ+

0 on Σ−.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.14)

Assume z < H∗. Integrating (6.14) over Y gives

0 =
∫

Y
−ν�y′ u1

3 + ∂p−2

∂z
dy′ = ∂p−2

∂z
|Y| 
⇒ ∂p−2

∂z
= 0 if 0 < z < H∗.

Hence,
−ν�y′ u1

3 = 0 in Y if 0 < z < H∗.

From this we deduce ∇y′ u1
3 = 0. Summing up if 0 < z < H∗ gives

∂p−2

∂z
= 0, if 0 < z < H∗

and ∇y′ u1
3 = 0, if 0 < z < H∗.
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Assume z ≥ H∗. As u0 = (v1, v2, 0) in H∗ ≤ z < H, we deduce from (6.8) that

divy′ u2 + ∂u1
3

∂z
= 0 in B+H∗ .

So if z′ > H∗, then

0 =
∫
B+H∗

divy′ u2 + ∂u1
3

∂z
dy′ dz

=
∫
∂B+H∗

(u2
1, u2

2, u1
3) · n̂ dS(y′, z)

=
∫

Yz′
(u2

1, u2
2, u1

3) ·
(

− ∂H
∂y1

, − ∂H
∂y2

, 1
)

dy′

+
∫

Yz′
(u2

1, u2
2, u1

3)|z=z′ ·(0, 0, −1)dy′

=
∫

Yz′

∂H
∂t

+ v · ∇x′ H − u1
3|z=z′ dy′.

Hence, ∫
Yz

u1
3 −

(
∂H
∂t

+ v · ∇x′ H
)

dy′ = 0 for all z ≥ H∗. (6.15)

Define w = u1
3 − (∂H/∂t + v · ∇x′ H). Then, w satisfies

−ν�y′ w + ∂p−2

∂z
= 0 in Yz

and w = 0 in ∂Yz

⎫⎪⎬
⎪⎭ (6.16)

for all z ≥ H∗. Multiplying (6.16) with w and integrating by parts gives

0 =
∫

Yz

ν|∇y′ w|2 + ∂p−2

∂z
w dy′

=
∫

Yz

ν|∇y′ w|2 dy′

as p−2 does not depend on y′ and ∫
Yz

w dy′ = 0

by (6.15). Consequently, ∇y′ w = 0 in B+H∗ , which implies

u1
3 = ∂H

∂t
+ v · ∇x′ H in B+H∗ .

Assume from now that 0 < z < H∗, equations (6.12a) and (6.12b) imply that u0 does not depend
on y′, and (6.5) reduces to

∂u0

∂τ
− ν

(
∂2u0

∂z2 + �y′ u2

)
+ ∇x′ p−2 + ∇zp−1 + ∇y′ p0 = 0. (6.17)

Integrating (6.17) over Y using also that neither p−2 nor p−1 depends on y′ gives

∂u0

∂τ
− ν

∂2u0

∂z2 + ∇x′ p−2 + ∇zp−1 = 0 if 0 < z < H∗.

As u0
3 = 0, this is equivalent to

∂u0

∂τ
− ν

∂2u0

∂z2 + ∇x′ p−2 = 0 if 0 < z < H∗ (6.18)
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and
∂p−1

∂z
= 0 if 0 < z < H∗. (6.19)

Similarly, integrating (6.8) over Y gives

0 =
∫

Y
divx′ u0 + divy′ u2 + ∂u1

3
∂z

dy′ = |Y|
(

divx′ u0 + ∂u1
3

∂z

)
.

Hence,

divx′ u0 + ∂u1
3

∂z
= 0 in Ω∗. (6.20)

Consider now (6.18) and (6.20) as a system for (u0, u1
3, p−2). The stationary solution of this system

is denoted by (û0, û1
3, p̂−2), which satisfies

−ν
∂2û0

∂z2 + ∇x′ p̂−2 = 0 in Ω∗

and divx′ û0 + ∂û1
3

∂z
= 0 in Ω∗

together with the boundary conditions

(û0
1, û0

2, û1
3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
v1, v2,

∂H∗

∂t
+ v · ∇x′ H∗

)
on Σ∗+

0 on Σ∗−

(g1, g2, g3) on Σ∗w.

We want to show that (u0, u1
3, p−2) = (û0, û1

3, p̂−2). To this end, define

ũ0 = u0 − û0,

ũ1
3 = u1

3 − û1
3

and p̃−2 = p−2 − p̂−2,

which satisfy
∂ũ0

∂τ
− ν

∂2ũ0

∂z2 + ∇x′ p̃−2 = 0 in Ω∗ (6.21)

and

divx′ ũ0 + ∂ũ1
3

∂z
= 0 in Ω∗, (6.22)

where ũ0, ũ1
3 and p̃−2 are periodic in τ and satisfy the boundary conditions

(ũ0
1, ũ0

2, ũ1
3) = (0, 0, 0) on Σ∗+ ∪ Σ∗− ∪ Σ∗w.

Multiplying (6.21) with φ = (φ1, φ2, φ3) vanishing on Σ∗+ ∪ Σ∗− ∪ Σ∗w and integrating over Ω∗
gives

0 =
∫
Ω∗

(
∂ũ0

∂τ
− ν

∂2ũ0

∂z2 + ∇x′ p̃−2

)
· φ dx′ dz

=
∫
Ω∗

∂ũ0

∂τ
· φ − ν

∂ũ0

∂z
· ∂φ

∂z
− p̃−2 divx′φ dx′ dz.

