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Background: The purpose of this study was to identify gene expression differences

associated with post-traumatic stress disorder (PTSD) and trauma exposure (TE) in

a three-group study design comprised of those with and without trauma exposure

and PTSD.

Methods: We conducted gene expression and gene network analyses in a sample

(n = 45) composed of female subjects of European Ancestry (EA) with PTSD, TE without

PTSD, and controls.

Results: We identified 283 genes differentially expressed between PTSD-TE groups. In

an independent sample of Veterans (n = 78) a small minority of these genes were also

differentially expressed. We identified 7 gene network modules significantly associated

with PTSD and TE (Bonferroni corrected p ≤ 0.05), which at a false discovery rate (FDR)

of q ≤ 0.2, were significantly enriched for biological pathways involved in focal adhesion,

neuroactive ligand receptor interaction, and immune related processes among others.

Conclusions: This study uses gene network analyses to identify significant gene

modules associated with PTSD, TE, and controls. On an individual gene level, we

identified a large number of differentially expressed genes between PTSD-TE groups, a

minority of which were also differentially expressed in the independent sample. We also

demonstrate a lack of network module preservation between PTSD and TE, suggesting

that the molecular signature of PTSD and trauma are likely independent of each other.

Our results provide a basis for the identification of likely disease pathways and biomarkers

involved in the etiology of PTSD.
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INTRODUCTION

Between 50 and 70% of individuals experience at least one trauma
in their lifetimes (1). Of those individuals, 8–32% develop post-
traumatic stress disorder [PTSD; (2, 3)]. PTSD is a serious
disorder associated with medical ailments, suicide, and early
mortality, but major gaps remain in our understanding of its
etiology (4–6). PTSD is heritable, with estimates ranging between
24 and 72% (7–9). Large-scale genome wide association studies
(GWAS) are revealing key influences on PTSD.

Recent GWAS of PTSD, PTSD total symptoms, and/or
its symptom clusters (e.g., re-experiencing symptoms) (10–12)
have revealed a few hits that differentiate PTSD cases and
controls, and more when examining PTSD symptoms as a
quantitative trait and/or when examining continuous symptoms
within clusters. One of the most consistent findings is that
genes implicated in cell cycle control and other mental
health conditions such as schizophrenia and bipolar (MAL1L1)
are associated with PTSD phenotypes. The effects found in
both samples involve genes implicated in intracellular protein
transport associated with risk-taking (TSNARE1) as well as
nucleic acid binding which is important for cognitive abilities
(EXD3). Additionally, genes important for steroid signaling,
hormone metabolism, and stress response (CRHR1, HSD17B11),
central nervous system development (TCF4), and transcriptional
activity and enhancer functions (i.e., ZDHHC14, PARK2, chr13:
55,652,129–55,759,209; 11) were also found to be important.A
review of PTSD GWAS summarizes key findings, with several
significant SNPs differentiating cases and controls, coming from
genes in systems important for regulating circadian rhythm,
synaptic processes, immune function, and neuroplasticity [e.g.,
LINC01090, BC036345, ZNRD1-AS1, RORA, NLGN1, TLL1;
(13)]. Despite these advances, questions remain about how
genetic factors relate to PTSD and whether observed patterns
are specific to PTSD or are related to trauma exposure broadly.
Because PTSD is more prevalent in women than men and genetic
influences on PTSD are stronger among women thanmen (7, 14),
studies are needed to characterize the genetic correlates of PTSD
and trauma exposure (TE) in women.

Gene Expression Studies
Studying gene expression is essential for our understanding of the
PTSD pathophysiology (15, 16).While trauma exposure precedes
all cases of PTSD, not all people with TE will develop PTSD.
Therefore, expression studies are needed that include participants
with or without TE and with or without PTSD to disentangle
whether observed genetic differences are influenced by TE or
PTSD. Previous post-mortem expression studies have reported
expression differences between subjects with PTSD and controls
in the dorsolateral pre-frontal cortex, which regulates fear-based
responses (17). Research examining the post-mortem brains of
people who died of suicide with and without child abuse suggests
differences in the expression of genes important for myelination
(18). A study of transcriptome-wide analyses of gene expression
changes in post-mortem brains of individuals with PTSD
identified genes involved in synapse, neuron and axon terms, as
well as glia formation, actin binding, and small GTPase signaling

(19). This same study found that the global transcriptomic
signatures for PTSD closely resemble schizophrenia, autism,
and bipolar disorder, consistent with GWAS of PTSD (14, 20).
Thus, there is at least some convergence in the pathology of
PTSD using blood and brain tissues. Indeed, as the collection of
post-mortem brain tissue involves ethical, logistic, and technical
confounds (21, 22), blood is increasingly viewed as a viable and
valid proxy tissue for gene expression data. Furthermore, several
studies have pointed to a reasonable correlation of the total
gene expression between different tissue, notably brain and blood
(23–25). Finally, studying blood related gene expression is also
advantageous as some processes underlying PTSD are reflected in
peripheral blood gene expression [e.g., glucocorticoid sensitivity,
(26)]. For all of these reasons, gene expression data extracted
from whole blood is becoming increasingly commonplace.

Comparing gene expression profiles between subjects
with PTSD and TE have suggested genes involved in the
hypothalamic-pituitary-adrenal Axis (HPA) [e.g., FKBP5; (27–
30)] and signal transduction processes [e.g., STAT5B; (16, 28)].
Most studies included individuals in the TE control group if
individuals did not meet criteria for current PTSD, which is
problematic, since differences may be obscured between those
who previously were diagnosed with PTSD vs. those never
diagnosed. A study of subjects with PTSD to those without
TE found evidence for gene expression differences that are
important for activating the adaptive cellular immune response
(e.g., IL-12 and IL-18) (31), but lack of a non-PTSD TE group
limits conclusions about molecular genetic risk.

