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Abstract: For the engineering application of manipulator grasping objects, mechanical arm occlusion
and limited imaging angle produce various holes in the reconstructed 3D point clouds of objects.
Acquiring a complete point cloud model of the grasped object plays a very important role in the
subsequent task planning of the manipulator. This paper proposes a method with which to automati-
cally detect and repair the holes in the 3D point cloud model of symmetrical objects grasped by the
manipulator. With the established virtual camera coordinate system and boundary detection, repair
and classification of holes, the closed boundaries for the nested holes were detected and classified
into two kinds, which correspond to the mechanical claw holes caused by mechanical arm occlusion
and the missing surface produced by limited imaging angle. These two kinds of holes were repaired
based on surface reconstruction and object symmetry. Experiments on simulated and real point cloud
models demonstrate that our approach outperforms the other state-of-the-art 3D point cloud hole
repair algorithms.

Keywords: 3D point cloud; hole repair; surface reconstruction; symmetry

1. Introduction

With the development of machine vision, robots can use “eyes” to obtain external
information directly like human beings, which improves the intelligence and autonomy
of robots. For example, the eye-to-hand camera can model the grasped object and the
surrounding environment with 3D reconstruction algorithms. The complete 3D models of
the grasped object are vital in the subsequent tasks, such as planning and controlling the
action of the manipulator.

However, due to the occlusion of the mechanical claw and the limited imaging angle
in 3D reconstruction, a large number of holes will appear in the point cloud model of the
grasped object. Figure 1 provides examples of the real-time reconstructed point cloud mod-
els of symmetrical objects grasped by the manipulator with the ElasticFusion method [1].
The occlusion of the mechanical claw comes from the fact that the mechanical claw and
the object are modeled together in the 3D reconstruction. After the mechanical claw is
removed from the 3D point cloud model, several holes with a regular shape and medium
size will be left on the side of the point cloud, whose shape is roughly equivalent to the
contour of the mechanical claw. Due to the limited imaging angle in 3D reconstruction,
the top of the object cannot be imaged when the manipulator grabs the object, resulting
in a missing surface at the top of the point cloud. The missing surface can be regarded
as a large area hole, and it exhibits different characteristics from the holes caused by the
occlusion of the mechanical claw.

In our practical engineering, the 3D reconstruction and the mechanical claw removal
are still in primary research; the high-quality point cloud models cannot be obtained for
complex objects. Therefore, we limit the objects grasped by the manipulator to symmetrical
objects, which can also provide more structural information for the hole repair. Based on
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the above application scenario, this paper mainly carries out the hole repair work on the
3D point cloud model of symmetrical objects grasped by the manipulator.
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Figure 1. Examples of real-acquired 3D point cloud models repaired in this paper; the removal of 
the mechanical claw produces holes on the side of the point cloud; the limited imaging angle in 3D 
reconstruction results in a large missing surface at the top of the point cloud. 
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amounts of data are not required. The second includes the approaches based on deep 
learning, which use the point cloud completion network to predict the missing area of the 
point cloud to repair the holes. A large amount of data are needed to train the network. 

The traditional hole repair approaches can be further divided into methods based on 
the mesh model and those based on the scattered point cloud. The former methods use 
the connection topology information provided by the 3D mesh model to detect and repair 
the holes. For example, Chun-yen Chen et al. [2] proposed a 3D mesh model hole repair 
algorithm, which is based on a sharpness filter. Specifically, they adopted the interpola-
tion method to fill the holes and utilized the regularized moving tetrahedron algorithm to 
reconstruct the missing surface. Z. Wei et al. [3] studied a hole-filling method based on 
surface fitting to repair the large missing surface. The mesh sub-division, optimization 
and weighed surface fitting were used to insert new sample points into the hole. Y.H. 
Wang et al. [4] utilized the triangulation method of base grid holes and the subdivision 
curved surface cutting out algorithm to obtain accurate filling data for all the holes. In 
summary, the above hole repair methods make use of a large amount of topological infor-
mation between points provided by the mesh model; therefore, the hole repair effect is 
more accurate if the point cloud is clean and less noise exists. On the other hand, the usage 
of a large amount of topological information causes sensitivity to noise points and poor 

Figure 1. Examples of real-acquired 3D point cloud models repaired in this paper; the removal of
the mechanical claw produces holes on the side of the point cloud; the limited imaging angle in 3D
reconstruction results in a large missing surface at the top of the point cloud.

1.1. Related Work

The existing point cloud hole repair methods are mainly divided into two categories.
The first includes traditional hole repair approaches, which detect and repair the holes
by analyzing the characteristics of the point cloud itself and the hole distributions. Large
amounts of data are not required. The second includes the approaches based on deep
learning, which use the point cloud completion network to predict the missing area of the
point cloud to repair the holes. A large amount of data are needed to train the network.