Choosing φ = (ũ0
1, ũ0

2, ũ1
3) and using (6.22) gives

0 =
∫
Ω∗

∂ũ0

∂τ
· ũ0 + ν

∣∣∣∣∣∂ũ0

∂z

∣∣∣∣∣
2

+ p̃−2 ∂ũ1
3

∂z
dx′ dz.



18

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130735

...................................................

As p̃−2 does not depend on z,

∫
Ω∗

p̃−2 ∂ũ1
3

∂z
dx′ dz =

∫
ω

p̃−2
∫H∗

0

∂ũ1
3

∂z
dz dx′ = 0.

Consequently,

1
2

∂

∂τ

∫
Ω∗

|ũ0|2 dx′ dz = −
∫
Ω∗

ν

∣∣∣∣∣∂ũ0

∂z

∣∣∣∣∣
2

dx′ dz.

Integrating this equality from τ = 0 to T using the periodicity gives

0 =
∫T

0

∫
Ω∗

ν

∣∣∣∣∣∂ũ0

∂z

∣∣∣∣∣
2

dx′ dz 
⇒ ∂ũ0

∂z
= 0.

Hence, ũ0 = 0, which means u0 = û0. It follows that p−2 = p̂−2 and u1
3 = û1

3, so u0 and p−2 are
independent of τ . Hence, equation (6.17) reduces to

− ν
∂2u0

∂z2 + ∇x′ p−2 = 0 in Ω∗, (6.23)

with the boundary conditions

u0 =

⎧⎪⎪⎨
⎪⎪⎩

(v1, v2, 0) on Σ∗+

0 on Σ∗−

(g1, g2, g3) on Σ∗w.

Integrating with respect to z gives (6.9). Integrating again (6.9) with respect to z gives

u0z∗ = −H∗3

12ν
∇x′ p−2 + H∗

2
v. (6.24)

In similar fashion as above (6.20) gives

divx′ u0z∗ + ∂H∗

∂t
= 0 in ω (6.25)

and (
u0z∗ − gz∗) · n̂ = 0 on ∂ω. (6.26)

Inserting (6.24) into (6.25) and (6.26), we obtain the classical Reynolds equation (6.10), in
‘minimum’ film thickness H∗, with the boundary condition (6.11). �

Remark 6.2. The equations of theorem 6.1 can also be obtained by letting λ → ∞ in the
equations of theorem 4.1.

7. Summary and conclusion
As mentioned in the Introduction, three flow regimes have been identified,

(1) Stokes roughness, 0 < λ < ∞ (see theorem 4.1),
(2) Reynolds roughness, λ = 0 (see theorem 5.1), and
(3) high-frequency roughness regime, λ = ∞ (see theorem 6.1).
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In all three cases, we end up with a two-dimensional equation of the form

div(Aλ∇p + bλ) + ∂h0

∂t
= 0 in ω × (0, T]

and (Aλ∇p + bλ − ḡz) · n̂ = 0 on ∂ω × (0, T],

where p is the unknown pressure, ∇ = (∂/∂x1, ∂/∂x2) and div = ∇·,

Aλ =
(

a11 a12
a21 a22

)
and bλ =

(
b1
b2

)
.

The matrix Aλ and vector bλ are macroscopic quantities known as ‘flow factors’. They are
calculated by solving local problems on a periodic cell, thus taking into account the local
geometry, i.e. the roughness, of the problem. The expression Aλ∇p + bλ comes from averaging

the first two components of the velocity field uzy′
. As the flow is governed by an equation which

is a generalized form of the Reynolds equation, one can say that the thin film approximation is
valid on the macroscopic scale in all three cases. In the Stokes roughness regime, the thin film
approximation is not valid on the microscopic scale—the local problems are periodic analogues
of the Stokes equation and three dimensional. Consequently, the calculation of the flow factors
comes at a high cost. However, as λ tends to zero, the solution of the local problems asymptotically
satisfies problems that are local variants of the classical Reynolds equation. Thus, the thin film
approximation is valid also on the microscopic level in the Reynolds roughness regime. In
conclusion, one can say that some information about the flow on the microscopic level is lost at
the extreme cases λ = 0 and λ = ∞. In fact, A∞ and b∞ retain no information about the roughness
(except the minimum height) and the cell problems have trivial solutions. The limiting equation
in the high-frequency regime is exactly the classical Reynolds equation, which has been well
studied. It can be interpreted as though the flow is prevented from entering the thin valleys of
the rough surfaces. The information loss in the case λ = 0 is due to the thin film approximation
on the microscopic level. It would be interesting to compare Aλ, bλ to A0, b0 for small values of
λ as well as the corresponding flow patterns. We hope to accomplish such a study in the future
including numerical simulations.

As to previous studies, the present result reduces to the stationary case when ∂h0/∂t = 0 and
∂hper/∂τ = 0. Compare with eqn (17) in [4] and theorem 3.1 in [11] for the Stokes roughness; eqn
(25) in [4] and theorem 3.2 in [11] for the Reynolds roughness; and eqn (20) in [4] for the high-
frequency roughness. Note that, in the unstationary case, time plays only the role of a parameter
in all three limiting equations. Although the original equation (2.1) contains the term ∂u/∂t, the
time derivative of the unknown solution does not appear in the limiting equation nor in the
local problems.
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