Gene Network Analysis
A limitation of studies utilizing single gene expression analyses is
the focus on ranking a list of individual differentially expressed
genes with the highest statistical significance. This selection
approach is somewhat arbitrary, does not consider the potential
interaction between genes in the dataset, and does not provide
a broader, system-level view of expression. Thus, a network
approach can be used to better understand the functional changes
between the disease and normal transcriptomes. One study (32)
using this approach identified over-expression of genes enriched
for innate-immune response and interferon signaling (PTSD-
TE), while another (33) found differences for genes enriched for
signal transduction (PTSD-control).

Current Study
The few previously reported gene expression and gene network
analyses are limited by the lack of use of a three-group
design that differentiates between TE and PTSD. Thus, the
first aim of this study was to extend prior expression studies
of PTSD, using both TE and non-TE exposed controls. In so
doing, we are able to understand what expression signatures
are associated with trauma exposure (as seen in differences
between TE and non-TE groups) and PTSD (as seen in
differences between PTSD and TE groups). The second aim was
to provide a system view of the expression signatures using
weighted gene co-expression network analysis (WGCNA). While
WGCNA identifies sets of genes showing related expression
patterns and therefore having likely shared disease functions
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(34–36), it does not provide information on the biological
functions and process the significant modules are enriched for.
Thus, all significantly correlated modules were assessed for
the enrichment of cellular processes and biological functional
categories using gene set enrichment analysis [GSEA; (37)].
These analyses allow us to better understand co-expression
networks and potential biological functions thatmay differentiate
those with and without trauma exposure, as well as-among those
with trauma exposure-those with and without PTSD. Genome-
wide expression data were generated using RNA isolated from
Peripheral Blood Mononuclear Cell (PBMC) obtained from an
ethnically homogeneous sample of female subjects, known to be
at higher genetic risk for PTSD.

METHODS AND MATERIALS

Overview of Larger, Parent Study
Participants were sampled from a larger community sample of
young adults. All subjects gave their informed consent before
being included in the study. The study was conducted in
accordance with the Declaration of Helsinki, and the research
protocol was approved by the Institutional Review Board (IRB)
at Medical University of South Carolina. These 281 young adults
were 59.2% female; primarily Caucasian (84.7% Caucasian, 6.1%
African-American, 9.2% Other), and between the ages of 21 and
30 (M = 24.76, SD = 2.59). Participants were recruited to one
of three study groups: non-trauma exposed control (controls),
trauma exposed without PTSD (TE), or trauma exposed with
PTSD. See prior work for information for eligibility details (38).
Of those, 72 controls, 72 TE, and 53 PTSD participants (n= 197)
provided blood samples for genomic analyses.

Current Study Sub-sample Participants
For this study, 15 European Ancestry females from each group
(n = 45) were included. PTSD group participants with the most
PTSD symptoms were prioritized for inclusion. PTSD and TE
groups were matched on trauma characteristics (i.e., number of
traumas, time since traumas) and age. Control group participants
were age-matched to the PTSD and TE groups.

There were no differences between groups on age (F = 0.27,
NS). There were differences in number of experienced traumas
between control (M = 0.07) and TE/PTSD groups, but not
between TE and PTSD groups (M = 0.93,M = 1.73, respectively;
F = 11.90, p < 0.001). The PTSD group (M = 40.79) reported
more PTSD symptoms than TE group (19.29; t = 15.842, p <

0.001). The PTSD group (M = 16.53) reported more depressive
symptoms than the TE and control groups (M = 3.87,M = 1.80,
respectively; F = 954.47, p < 0.001).

Measures
Number of Traumatic Events
Using the Life Events Checklist (39), count scores for total
endorsed witnessed or experienced traumas was used as a
covariate in the differential expression analyses (see Table 1).

PTSD
Using the PTSD Checklist [PCL; (40)], individuals with scores
of 30 or higher (41) and who met the minimum symptoms per
cluster were given a diagnosis of probable PTSD (Cronbach’s
Alpha: 0.91). TheMini-International Neuropsychiatric Interview
(MINI) PTSD scale was used to confirm PTSD diagnosis (42).

Depression Symptoms
a sum of 20 items assessing depressive symptoms using the Beck
Depression Inventory [BDI; (43)] was entered as a covariate
and additional phenotypic measure in the gene expression
(Cronbach’s Alpha: 0.92) and network analyses, respectively.

RNA Isolation
Total RNA containing the small RNA fraction was isolated
from 9ml of whole blood using the mirVana-PARIS kit
(Life Technologies, Carlsbad, CA), following manufacturer’s
protocols. RNA concentration was measured using the Quant-
iT Broad Range RNA Assay kit (Life Technologies), and the
RNA Integrity Number (RIN) was measured on the Agilent
2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara,
CA). All RNA samples had an excellent RIN scores (average
RIN ≥ 9.0, s.d.± 0.5).

mRNA Expression Microarrays
Genome-wide expression assays were ran using the Affymetrix
(Santa Clara, CA) GeneChip R© Human Genome U133A 2.0
(HG-U133A 2.0) following the Affymetrix R© protocol (44). This
array provides comprehensive coverage of the transcribed human
genome using 22,214 probesets, and captures the expression
of ≈18,400 human transcripts. Array quality was assessed by

estimating the 3
′
/5

′
ratios of GAPDH, and the percentage of

“Present” genes (%P) and array exhibiting GAPDH 3
′
/5

′
< 3.0

and %P > 40% were considered of good quality. Based on these
metrics no arrays were excluded.

Microarray Normalization
Expression values were calculated following the pre-processing
procedures: (1) Robust Multiarray Average adjusting for
probe sequence (GCRMA) background correction, (2) log2
transformation, (3) quantile normalization, and (4) median-
polish probeset summarization using Partek Genomics Suite
v6.23 (PGS; Partek Inc., St. Louis, MO) (45, 46). The batch
effect removal option in PGS was used to control for batch
effects. Microarray quality was assessed by principal component
analysis (PCA) and unsupervised hierarchical clustering to
identify potential outliers. One sample was identified as outlier
and removed from future analyses (Supplementary Figure 1).