The traditional hole repair approaches can be further divided into methods based on
the mesh model and those based on the scattered point cloud. The former methods use
the connection topology information provided by the 3D mesh model to detect and repair
the holes. For example, Chun-yen Chen et al. [2] proposed a 3D mesh model hole repair
algorithm, which is based on a sharpness filter. Specifically, they adopted the interpolation
method to fill the holes and utilized the regularized moving tetrahedron algorithm to
reconstruct the missing surface. Z. Wei et al. [3] studied a hole-filling method based on
surface fitting to repair the large missing surface. The mesh sub-division, optimization and
weighed surface fitting were used to insert new sample points into the hole. Y.H. Wang
et al. [4] utilized the triangulation method of base grid holes and the subdivision curved
surface cutting out algorithm to obtain accurate filling data for all the holes. In summary, the
above hole repair methods make use of a large amount of topological information between
points provided by the mesh model; therefore, the hole repair effect is more accurate if the
point cloud is clean and less noise exists. On the other hand, the usage of a large amount of
topological information causes sensitivity to noise points and poor robustness. In addition,
it requires high spatial complexity and prolonged computation time.

Traditional hole repair methods that are based on the scattered point cloud directly
process the scattered point cloud data that do not have a connection relationship between
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points. The holes are often filled by the geometric shape around them. Based on the
physical diffusion model, L. Yang et al. [5] used two core steps of the normal propagation
and the position sampling to recover the potential geometry shapes of the point cloud. H.
Lin et al. [6] extracted the hole boundary and the point cloud feature lines for the holes with
sharp features and divided them into feature and non-feature holes. Then, the authors used
the tensor voting algorithm to fill all the holes; Y. Wang et al. [7] proposed a hole-filling
method based on feature line extraction, which extracted a series of feature lines, such
as the hole boundary lines, the ridge lines and the valley lines of the point cloud. Then,
they filled the holes with the NURBS surface fitting method and retained the initial shape
features of the holes. The hole repair algorithms based on the scattered point cloud model
directly deal with the original point cloud data, so they spend less time repairing the holes.
However, they do not effectively utilize the topology of the objects, and the hole repair
accuracy needs to be further improved.

Finally, the point cloud completion network based on deep learning focuses on in-
ferring the possible shape of the point cloud from incomplete structures. The network is
trained with a large amount of point cloud data and can complete the point clouds with
different shapes and different missing conditions. For example, TopNet [8] generated the
structured point cloud through soft constraints with the help of a flexible decoder, so as to
avoid assuming a specific topology or point cloud structure on the underlying point set.
With a sufficient training set, the model can theoretically learn the topological relationship
on the point set. The PF-Net [9] estimated the missing point cloud hierarchically with the
multi-scale generative network and added the multi-stage completion loss and adversarial
loss, which can generate more real missing areas. The point cloud completion networks rely
on a large amount of point cloud data. However, the existing 3D point cloud datasets are
very different from the point cloud of objects grasped by the manipulator. For example, the
ShapeNet dataset [10,11] used by PF-Net is too idealistic and sparse and cannot simulate
the holes and noise in the point cloud of objects grasped by the manipulator.

1.2. Motivation

The traditional hole repair methods based on the mesh model require high spatial
complexity and prolonged computation time. The point cloud completion networks based
on deep learning involve extensive collections of data to train the network. For the hole
repair of the 3D point cloud of symmetrical objects grasped by the manipulator, the grasped
objects have different shapes and variable sizes. In addition, in the real scene, due to the
different grasping angles and depths of the mechanical arm, as well as different placement
directions of objects, the holes in the point cloud model will appear in different spatial
positions and have various distinct shapes. It is very difficult to prepare a hole repair
dataset that covers a large number of point cloud models with different shapes, different
grasping angles and different grasping depths. Furthermore, the noise and complex
modeling conditions in the real scene make the real obtained point cloud models very
different from the simulated ones. This limits the application of deep learning methods in
this scenario.

In this work, traditional hole repair methods based on the scattered point cloud, which
do not rely on a large amount of data for network training and have high robustness, were
investigated for the hole repair of the 3D point cloud of objects grasped by the manipulator.
We will take this as the basis to study our method and further improve the repair accuracy.

1.3. Contribution and Outline

In this paper, we propose a hole repair framework for the 3D point cloud of symmetri-
cal objects grasped by the manipulator. This framework aims to increase the robustness
and accuracy of the hole repair in variable scenes, such as the different grasping ways of
the mechanical arm and the variable shapes and sizes of the grasped objects.

Our contribution can be summarized as follows:
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1. Design an automatic hole repair framework for the point cloud of symmetrical objects
grasped by the manipulator, which can repair the mechanical claw holes and the
missing surface automatically to obtain the complete point cloud.

2. Establish the virtual camera coordinate system to correct the pose of the 3D point
cloud model and help calculate the bounding boxes to determine the filling regions of
the holes.