Microarray reliability was assessed, by validating the
expression levels of four genes, (DUS2, FRMD4B, CXCR6,
and SRRT) via quantitative real-time PCR using a Taqman
approach. We observed a high correlation between the two
platforms, i.e., the Pearson correlation ranged from r = 0.664
(DUS2) to r = 0.846 (SRRT); see Supplementary Table 1 and
Supplementary Figure 2.
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Adjusting for Cell Heterogeneity
We used the ImmQuant software (47), which takes as input
transcription profiles, and provides the predicted quantities
of various cell types within each sample. The deconvolution
approach builds on the implementation of the digital cell
quantification (DCQ) deconvolution algorithm (48), which
is used for immune cell-type prediction in human samples,
resulting in gene expression markers for 39 cell types being
identified and accounted for to minimize the effect of cell based
differential gene expression (Supplementary Figure 3).

Data Analytic Plan
Aim 1: Gene Expression Analyses
Detection of differentially expressed genes between groups
was performed in the Number Cruncher Statistical Software
(NCSS) v11, using a robust multiple regression model (49),
with gene expression as the dependent variable and group as
the explanatory variable. To reduce the number of potential
covariates and account for potential collinearity between them,
the 39 cell-based estimates together with RIN and Batch, were
incorporated into a principle component analysis (PCA). The
first 6 principle components (PCs) accounted for 13% of the
variance in the data and were used as covariates, along with
number of interpersonal traumatic events (50) and depressive
symptoms (51). Our intention of conducting a PCA here was to
reduce the number of covariates, increase our power, and use the
higher order orthogonal relationships between the covariates to
adjust for their effect on gene expression.

Aim 2: Network Analyses
The gene network analyses were conducted using WGCNA.
The method for constructing scale-free networks by WGCNA
has been described in previous studies (52, 53). The gene co-
expression networks were constructed by using the WGCNA
v1.36 package in R environment (v3.3.2) using a minimum
module size of 35 genes and a minimummodule merge height of
0.8. To build the networks, we used all transcripts differentially
expressed between the three groups at p ≤ 0.05 (i.e., for the
PTSD/TE, PTSD/C, and TE/C comparisons a total of 1,701, 441,
and 1,846 genes were included, respectively). This significance
threshold was chosen to allow for: (i) the inclusion of true
positive signals with a smaller effect size (which would otherwise
be excluded from the more stringent statistical criteria applied in
gene expression analyses), (ii) retain a sufficient number of genes
with biological importance in PTSD and TE for the building
of gene co-expression networks, and (iii) exclude genes with
low variance, i.e., genes with limited importance for the disease
trait (49, 54).

Following module definition, the module eigengene
(ME) representing the first principle component (PC) of all
summarized gene expression profiles within a given module was
calculated. The ME was then correlated with the three diagnostic
groups, PTSD, TE, and controls, and statistical significance
assessed at Bonferroni-adjusted p ≤ 0.05 between the groups
(i.e., corrected for a number of modules tested). To account for
biological or technical confounds, we fitted the regression model

of each gene expression value on covariates and then used the
residuals from the model as an input for the network analysis.

The rationale for conducting the network analyses within each
diagnostic group separately is based on our ability to understand
better group differences between subjects with PTSD, TE not
reaching the threshold for PTSD, and controls. Our rationale
for this approach was further indicated by our desire to test for
network preservation between the three phenotypic groups, i.e.,
identify the precise network modules that differentiate between
the PTSD, TE and controls. Thus, with the current analyses,
we have increased confidence inferring the gene expression and
gene network differences between groups are associated with
trauma exposure (TE-C), PTSD (PTSD-TE), or potentially both
(PTSD-C). Below are the results of these three comparisons.

Pathway Analyses
To identify known biological processes and pathways that our
significant modules were enriched for, the gene set enrichment
analysis [GSEA; (GSEAv2.0.14)] was used (37, 55). Individual
gene lists for each of the gene modules significantly correlated
with PTSD and TE status were generated by rank-ordering all
differentially expressed genes by theirmodulemembership (MM)
to each of the trait-associated modules. In GSEA, Affymetrix
HG-U133A 2.0 probe IDs were converted to HUGO Gene
Nomenclature Committee (HGNC) gene symbols, and in cases
of multiple transcripts representing a single gene, the probeset
with the highest MM was retained (56). A priori gene sets were
obtained from the Molecular Signatures Database v4.0 from the
Broad Institute. A total of 1320 gene sets from the Canonical
KEGG Pathways subset of the C2: Curated Pathways collection
of MSigDB were assessed. Default parameters were then applied
to restrict the a priori gene set size between 15 and 500 genes,
respectively. A total of 186 a priori gene sets were identified,
of which in the PTSD/TE comparison, 165 were filtered out
due to gene set size parameters (i.e., gene sets<15 and >500
genes) leading to 21 a priori gene sets tested in the final GSEA
analysis. In the TE/Control comparison and the PTSD/Control
comparison, 16 and 18 a priori gene sets were used (i.e. 170/186
and 168/186 being excluded).

Identification of Candidate Hub Genes
Hubs comprise the highly interconnected nodes within the gene
network and have been shown to be functionally significant
(57). In this study, hub genes were defined by (1) the strength
of their intramodular connectivity (i.e., module membership
(MM) (58, 59), which measures the strength of the Pearson
correlation product moment (r ≥ 0.7) between the individual
gene expression and module eigengene (ME) and (2) their gene
significant (GS) correlation with phenotype. The upper quartile
of transcripts with the highest MM and GS (employed for the
significant modules) was selected as candidate hub genes.

Network Preservation
We used the module preservation statistic Zsummary, outlined
previously (60), to test for module preservation between the three
comparisons (i.e., PTSD/TE, PTSD/C, and TE/C). One advantage
Zsummary statistics has over the more traditional cross-tabulation
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approaches is that, in addition to overlap in module preservation,
it also accounts for the module connectivity pattern and density.
The module preservation also requires that a reference network
is assigned which then is compared against the test network.
The modules from the control groups (in the PTSD/C and
TE/C comparisons) were used as reference modules and the
modules from TE group were used as reference modules in
the PTSD/TE comparisons. We followed previously outlined
recommendations for network preservation, i.e., Zsummary ≤ 2
implies no evidence for module preservation, 2 ≤ Zsummary ≤ 10
implies weak to moderate evidence, and Zsummary ≥ 10 implies
strong evidence for module preservation. To ensure that module
preservation statistics is not confounded by module size (larger
module tend to be more preserved than smaller ones, solely due
to their size), in addition to Zsummary statistics to assess module
preservation, we have also used the median rank statistics, that is
invariant to module size.

Power
Power for the differential gene expression analysis was computed
using the power analysis statistical software (PASS) version 19
(NCSS, LLC, Kaysville, Utah) assuming an FDR adjusted p
≤ 0.0005, corresponding to an FDR of 10% in our analyses.
Generally regarded as a rigorous cut-off (61, 62), in our power
analysis, the values of the effect size (R2|C) represents the amount
by which the squared correlation coefficient (R²) is increased
when the test (T) variables are added to the regression model
containing the covariates (C). The (R2|C) was estimated from
our gene expression analyses and had an effect sizes ranging
between 0.01÷0.06.

Testing Whether Findings Hold in an
Independent Sample
The gene overlap between the civilian and the unique Veteran
samples (n=78) was assessed via the hypergeometric test. The
test significance was based on the “representation factor (rf)”,
i.e., the number of overlapping genes divided by the expected
number of overlapping genes drawn from two independent
groups, with a value of ≥1 indicating a significant overlap
between the gene datasets. The total number of genes was based
on all unique 14,800 transcripts on the Affymetrix HG-U133_2.0
array. We limited our examination of effects across samples to
all differentially expressed genes between PTSD/TE, TE/C, and
PTSD/C comparisons at p ≤ 0.005. Our rationale for choosing
this p-value was based on the compromise between providing a
sufficient number of genes for the analysis, while still controlling
the Type I error (63).

RESULTS

Aim 1: Gene Expression Analyses
TE vs. PTSD. At a FDR of 10%, we identified 53 genes with
evidence for differential expression between subjects with TE and
PTSD (Table 2). Of these, 44 genes were upregulated, and 9 genes
downregulated in the PTSD group compared to TE, respectively.
The three top significant genes were the growth regulation by
estrogen in breast cancer 1 (GREB1) gene (210562_at; t = 11.19,

TABLE 1 | Percent of trauma-exposed (TE) and PTSD groups witnessing or

experiencing different types of traumatic events.

% TE group % PTSD group

Natural disaster 42.9 28.6

Fire or explosion 14.3 7.1

Transportation accident 71.4 50.0

Serious accident 21.4 28.6

Exposure to toxic substance 7.1 0.0

Physical assault 35.7 64.3

Assault with a weapon 28.6 35.7

Sexual assault 21.4 50

Other unwanted or

uncomfortable sexual experience

14.3 42.9

Combat or war zone exposure 7.1 0.0

Captivity (e.g., being kidnapped) 0.0 0.0

Life-threatening illness 35.7 28.6

Sudden violent death 21.4 14.3

Serious injury you caused to

someone else

0.0 14.3

Other stressful event 21.4 21.4

p= 1.12E-08, q= 2.38E-04), the abhydrolase domain containing
6 (ABHD6) gene (221552_at; t = 8.41, p = 4.61E-07, q =

4.91E-03), and the FERMdomain containing 4B (FRMD4B) gene
(216134_at; t = 7.36, p = 2.38E-06, q = 1.69E-02). Interestingly,
compared to PTSD vs. TE comparison, we found a much lower
number of differentially expressed genes in the PTSD vs. Control
comparison, with only 5 differentially expressed genes at FDR
of 10%. The top gene in this category was represented by the
glutamate receptor, ionotropic, N-methyl D-aspartate 1 (GRIN1)
gene (205915_x_at; t = −6.04, p = 2.22E-06, q = 1.19E-02) that
was under expressed in subjects with PTSD. In the TE vs. Control
comparison at FDR of 10%, we observed only two genes: the
keratin 4, type II (KRT4) gene (214399_s_at; t = −6.64, p =

4.86E-07, q= 0.008178) and the protocadherin gamma subfamily
A, 11 (PCDHGA11) gene (211876_x_at; t=−6.45, p= 7.84E-07,
q= 0.008178), with both genes under expressed in the TE group.
The quantile-quantile (qq) plots of the p-value distribution for
the gene expression between the three comparisons are shown
in Supplementary Figure 4, and the entire list of differentially
expressed genes is provided in Supplementary Table 2. The
effect sizes for gene expression studies are generally larger than
the effect sizes observed in GWAS, which may be one possible
reason why the qq plots may appear inflated, without actually
being so (64).

Aim 2: Network Analysis
PTSD vs. TE Group Comparison
In our first set of network analysis, we identified 14 modules
[including the gray module (Mgrey), which contains genes
unassigned to any of the other 13 modules (52)] between the
PTSD and TE subjects.

The size of the 14 modules ranged from 312 transcripts in
Mblue to 35 transcripts in Mcyan and Mmidnightblue. In addition to
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FIGURE 1 | Module-trait relationships. Module MEs are correlated (Pearson) to PTSD/TE case-status (Diagnosis), to identify disease-relevant modules, and to alcohol

drinking (Alc_Diagn), number alcohol drinks per day (N_Drink_Days), the number of traumatic events (N_Traum_Events), and Beck depression scale (BDI_TOT_TRF) to

assess for confounding of these variables. P-values shown are unadjusted for multiple testing. (A) After adjusting for number of modules tested, MEbrown, MEpurple,

MEmagenta, and MEgreenyellow, are significantly correlated with PTSD/TE status (Diagnosis); (B) After adjusting p-values for number of modules tested, only MEcyan,

module is significantly correlated with PTSD/Cont status (Diagnosis). (C) Similarly, after adjusting p-values for number of modules tested, MEblue, MEred , MEpink , and

MEblack modules are significantly correlated with TE/Cont status (Diagnosis).

the main diagnosis phenotype (i.e., the PTSD/TE comparison)
the module eigengenes (MEs) of the 14 modules, which represent
the sum of gene expression profiles of each module, were
correlated to two additional phenotypes: a number of trauma
events (N_Traum_Events) and the Beck Depression Inventory
scores (BDI_TOT_TRF). Of the 14 modules, the MEs for 4
modules (containing a total of 628 genes) were significantly
and negatively correlated with PTSD at an adjusted Bonferroni
p ≤ 0.004 (Figure 1A).