3. Classify the hole boundaries automatically to deal with the nesting of the mechanical
claw holes and the missing surface in the point cloud, and obtain their complete hole
boundaries, respectively, which facilitates the different repair methods for the two
kinds of holes.

4. Experiments on the simulated and real 3D point cloud models verify the hole repair
effectiveness and robustness of the proposed framework.

The rest of the paper is structured as follows: Section 2 introduces the principle of
the hole repair algorithm proposed in this work. The overall framework and the specific
implementation methods are described in detail. Section 3 shows the hole repair effects on
the simulated and real 3D point cloud models qualitatively and quantitatively. Finally, a
summary is provided in Section 4.

2. Materials and Methods
2.1. Introduction to the Overall Framework

The flowchart of the proposed hole repair algorithm is shown in Figure 2. Two main
modules, namely, the hole detection and boundary processing module and the hole repair
module, are included. The former module consists of 4 steps. First, the method based
on edge detection is used to detect the hole boundary points. Second, the discrete hole
boundary points are clustered by connecting adjacent points and connected into lines
to obtain the corresponding closed hole boundary of each hole. Third, in the case that
multiple holes are nested in the boundary line, a boundary line classification method is
proposed to distinguish the mechanical claw holes on the side of the point cloud and the
missing surface at the top of the point cloud. Finally, the method of spline curve fitting and
interpolation is used to repair the incomplete boundary lines after segmentation, and all
the complete and closed hole boundaries of the point cloud are obtained.

Regarding the hole repair module, the hole repair algorithm is divided into 2 parts
according to the characteristics of the mechanical claw hole and the missing surface in
the point cloud. First, based on Poisson surface reconstruction, the surface of the object
is estimated by fitting an indicator function determined by the point cloud, and the holes
on the reconstructed surface are sampled randomly and evenly to repair the mechanical
claw holes. Second, based on object symmetry, the missing surface at the top caused by the
limited imaging angle is repaired with the intact area that is symmetrical to it.

2.2. Hole Detection and Boundary Processing

Before repairing the holes in the point cloud, first, the holes must be detected, and
each hole should be described with complete and closed hole boundary lines. These hole
boundary lines can provide the location and shape information of the holes, which will
be used for the subsequent hole repair work. In this section, hole detection and boundary
processing, which were carried out to acquire closed hole boundary lines, are described.

2.2.1. Hole-Detection Method Based on Edge Detection

The point clouds of symmetrical objects grasped by the manipulator studied in this
paper were all scattered point clouds. There is no direct topological relationship between
the points, so the edges of the point cloud are important geometric features to express the
surface [12,13]. Additionally, the hole boundary is also a kind of edge of the point cloud.
Therefore, we utilized the concept of edge detection as a reference to detect the holes.
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Before detecting holes, the outlier points in the point cloud were removed with
the Statistical Outlier Removal filter of PCL [14] to reduce the influence of noise on the
detection accuracy.

A. Project the neighborhood points to the tangent plane.

First, we projected the neighborhood points onto a tangent plane, which helped us
investigate the spatial distribution of neighborhood points more easily.

For the point P to be investigated, P and its k-nearest neighbor points form the local
reference point set. This point set is denoted as Ω = {Pi(xi, yi, zi)|i = 0, 1, · · · , k}; xi, yi, zi
are the spatial coordinates of point Pi. According to the least squares method, the tangent
plane of Ω, which is denoted as T, should satisfy the minimum sum of squares of the
distance from the points in Ω to the plane T. The solution is as follows: let the plane
equation of T be

c1x + c2y + c3z + c4 = 0 (1)

then, it satisfies the matrix equation
Ac = 0 (2)

Among them:

A =


x0 y0 z0 1
x1 y1 z1 1
...

...
...

...
xk yk zk 1

, c =
[

c1 c2 c3 c4
]T

The singular value decomposition method was used to solve Equation (2), and the
eigenvector c corresponds to the maximum eigenvalue of ATA. At this time, the tangent
plane T was obtained. Additionally, the projection point set Ω′ was obtained by projecting
Ω to T. In Ω′, the projection point of P was recorded as P′, and the projection points of the
neighbor points of P were recorded as Q′i(i = 0, 1, · · · , k− 1).

The example of projecting the neighborhood points to the tangent plane is shown in
Figure 3. Three points of P1, P2 and P3 were chosen, which represent the hole boundary
point, inner point and original edge point in the point cloud, respectively. T1, T2 and T3 are
the tangent planes of the set of neighborhood points, P1, P2 and P3, respectively. P1

′, P2
′
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and P3
′ are the projection points of P1, P2 and P3, respectively. The spatial distribution of

the neighborhood points of these three points is displayed on the tangent plane intuitively.
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Figure 3. Example of projecting the neighborhood points to the tangent plane: T1 , T2 and T3 are the
tangent planes of the set of neighborhood points of P1, P2 and P3, respectively. P1

′ , P2
′ and P3

′ are
the projection points of P1, P2 and P3, respectively.