PTSD vs. Control Comparison
In this comparison between the PTSD and Control groups,
we identified 18 modules, of which after Bonferroni correction
(adjusted p = 0.0027) only one module (Mcyan) consisting
of 52 genes was significantly negatively correlated with
the PTSD phenotype (Figure 1B). Interestingly, Mcyan

appeared to be also significantly correlated with the
number of interpersonal traumatic events as well (adj. p
≤ 0.003). Thus, it may be that, to some extent, modules

promoting PTSD development are shared with those that
differentiate those with varying levels of interpersonal
trauma (IPT) exposure.

TE vs. Control Comparison
Finally, in this third comparison, we identified 15 modules
in total, of which two modules (Mblack and Mred) remained
significant at the Bonferroni adjusted significance threshold
(adj. p ≤ 0.004) and 2 additional modules (Mpink and Mblue)
with a suggestive significance (Figure 1C). None of the
identified modules appeared to be correlated with depressive
symptoms. A table containing correlations and p-values
of all modules across the three comparisons is provided
in Supplementary Table 3.

Detection of Network Hub Genes
We observed a significant positive correlation between module
membership (MM) and gene significance (GS) for all significant
modules in the PTSD-TE (Figures 2A–D), in the TE-C
(Figures 2E–H), and in the PTSD-C comparisons (Figure 2I),
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FIGURE 2 | Modules significantly correlated with Diagnosis. Each point represents an individual transcript within each module, which are plotted by the absolute value

of their expression correlation to Diagnosis [Gene Significance (GS)] on the y-axis and module eigengene [Module Membership (MM)] on the x-axis. The correlation

and corresponding p-values are shown for each plot, indicating that increases of GS for transcripts is reflected by the concomitant increase in intramodular

connectivity (MM). (A–D) Modules significantly correlated with PTSD/TE; (E-H) Modules significantly correlated with TE/Cont; and (I) Module significantly correlated

with PTSD/Cont.

supporting previous observations that genes significantly
correlated with the disease are also the most important (or
central) elements of the modules (65). Of the 916 genes clustered
in the six modules that survive Bonferroni correction, 195 were
located in the top quartile of MM and were selected as candidate
hub transcripts (see Material andMethods). Interestingly, among
these, peptidylprolyl isomerase A (PPIA) was shared as a hub
between the Mbrown and Mpink modules that were significantly
correlated with trauma exposure in the PTSD vs. TE and TE
vs. Control comparisons. Full transcript, GS, MM, and gene
symbol annotation for candidate hub transcripts are available in
Supplementary Table 4.

Assessing Module Preservation
An important consideration of the network analyses is our ability
to test how well-preserved (stable) the modules between the
different phenotypes are. To that end, we were interested to know
whether any of the modules identified in the PTSD subjects, were
also preserved in the Control and/or the TE groups; thus, we
used 1,000 permutations in the preservation analysis to answer
this question. We observed that except for the large modules
(such as the turquoise module ≥1,000 genes) all other modules
showed modest to no preservation between PTSD, TE and
control subjects (Figures 3A–F) suggesting that the genes in these
modules show distinct connectivity and/or density patterns.
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FIGURE 3 | Module Preservation Statistics. Zsummary and medianRank are two mutually complementing preservation statistics to assess module preservation, using

either TE or the Cont modules as reference. Y-axis represents preservation statistics for the corresponding module(s) in the case set, and x-axis is the gene numbers

in each module. The dashed blue and red lines indicate the thresholds Z ≤ 2 and Z ≤ 10, respectively (see text for more details). (A,B) Zsummary and medianRank

preservations statistics for PTSD/TE comparison, respectively; (C,D) Zsummary and medianRank preservations statistics for TE/Cont comparison; (E,F) Zsummary

and medianRank preservations statistics for PTSD/Cont comparison.

Pathway Enrichment
Using the default parameters in GSEA (see methods and
material), at FDR ≤ 0.2, we identified a total of 16 a priori
gene sets. We further observed some of these to be shared
between more than one module. For example, a priori gene sets
enriched for the neuroactive ligand receptor interaction, focal
adhesion, and vascular smoothmuscle contraction gene sets were
predominantly shared betweenMgreenyellow,Mmagenta, andMbrown

modules in the PTSD vs. TE comparison and inMblue in theTE vs.
Control. Similarly, pathways enriched for genes involved in focal
adhesion were shared betweenMgreenyellow,Mmagenta, andMpurple

in the PTSD vs. TE comparison. In addition to shared gene
pathways, we also identified modules with unique enrichments.
Among these Mbrown, identified in the PTSD vs. TE comparison,
was the only module enriched for genes involved in Alzheimer
disease, long-term potentiation and chemokine signaling, while
Mgreenyellow was uniquely enriched for gene sets in the cytokine
receptor interaction pathway. Interestingly, while some of the
molecular features of PTSD have been shown to be associated
with neuroinflammation, in our study, the only module that was
enriched for genes related to immune processes such as antigen
processing and presentation, or natural killers cell mediated
cytotoxicity pathways was in Mpink from the TE vs. Control

comparison. In addition to genes involved in neuronal, cellular,
and/or neurodegenerative processes we also identified pathways
enriched for genes involved in MAPK, calcium, or chemokine
signaling. A full list of the significant unique and shared
enriched gene sets, as well as descriptions of PTSD biology, is
given in Table 3.

Results From Independent Sample
We tested whether our initial findings held in an independent
sample composed of military Veterans; the data from that
sample are described elsewhere (66). Notably, the Veteran
sample is primarily male and slightly older than the initial
test sample (i.e., 94.5% male, age range 21–40). The extent
to which differentially expressed genes were found across
samples was assessed via hypergeometric test assaying the
level of overlap between the two datasets and represented by
a Venn diagram in Supplementary Figure 5 and overlapping
genes in Supplementary Table 5. The Venn diagram was drawn
through an online source (https://bioinfogp.cnb.csic.es/tools/
venny/index.html). Based on this comparison, we observed a
significant overlap for the DEG (at unadjusted p ≤ 0.005)
between our civilian and Veteran samples in the PTSD/TE
comparison (i.e., PTSD/TE_Civ (n = 283 at least nominally
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TABLE 2 | Significant single gene expression analyses between the different

comparisons at an FDR of 10%.

Probeset ID Gene symbol T-value p-value q-value

PTSD/TE

210562_at GREB1 11.19 1.12E-08 2.38E-04

221552_at ABHD6 8.41 4.61E-07 4.91E-03

216134_at FRMD4B 7.36 2.38E-06 1.69E-02

210049_at SERPINC1 6.93 4.78E-06 2.54E-02

217144_at – −6.22 1.64E-05 4.83E-02

217065_at – 6.13 1.91E-05 4.83E-02

208389_s_at SLC1A2 6.13 1.92E-05 4.83E-02

222334_at C1orf186 −6.12 1.97E-05 4.83E-02

220594_at OGT 6.1 2.04E-05 4.83E-02

201679_at SRRT 6.03 2.30E-05 4.90E-02

210782_x_at GRIN1 −5.74 3.88E-05 6.87E-02

206224_at CST1 5.63 4.83E-05 6.87E-02

201438_at COL6A3 5.61 5.01E-05 6.87E-02

216847_at – 5.6 5.04E-05 6.87E-02

208036_at OPN1SW 5.52 5.84E-05 6.87E-02

206217_at EDA 5.51 5.97E-05 6.87E-02

210354_at IFNG 5.48 6.33E-05 6.87E-02

214382_at UNC93A 5.48 6.40E-05 6.87E-02

209209_s_at FERMT2 5.47 6.40E-05 6.87E-02

210431_at ALPPL2 5.45 6.66E-05 6.87E-02

207506_at GLRX3 5.43 6.99E-05 6.87E-02

201525_at APOD 5.4 7.39E-05 6.87E-02

214399_s_at KRT4 5.37 7.83E-05 6.87E-02

219486_at DUS2 5.35 8.12E-05 6.87E-02

211469_s_at CXCR6 −5.33 8.34E-05 6.87E-02

208194_s_at STAM2 5.31 8.76E-05 6.87E-02

211570_s_at RAPSN 5.3 8.92E-05 6.87E-02

205364_at ACOX2 5.28 9.28E-05 6.87E-02

221429_x_at TEX13A 5.27 9.35E-05 6.87E-02

218651_s_at LARP6 5.2 0.000108 0.075568

214493_s_at INADL −5.18 0.000112 0.075568

208804_s_at SRSF6 5.17 0.000114 0.075568

222354_at F11R 5.11 0.000127 0.081852

213475_s_at ITGAL −5.09 0.000133 0.08331

218913_s_at GMIP −5.06 0.00014 0.08381

214933_at CACNA1A −5.05 0.000144 0.08381

205034_at CCNE2 5.04 0.000146 0.08381

222325_at – 5.02 0.000153 0.086012

215448_at – 4.99 0.000161 0.086556

212993_at NACC2 4.97 0.000167 0.086556

211550_at EGFR 4.97 0.000167 0.086556

220580_at BICC1 4.96 0.000171 0.086556

216946_at HLA-DOA 4.93 0.000183 0.090485

207451_at NKX2-8 4.9 0.000192 0.09288

218186_at RAB25 4.86 0.000207 0.09304

205017_s_at MBNL2 4.86 0.00021 0.09304

207772_s_at PRMT8 4.85 0.000211 0.09304

215534_at – 4.85 0.000213 0.09304

207885_at S100G 4.84 0.000217 0.09304

(Continued)

TABLE 2 | Continued

Probeset ID Gene symbol T-value p-value q-value

219759_at ERAP2 4.83 0.000218 0.09304

219768_at VTCN1 4.82 0.000226 0.094414

216616_at – 4.77 0.000249 0.100276

215366_at SNX13 −4.77 0.00025 0.100276

TE/C

214399_s_at KRT4 −6.64 4.86E-07 0.008178

211876_x_at PCDHGA11 −6.45 7.84E-07 0.008178

PTSD/C

205915_x_at GRIN1 −6.04 2.22E-06 1.19E-02

217144_at – −5 3.34E-05 6.93E-02

219838_at TTC23 −4.69 7.58E-05 8.15E-02

200633_at UBB −4.61 9.45E-05 8.85E-02

213695_at PON3 −4.51 0.000122 0.09248

FIGURE 4 | Power to detect differentially expressed genes with varying effect

sizes (R26C) at α = 5 × 10−4. Y-axis shows power and the X-axis shows

effective sample size.

different genes); PTSD/TE_Vet (n = 565 at least nominally
different genes); gene overlap (n=19); total number of genes (n=
14,800; rf= 1.8; p= 0.012) only. There was no significant overlap
between the other two comparisons (i.e., PTSD/C and TE/C).

Power Analysis Findings
As shown in Figure 4, we have a sufficient power to detect an
R² increase of 6% attributed to one independent variable after
adjusting for 9 covariates at an FDR adjusted p ≤ 0.0005.
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TABLE 3 | GSEA ontology enrichment results for the significant gene modules.