B. Distinguish inner points, original edge points and hole boundary points.

As shown in Figure 3, P1 is a hole boundary point, P2 is an inner point and P3 is an
original edge point. After projecting the neighborhood points to the tangent plane, the
neighbor points of P2

′ are evenly distributed around it, while the neighbor points of P1
′

are distributed on one side of P1
′ unevenly. Additionally, as the surface of the point cloud

of symmetrical objects grasped by the manipulator is closed and smooth, the neighbor
points of P3

′ are also evenly distributed around it, which is very similar to P2
′. Therefore,

the spatial distribution uniformity of neighborhood points was used to distinguish inner
points, original edge points and hole boundary points.

Then, the maximum angle measurement criterion was introduced to quantify
the uniform distribution of the neighbor points. As shown in Figure 4, taking P′
as the starting point and Q′i(i = 0, 1, · · · , k− 1) as the ending points, a series of vec-

tors
→

P′Qi
′(i = 0, 1, · · · , k− 1) was obtained. Taking a vector

→
P′Qi

′ randomly, first cal-

culate the angle between it and other vectors
→

P′Qj
′(j 6= i), and this angle is denoted as

αm(m = 0, 1, · · · , k− 2). Second, reorder the vectors according to the angle αm along the
counterclockwise direction. Third, calculate the angle between two adjacent vectors for the
sorted vector group, which is denoted as βi(i = 0, 1, · · · , k− 2). Take the maximum angle
β. If β is greater than the angle threshold, the point P is judged as a hole boundary point.
Otherwise, it is judged as an inner point or an original edge point.

In this work, the hole boundary points were detected accurately by setting the angle
threshold to π/2 in the simulated and real point cloud models. However, we found that
when the simulation model had very sharp edges (such as the triangular prism model in
Section 3.2), using the fixed threshold of the maximum angle criterion could not robustly
distinguish all the original sharp edge points from hole boundary points, although the
method is applicable to most of the models. We suppress the influence of the possible
errors caused by the very sharp edges of the point cloud in Section 2.2.2.
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dered points.
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2.2.2. Hole Boundary Point Connection Method Based on Neighbors

After detecting the hole boundary points, it is necessary to connect the disordered
boundary points to a closed boundary line. As the boundary points belonging to the same
hole are adjacent to each other in the 3D space, the KNN method (K-nearest neighbors) can
be used to construct the boundary line; that is, a random hole boundary point is selected
as the starting point, and its nearest boundary point is connected until the boundary line
is closed. However, this method also has disadvantages. If 2 holes are too close to each
other, only depending on the distance as a criterion will cause the boundary points of the
2 holes to “adhere” to each other. Therefore, the connection direction was taken as another
criterion. The points of a single boundary line were connected one by one. If the new point
caused the angle of the boundary line to deflect obviously, it was treated as a point of other
boundary lines. Specifically, as shown in Figure 6, for a certain boundary point P2 that was
considered to belong to Boundary Line 1, its previous point in line 1 is P1, and its nearest
neighbor point is P and Q. Connecting each point only by distance is likely to result in Q as
the next connection point, resulting in a connection error. Therefore, for each candidate
connection point, the vector deflection angle [15] was calculated as the criterion of the
connection direction.

θ(P) = arccos(

→
P1P2·

→
P2P∣∣∣∣ →P1P2

∣∣∣∣ ∗ ∣∣∣∣ →P2P
∣∣∣∣ ) (3)
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By connecting hole boundaries, we can delete the unclosed and isolated hole bound-
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example of a hole boundary point connection result is shown in Figure 7. It can be seen 
that the boundary points are connected in an ordered line. However, this algorithm cannot 
distinguish the boundary lines of different holes. The closed boundary of each hole cannot 
be obtained, which is due to the fact that the holes in the point cloud are nested, and the 
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 1P

 2P

P
Q
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Boundary 1 Boundary 2

Figure 6. Two holes “adhere” to each other.

The point with the smallest θ is regarded as the final connection point. Since θ(P) < θ(Q),
P was selected as the next connection point of Boundary 1 after P2.

By connecting hole boundaries, we can delete the unclosed and isolated hole bound-
aries, including the incorrectly detected hole boundaries caused by the very sharp edges
of the point cloud, which ensures that they will not affect the subsequent hole repair. An
example of a hole boundary point connection result is shown in Figure 7. It can be seen
that the boundary points are connected in an ordered line. However, this algorithm cannot
distinguish the boundary lines of different holes. The closed boundary of each hole cannot
be obtained, which is due to the fact that the holes in the point cloud are nested, and the
boundaries of different holes intersect. We solve this problem in Section 2.2.3.
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Figure 7. Example of hole boundary point connection.