PTSD/TE_Brown_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_ALZHEIMERS_DISEASE 16 0.3808411 1.8343772 0.006012024 0.11456045 0.118 564

KEGG_CHEMOKINE_SIGNALING_PATHWAY 28 0.2661027 1.6540613 0.04158416 0.12534362 0.292 685

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 16 0.34704605 1.6623145 0.027027028 0.152568 0.283 520

KEGG_LONG_TERM_POTENTIATION 15 0.36446524 1.6956825 0.030592734 0.17543387 0.248 462

PTSD/TE_GreenYellow_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 38 0.29289687 2.0918672 0 0.039426543 0.032 244

KEGG_FOCAL_ADHESION 25 0.31623906 1.9317259 0.003802281 0.054069344 0.083 921

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 28 0.2855701 1.8023701 0.010141988 0.06624937 0.144 602

PTSD/TE_Magenta_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_FOCAL_ADHESION 25 0.46487573 2.8352916 0 0 0 518

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 16 0.3864319 1.9351841 0.004008016 0.04435187 0.067 461

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 38 0.25406504 1.81941 0.01026694 0.062306367 0.136 381

PTSD/TE_Purple_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_FOCAL_ADHESION 25 0.36741436 2.2619853 0 0.018515298 0.015 542

TE/Controls_Blue_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 41 0.26657942 2.0054896 0.008032128 0.042644728 0.039 679

KEGG_CALCIUM_SIGNALING_PATHWAY 24 0.29648352 1.698969 0.02892562 0.11025008 0.188 601

KEGG_MAPK_SIGNALING_PATHWAY 31 0.23569264 1.5734301 0.052208837 0.13829629 0.316 768

TE/Controls_Pink_Module Size ES NES NOM p-value FDR q-value FWER p-value Rank at max

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 15 0.49288395 2.3176186 0 0.004643181 0.004 503

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 23 0.32229558 1.7953429 0.016129032 0.080599934 0.137 118

DISCUSSION

This study employs a three-group design that allowed
disaggregation of expression differences among PTSD, TE,
and C groups. The largest number of expression differences were
observed between PTSD-TE groups (54), followed by PTSD-
control (33) and TE-control (2). We observed overlap between
those that differentiated the PTSD-TE groups, and PTSD-
control groups (hypergeometric p = 1.17E-33). Specifically, 19
overlapped across the sets of analyses.

In terms of the network findings, there were 4 modules,
1 module, and 2 modules that differentiated the PTSD-TE,
PTSD-C, and TE-C groups, respectively. The only overlapping
module was the one that differentiated PTSD-C groups,
also differentiating PTSD-TE groups. Supporting previous
network findings (32, 33), we identified pathways enriched for
genes involved in chemokine signaling and immune system
functioning (i.e., natural killer cells; Supplementary Table 4),
suggesting these modules captured genes sets involved in the
inflammatory response to TE and/or PTSD.

Notably, as none of our significant effects overlapped with
genome-wide gene expression findings from prior studies,
overlap between our findings and those from related literatures
are discussed below. Some of our study findings are consistent
with candidate gene literature on PTSD. Specifically, CNR1, a
cannabinoid receptor gene, was part of a module differentially
expressed between PTSD-TE, and prior work found evidence

for this gene’s association with PTSD (67). The Apolipoprotein
E gene APOE was also part of a module differentially expressed
between these two groups, with research finding evidence for its

association with PTSD as well (68). Our findings do not provide
support for genes whose SNPs have been implicated in PTSD
genome-wide association studies [e.g.,ANKRD55, ZNF626; (69)].

Some genes differentially expressed between groups were
associated with functional processes underlying or related to
stress response/PTSD. For example, the nicotinic and muscarinic
receptor genes CHRNA4 and CHRM2, respectively, within
modules differentially expressed between PTSD-TE, impact
immune function and inflammatory responses (70, 71), which
are relevant to PTSD. CHRNA4 also impacts arousal, anxiety,
and memory (72), and CHRM2, is important in learning,
memory and higher order brain functions (73). In addition,
the gene ABHD6, also differentially expressed between PTSD-
TE, and involved in cannabinoid system signaling, is implicated
in symptoms of anxiety and depression (74), which are highly
likely to co-occur with PTSD (75). The geneGRIN1, differentially
expressed between PTSD-Controls, encodes a NMDA receptor
involved in activation of the pre-frontal cortex and previously
linked to Bipolar Disorder (76). Thus, the results from this
study suggest that genes differentially expressed between the
groups may be functionally involved in immune function and
inflammation, stress response, arousal, learning and memory, as
well as related psychopathology, including anxiety, depression,
and Bipolar.

Recent whole blood, transcriptome-wide mega-analysis
comparing those with PTSD to trauma-exposed controls
was conducted and notably, while collapsing across trauma
types (e.g., interpersonal combat) and sex, no case-control
comparisons within the univariate analyses resulted in significant
effects withstanding the FDR p < 0.05 correction (77). Of the
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genes differentially expressed between those in the PTSD
and TE groups in the current sample, none overlapped with
the nominally significant genes differentially expressed in
females exposed to IPT in Breen et al. (77). Although no
genes overlapped, a number of genes in systems from which
genes detected in the current study were found to be (at least
nominally) important in differentiating groups. Specifically,
the expression of genes involved in innate immune response,
the cytokine receptor pathway, and interferon signaling
differentiated those with PTSD and TE among females exposed
to IPT in both samples.

Of the 283 genes at least nominally differentially expressed
between the PTSD and TE groups in the current Civilian sample,
19 of these overlapped with those found to be differentially
expressed between the PTSD and TE groups in the Veteran
sample. Of these 19 genes that were found to be significant in
both samples, some are involved in immune system functioning
[e.g., XIAP; (78)] signaling processes [e.g., INPP4A; (79)]
and learning and motivation [e.g., EHMT1; (80)], consistent
with prior literature. Others, interestingly, were implicated
in tumor growth [e.g., YES1, PML; (81, 82)] and a range
of other health-related outcomes [e.g., SNX13 and CCHCR1;
heart failure, skin disease; (83, 84)]. Thus, over and above
trauma type differences between the two samples, it appears
that the expression of genes implicated in immune functioning,
signal processing, learning/motivation, and broad health-related
outcomes differentiate those with trauma exposure with and
without PTSD. That is, the expression of genes implicated in
these systems arose in two separate samples that differ on target
trauma type (interpersonal Civilian vs. combat Veteran), sex
(i.e., the civilian sample here was all adult and the Veteran
sample was predominantly male), and age [the Veteran age
range was higher (21–40) than the civilian (21–30)], which is
quite notable. Interestingly, there were no overlapping genes
differentially expressed between control and trauma-exposed
groups, or between control and PTSD groups across the current
study and Veteran samples. As noted above, these two samples
differed in terms of the criterion trauma type required, as well
as gender and age, so it is perhaps not surprising that two of the
comparisons yielded no overlap.

The module preservation statistics further supports our
differential expression and network analysis results suggesting
separation between the profiles for not only subjects with PTSD
and controls, but also for TE individuals. This separation further
indicates that different gene modules identified in the PTSD and
TE groups are in overall qualitatively different from those in the
controls, as well as between each other.

Limitations, Future Directions, and
Conclusions
This study is not without limitations. First, because of its
cross-sectional, we are unable to determine the direction of
effects. Second, given the stated sample characteristics, these
findings may not generalize to males or individuals of other
ancestral groups. Although the criterion trauma for the initial

sample was interpersonal trauma and for the veteran sample
was combat trauma, individuals tended to have other traumas
in addition to the target trauma, consistent with prior literature
(85). However, additional studies using other trauma types (e.g.,
disaster, bereavement) as the criterion trauma are needed. It
is also important to note that the two samples on which we
tested our research questions were quite different—that is, one
was primarily female, civilian, and interpersonal trauma-exposed
and the other was primarily male, veteran, and combat exposed.
Thus, effects found across these two samples really point to gene
expression differences that hold over and above sex and trauma
type. Future work would benefit from examining these questions
across two samples that are more similar on these characteristics.
In addition, although we conducted power analyses which
suggested we could detect effects explaining an R² increase of 6%
variance, we, of course, would have missed effects that are smaller
than this. Fourth, with any network approaches, our network can
capture underlying technical biases rather than actual biological
differences, though our investigation of all potential covariates
that are present in any genome-wide expression data (i.e., batch
effects, RIN, probe dependencies) argues against this possibility.
Another limitation is the lack of specific significant thresholds,
which we can use to declare whether our PTSD, TE, and
control networks are specific to each of these phenotypic traits.
We applied permutation-based statistics to account for the
preservation significance, i.e., estimating the empirical p-value
distribution, which is more powerful that the application of
predefined p-values thresholds. However, it has been shown that
this approach is dependent on the module size (86). To alleviate
this potential shortcoming, we used an additional preservation
measure such as medianRank measure that is invariant to the
module size. Additionally, as a network is formed by using genes
included in the network analysis, we could not examine whether
genes outside of this network, i.e., not included in the network
analysis (please see Materials and Methods, Network Analysis
for our justification) were associated with group membership.
Future research should attempt to answer this question. Finally,
we chose to use a Microarray because we were interested
in examining differentially expressed genes between our three
groups, but in the future, RNA-sequencingmay have future utility
for identification of alternative variants.

Despite its limitations, this study makes several key
contributions to the literature. It was an early study to
utilize differential expression analyses, including a number of
key covariates, as well as network analyses in the examination of
expression differences within this three-group design. Broadly
these findings suggest that there are more genes and networks
differentiating those with and without PTSD, compared to
the number that differentiate those with and without TE. This
suggests that there is something clinically meaningful about
PTSD, that differentiates it from exposure to trauma—in terms
of gene expression signatures. Additionally, although there is
some overlap, the genes differentially expressed following TE are
not the same that are expressed among those with PTSD. These
findings are a next step toward identifying potentially novel
pharmacological targets for this debilitating condition.
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Supplementary Figure 1 | Microarray quality was assessed via a principal

components analysis (PCA) on the expression values in which samples were

plotted along the first three principal components (PCs) to identify potential

microarray outliers. (A) Three samples did not load on two of the first three PCs

and were removed from subsequent analysis. (B) The PCA results were further

corroborated via unsupervised hierarchical clustering (using Euclidian metrics),

with two of the same samples identified in the PCA analysis also presenting as

outliers in the unsupervised hierarchical clustering.

Supplementary Figure 2 | Microarray expression data validation using

quantitative (qPCR) approach. Expression levels of four genes measured by the

expression array-based approach were validated by qPCR in all 45 RNA samples.

The Y-axis represents the qPCR data and the X-axis the array data. The

correlation coefficients were calculated using the Pearson product-moment.

Supplementary Figure 3 | Figure displays the cell deconvolution as a heatmap

where each column is a sample, and each row represents a different immune cell

type. Each entry (square) in the matrix shows the inferred quantity of a certain cell

type in a specific input sample, i.e., the red/blue coloring scheme indicates

increase or decrease in estimated cell proportion relative to the control sample.

Supplementary Figure 4 | Quantile–quantile (QQ) plots of the gene expression

signals across the PTSD/TE, TE/Cont, and PTSD/Cont comparisons. The

expected –log10 p-values under the null hypothesis are represented on the x-axis,

while the observed values are represented on the y-axis.

Supplementary Figure 5 | Overlap between civilian and veteran samples.

Supplementary Table 1 | Microarray validation using quantitative (qPCR)

approach.

Supplementary Table 2A | Single gene expression analysis statistics for

PTSD/TE comparison. The highlighted rows represent significant DEG at FDR of

10%.

Supplementary Table 2B | Single gene expression analysis statistics for TE/Cont

comparison. The highlighted rows represent significant DEG at FDR of 10%.

Supplementary Table 2C | Single gene expression analysis statistics for

PTSD/Cont comparison. The highlighted rows represent significant DEG at FDR of

10%.

Supplementary Table 3A | The entire list of genes with their espective gene

significance and module membership correlation values across all modules

identified in PTSD/Cont comparison.

Supplementary Table 3B | The entire list of genes with their espective gene

significance and module membership correlation values across all modules

identified in PTSD/TE comparison.

Supplementary Table 3C | The entire list of genes with their espective gene

significance and module membership correlation values across all modules

identified in TE/Cont comparison.

Supplementary Table 4 | Identified hub genes for the three comparsions.

Additional information such as correlation and p-values for gene significance (GS)

and module membership (MM) are also presented.

Supplementary Table 5 | The set of genes overlapping between the civilian and

veteran samples at single gene expression level of p ≤ 0.005.
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