2.2.3. Hole Boundary Classification Method

Due to the fixed camera angle, the missing surface on the point cloud will always
appear at the top of the camera coordinate system, and for the object grasped in practical
engineering, the straight up and down grasping method will often make the bottom of
the object perpendicular to the main direction of the mechanical claw. Therefore, the
relative position between the missing surface and the mechanical claw hole can be used
to distinguish these 2 kinds of holes. However, the pose of the object point cloud model
is often random, and the real camera coordinate system information is commonly not
given. Therefore, we established a virtual camera coordinate system to correct the pose
of the point cloud model (as shown in Figure 8). Then, the z-axis coordinate was used to
distinguish the relative position between the missing surface at the top of the point cloud
and the mechanical claw hole on the side of the point cloud.
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Next, the details for establishing the virtual camera coordinate system and classifying
the hole boundary line are provided.

A. Establish virtual camera coordinate system.

First, we needed to determine the plane of the missing surface boundary. The fitting
plane for hole boundary point set of point cloud was acquired by the RANSAC algo-
rithm [16,17], and we obtained several fitting planes (denoted as γ1, γ2, · · · γm) and their
normal vectors (denoted as

→
n 1,
→
n 2, · · ·→n m). They are the fitting planes for the bottom or

the side of the point cloud. We used the knowledge that the plane of the mechanical claw
hole boundary and the plane of the missing surface boundary are orthogonal to each other
to distinguish them. Thus, the sum of the dot product of each normal vector and other
normal vectors was calculated as follows:

dots(γk) =
m

∑
i 6=k

→
n k·
→
n i, (k = 0, 1, · · · , m) (4)

The fitting plane with the smallest dots value was regarded as the plane of the missing
surface boundary, and it was taken as the horizontal plane of the virtual camera coordinate
system. The direction orthogonal to the horizontal plane was taken as the z-axis. Then,
we projected the point cloud to the horizontal plane, drew the 2D bounding box of the
projected point cloud and took the edges of the 2D bounding box as the x-axis and y-axis.
The virtual camera coordinate system was established as shown in Figure 8. Finally, we
projected the point cloud in the virtual camera coordinates.

B. Hole boundary classification based on the value in the z-axis.

Through the above projection, the value in the z-axis of the boundary points can
be used to determine whether the point belongs to the missing surface boundary or the
mechanical claw hole boundary. The boundary lines in Section 2.2.2 are connected in
order, and the subsequent steps of repairing the hole boundary still rely on this. Starting
from the boundary point with the smallest z-axis coordinate (which belongs to the missing
surface boundary), we traversed each boundary point in the order of the boundary lines
in Section 2.2.2 to find all the segments with a continuous height increase or decrease
(as shown in Figure 9a). Additionally, in order to reduce the noise interference, these
segments should contain more than 5 points. The starting point and the ending point
in these segments are the demarcation points of the missing surface boundary and the
mechanical claw hole boundary, respectively. Then, we can classify these 2 kinds of holes
with these demarcation points.
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2.2.4. Hole Boundary Repair Method Based on Spline Curve Fitting and Interpolation 
After the hole boundary line classification in Section 2.2.3, several unclosed boundary 

lines were generated, including the missing surface boundary and the mechanical claw 
hole boundaries. They all have different degrees of deficiency, which need to be repaired 
for complete and closed hole boundaries.  

All the points of the missing surface boundary were used as the control points to 
approximate the cubic B-spline curve, and the estimated curve equation was obtained. 
Then, the missing surface boundary was interpolated uniformly according to the esti-
mated curve equation. The interpolation points obtained above were also used to repair 
the mechanical claw hole boundaries. Through this step, the closed hole boundary of each 
hole was obtained, as shown in Figure 10.  

Figure 9. Example of hole boundary classification: (a) the segments with a continuous height increase
or decrease (marked in blue) and the demarcation points (marked in purple); (b) hole boundary
classification result; the boundary of the missing surface is marked in dark red; the boundaries of the
mechanical claw holes are marked in green, light green and pink.

The classification result of the hole boundary line is shown in Figure 9b. It can be seen
that the missing surface and the 3 mechanical claw holes are classified correctly.

2.2.4. Hole Boundary Repair Method Based on Spline Curve Fitting and Interpolation

After the hole boundary line classification in Section 2.2.3, several unclosed boundary
lines were generated, including the missing surface boundary and the mechanical claw
hole boundaries. They all have different degrees of deficiency, which need to be repaired
for complete and closed hole boundaries.

All the points of the missing surface boundary were used as the control points to
approximate the cubic B-spline curve, and the estimated curve equation was obtained.
Then, the missing surface boundary was interpolated uniformly according to the estimated
curve equation. The interpolation points obtained above were also used to repair the
mechanical claw hole boundaries. Through this step, the closed hole boundary of each
hole was obtained, as shown in Figure 10.
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2.3. Hole Repair

After the hole detection and boundary processing, the complete and closed hole
boundaries were obtained, including the missing surface boundary and the mechanical
claw hole boundaries. Based on the position information of the holes provided by the hole
boundaries, this section describes the hole repair method. Combined with the character-
istics of these 2 kinds of holes, the mechanical claw hole repair method based on surface
reconstruction and the missing surface repair method based on symmetry completion are
proposed, respectively.

2.3.1. Repair Algorithm of Mechanical Claw Holes Based on Surface Reconstruction

The holes caused by the mechanical claw occlusion have regular shapes and appear
to be in a relatively fixed position. Additionally, the regions that appear on the side of
the point cloud and have no holes have relatively complete surfaces. Based on the above
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analysis, we first used Poisson surface reconstruction [18–21] to fit the regions that appeared
on the side of point cloud, and the closed surfaces with good details were obtained as the
fitting plane of the mechanical claw holes. Specifically, we used all the points on the side of
the point cloud as the input points, which was more likely to restore the possible shape
of the claw hole since the side of the point cloud model maintained a good shape in the
non-hole area. We implemented Poisson reconstruction based on PCL [22]. The maximum
depth of the Octree was set to 6. The minimum number of sample points that should
fall within an octree node was set to 16. The ratio between the diameter of the cube used
for reconstruction and the diameter of the samples’ bounding cube was set to 4.0. Other
parameters followed the default settings of PCL.

Then, we calculated the bounding boxes of the mechanical claw holes. Since the
virtual camera coordinate system was established in Section 2.2.3, the fitting plane of the
mechanical claw hole boundary was basically perpendicular to the xOy plane of the virtual
camera coordinate system. The bounding box of each mechanical claw hole was determined
according to the maximum and minimum coordinate values of the hole boundary points
of the mechanical claw. This obtained bounding box could effectively describe the range
and location of the mechanical claw hole.

Finally, random uniform sampling was performed in the above-calculated bounding
boxes. For each bounding box, the number of sampling points (denoted as N) was calcu-
lated according to the volume of this bounding box (denoted as V) and the average distance
between every point in the bounding box and their nearest neighbors (denoted as D).

N = V/D3 (5)

We selected N random points within the bounding box, determined the points that con-
formed to the reconstructed surface equation and inserted them into the origin point cloud.

The repair effect for the holes caused by the mechanical claw occlusion is shown in
Figure 11. It can be seen that the mechanical claw holes are repaired effectively.
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Figure 11. Example of mechanical claw hole repair result: (a) before repair; (b) after repair.

2.3.2. Repair Algorithm of Missing Surface Based on Symmetry Completion

Due to the limited imaging angle in 3D reconstruction, the missing surface often
appears at the top of the point cloud. As the symmetrical objects grasped by the manip-
ulator have different shapes, the shape of the missing surface is uncertain, and it cannot
be predicted by the neighborhood points. At this time, the surface reconstruction method
mentioned in Section 2.3.1 is no longer applicable. To solve the problem, this section
proposes a missing surface repair algorithm based on the symmetry completion. For the
symmetrical object in practical engineering, the missing surface must be perpendicular to
the main direction of the mechanical claw, so the missing surface at the top of the point
cloud can be repaired by its symmetrical surface at the bottom of the point cloud. The
specific steps are as follows.

In Section 2.2.3, the pose of the point cloud was corrected according to the established
virtual camera coordinate system, so that the 3 axes of the point cloud were aligned with
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the 3 axes of the virtual camera coordinate system. In this case, the symmetrical surface of
the missing surface was parallel to the horizontal plane of the virtual camera coordinate
system. To repair the missing surface, first, we needed to find the maximum, minimum and
median values in the z-axis of the point cloud. Then, at the median value position of z-axis,
the cross section that was parallel to the xOy plane of the point cloud was acquired. By
adjusting this cross section along the z-axis, the cross section with the maximize area was
obtained and taken as the accurate symmetric plane of the point cloud model. As shown in
Figure 12, in the cylinder point cloud model with a missing surface at the top (rotate to
the bottom for the convenience of display), its symmetric plane determined by the median
value in the z-axis directly (marked as s) is higher than the real symmetric plane (marked
as s) due to the existence of the missing surface. Then, combined with the boundary line
of the missing surface obtained in Section 2.2.4, the bounding box for the missing surface
was drawn to determine the filling area just as in Section 2.3.1, and all the points on the
symmetric position of the bounding box were filled into the missing surface. Finally, we
retained all the points of the original point cloud in the overlapped region, in order to
preserve the structure information of the original point cloud and the non-hole region.
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Figure 12. Example of the symmetry plane of point cloud: (a) cylinder point cloud with holes; (b) 
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3. Results and Discussions  
In this section, experiments performed for both simulated and real acquired 3D point 

cloud models to verify the effectiveness and robustness of the hole repair algorithms pro-
posed in this paper are described.  

3.1. Evaluation of Hole Repair Effect for Simulated 3D Point Cloud Model 
The simulated point cloud models were produced with the SolidWorks software. To 

simulate the holes in the point cloud model caused by the mechanical claw occlusion and 
limited imaging angle in 3D reconstruction, the top region of the simulated point cloud 
model was cut off, and three holes with the size of the mechanical claw were dug out on 
the side of the point cloud model. Simulated point cloud models cover many symmetrical 
shapes, such as a cuboid, triangular prism, cylinder, sphere and elliptic cylinder.  

As the simulated models had the ground truth, the chamfer distance was introduced 
as the quantitative evaluation index: 

∈ ∈
 = min + min

2 1
1 2

2 2
CD 1 2 2 2y S x Sx S y S1 2

1 1d (S ,S ) x - y y - x
S S ∈

∈

 (6)

where 1S  represents the point cloud model that must be evaluated, and 2S  is the ground 
truth that has no holes. The first term on the right side of the equation denotes the average 
of the minimum distance from any point x (in 1S ) to 2S , and the second term represents 
the average of the minimum distance from any point y (in 2S ) to 1S . The chamfer distance 
was used to measure the difference between the two point clouds. The smaller the CDd
value is, the smaller the difference between 1S  and 2S  is. 

Figure 12. Example of the symmetry plane of point cloud: (a) cylinder point cloud with holes; (b)
side view of point cloud.

The repair result for the missing surface in the point cloud is shown in Figure 13.
There is a good repair effect for the missing surface at the top of the point cloud.
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3. Results and Discussions

In this section, experiments performed for both simulated and real acquired 3D point
cloud models to verify the effectiveness and robustness of the hole repair algorithms
proposed in this paper are described.

3.1. Evaluation of Hole Repair Effect for Simulated 3D Point Cloud Model

The simulated point cloud models were produced with the SolidWorks software. To
simulate the holes in the point cloud model caused by the mechanical claw occlusion and
limited imaging angle in 3D reconstruction, the top region of the simulated point cloud
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model was cut off, and three holes with the size of the mechanical claw were dug out on
the side of the point cloud model. Simulated point cloud models cover many symmetrical
shapes, such as a cuboid, triangular prism, cylinder, sphere and elliptic cylinder.

As the simulated models had the ground truth, the chamfer distance was introduced
as the quantitative evaluation index:

dCD(S1, S2) =
1
S1

∑
x∈S1

min
y∈S2
‖x− y‖2

2 +
1
S2

∑
y∈S2

min
x∈S1
‖y− x‖2

2 (6)

where S1 represents the point cloud model that must be evaluated, and S2 is the ground
truth that has no holes. The first term on the right side of the equation denotes the average
of the minimum distance from any point x (in S1) to S2, and the second term represents the
average of the minimum distance from any point y (in S2) to S1. The chamfer distance was
used to measure the difference between the two point clouds. The smaller the dCD value is,
the smaller the difference between S1 and S2 is.

3.1.1. Comparative Experiments among Different Algorithms

While verifying the hole repair effect of the algorithm proposed in this paper, the hole
repair algorithms used by the DiChuang DC-AB 3D scanner [22], the Meshmixer software
of Autodesk company [23] and the Geomagic Studio software of Geomagic company [24]
were also introduced for comparison. The hole repair effects of the simulated point cloud
models are shown in Figure 14. It can be seen that our algorithm achieved the best hole
repair effects for most of the point cloud models. The hole-filling algorithms used by the
DC-AB 3D scanner and the Meshmixer software exhibited slightly better repair effects
for the mechanical claw holes, such as the triangular prism and the cylinder. However,
they were unable to effectively repair the missing surface in the point cloud, and the
overall repair effects for the point cloud were poor, as shown in Figure 14. The hole-
filling algorithm used by the Geomagic Studio software performed better than the former
two algorithms in the overall hole repair effect, but there were also some errors in the
cylinder model, as the side of the cylinder was repaired to a plane. In terms of hole repair
speed, our algorithm took approximately 1 s, which is almost the same as that of the other
three algorithms.

In addition to the visual comparisons, the chamfer distance was calculated and is
listed in Table 1. It can be seen that the chamfer distance is significantly reduced with our
algorithm. Compared with other algorithms, except for the triangular prism model and
the cylinder model (in the second and third rows), our hole repair algorithm achieved
the minimum chamfer distance, which is consistent with the visual results shown in
Figure 14. The reason that our algorithm achieved a slightly poorer hole repair effect
for the triangular prism model and the cylinder model is that the mechanical claw holes
occupy a large proportion of the whole point cloud model, which affects the quality of
Poisson reconstruction.

Table 1. The chamfer distance between each simulated model and ground truth before and after repair.

Shape of
Simulated Model Before Repair Ours DC-AB Scanner Meshmixer Geomagic

Cuboid 33.81 0.045 5.72 2.28 0.25
Triangular prism 8.60 0.17 0.15 0.11 0.10

Cylinder 14.73 0.14 0.36 2.84 1.57
Sphere 6.40 0.026 1.08 0.071 0.088

Elliptic cylinder 37.76 0.23 41.50 40.57 0.70
Ellipsoid 9.86 0.12 4.46 0.20 0.21
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3.1.2. Comparative Experiments among Models of Different Sizes

In the real application scene, the mechanical arm often needs to grasp objects with
different sizes. To investigate the robustness of our method on the point cloud models with
variable sizes, cuboid point cloud models with different sizes were simulated as examples.
In the experiments, the mechanical claw holes maintained the same sizes. The repair effects
for the point cloud models are shown in Figure 15, and the chamfer distance between the
repaired point cloud and the ground truth was calculated and is listed in Table 2. From
the experimental results, it can be seen that our algorithm achieved a good hole repair
effect for the point cloud models with different sizes, but the repair accuracy was slightly
reduced when the mechanical claw holes occupied a large proportion of the whole point
cloud model. Point cloud models with other shapes were also simulated, and the same
conclusions were obtained.

Table 2. The chamfer distance for cuboid point cloud models with different sizes before and after repair.

Size of Cuboid Model
(Unit: cm) Before Repair Ours

10 × 10 × 20 33.81 0.045
7 × 7 × 14 35.61 0.049
5 × 5 × 10 40.59 0.15
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3.1.3. Comparative Experiment in Different Grasping Ways

In the real application scene, due to the different grasping angles and grasping posi-
tions of the mechanical arm, as well as the different placement directions of objects, the
holes in the point cloud model appear in different spatial positions and have different
shapes. In this section, the effectiveness of our algorithm is investigated for point cloud
models of objects grasped in different ways. Cuboid point cloud models using different
grasping ways were simulated as examples.

The repair effect is shown in Figure 16; the chamfer distance was calculated and is
listed in Table 3. From the experimental results, it can be seen that our algorithm has a
robust hole repair effect for the object point cloud using different grasping ways.

Table 3. The chamfer distance for cuboid point cloud models with different sizes using different
grasping ways before and after repair.

Grasping Way Before Repair Ours

Top, Straight 35.61 0.049
Middle, Straight 32.76 0.057

Top, Oblique 35.89 0.071

3.2. Evaluation of Hole Repair Effect for Real 3D Point Cloud Model

For the real point cloud of symmetrical objects grasped by the manipulator, the hole
repair effects are shown in Figure 17. The hole-filling algorithms used by the DiChuang DC-
AB 3D scanner [23], the Meshmixer software of Autodesk company [24] and the Geomagic
Studio software of Geomagic company [25] were also adopted for comparison. The missing
surface could not be repaired correctly by the DC-AB scanner or the Meshmixer software.
Additionally, the repaired mechanical claw holes were not smooth enough. The hole repair
effect with the Geomagic Studio software on the cuboid point cloud was slightly better
than that of the other methods, but the whole side of the cylinder point cloud could not be
repaired effectively. It can be seen that our algorithm achieved the best hole repair effects
on the real point cloud models and could recover their shapes without destroying the
original point cloud structure.
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Compared with the simulated models in Section 3.1, our algorithm is not perfect
for the real model. The main reason for this is that the point cloud is easily affected by
the light, shadow and background in the real-time 3D reconstruction, which inevitably
causes noise in the point cloud model. Additionally, it is also very difficult to remove the
mechanical claws perfectly from the point cloud, which will affect the surface reconstruction
to some extent.

4. Conclusions and Discussion

In this paper, the automatic hole repair algorithm is proposed for the 3D point cloud
model of symmetrical objects grasped by the manipulator. Two kinds of holes, namely, the
holes caused by the occlusion of the mechanical arm and the missing surface produced
by the limited imaging angle, were automatically detected and classified. Then, they
were repaired with surface reconstruction and symmetry completion. Experiments were
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performed on the simulated 3D point cloud models and the real acquired point cloud
models. Compared with the hole-filling algorithms used by the DC-AB 3D scanner, the
Meshmixer software and the Geomagic Studio software, the proposed algorithm achieved
the best repair effects. Results also confirm its robustness in variable object sizes and
different grasping ways of the manipulator. During the repair of the missing surface of
the 3D point cloud model, the symmetry completion prior of objects is adopted. In the
future, we will further relax this constraint and investigate the hole repair algorithm for
asymmetric objects. Additionally, we will investigate and improve the hole repair accuracy
when the holes occupy a large proportion of the whole point cloud model, which is still a
very challenging task at present.
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