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ABSTRACT
Pan-cancer analysis can identify cell- and tissue-specific genomic loci and regions with underlying
biological functions. Here we present an online curated DNA Methylation Annotation Knowledgebase,
DMAK, which includes the pan-cancer analysis results for differentially-methylated loci and regions by the
Reduced Representation Bisulfite Sequencing profiling technology. DMAK contains 3 modules of curated
information and analysis results on 688,445 CpG sites across 19 cancer and embryonic stem cell lines
from ENCODE, and further analysis of survival associations with clinical sources retrieved from TCGA. The
knowledgebase covers all identified differentially-methylated CpG sites and regions of interest, further
annotated genomic information, together with tumor suppressor genes information and calculated
methylation level. DMAK provides meaningful clues for deriving functional association network and
related clinical association results based on protein-coding genes, including tumor suppressor genes,
identified from differentially methylated regions of interest. Thus DMAK constitutes a comprehensive
reference source for the current epigenetic research and clinical study.
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Introduction

Pan-cancer analysis can uncover cell- and tissue-spe-
cific genomic loci and regions with underlying biologi-
cal functions of interest.1-6 Meanwhile, it can provide
meaningful insights by genome-wide interrogation
and cross-cell genetic annotation.

Especially for the topics of public research con-
sortiums, ENCODE (Encyclopedia Of DNA Ele-
ments), focusing on identifying all functional elements
in the human genome sequence7-9; and TCGA (The
Cancer Genome Atlas), providing comprehensive and
multi-dimensional maps of the key genomic changes
in 33 types of cancer.1,5,10 Pan-cancer analysis on the
consortium resources can unveil the molecular basis
of cancer through genome-wide interrogation and
deep learning.

While till now, due to data size and technique bar-
rier, there is no comprehensive reference source for
wet-lab experiment design and post-experiment vali-
dation purposes. Thus, this is an imperative for most
biologists and biomedical researchers to improve their
research output and efficiency.11,12

Here we present an online curated reference source
for DNA methylation annotation and analysis purposes.
The information knowledgebase provides multiple read-
to-use analysis results and annotation information for
pan-cancer interrogation and cross-validation usages.

For the first time, our work attempts to provide a
rapid but thorough reference to the epigenetic research
fields. Thus we deposit the curated information
knowledgebase online for direct and interactive usage.

Structure and function of DMAK

In summary, DMAK contains 3 modules of curated
information across 19 cell types retrieved from
ENCODE Consortium portal.13-16 The cell types ana-
lyzed as below include breast cancer (T-47D and
MCF-7), cervical cancer (HeLa-S3), endometrial can-
cer (ECC-1), blood cancer (GM12878, GM12891,
GM12892, HL-60 and K562), brain cancer (SK-N-
MC, SK-N-SH, SK-N-SH_RA, PFSK-1 and U87), liver
cancer (HepG2), colon cancer (HCT-116), pancreas
cancer (PANC-1), lung cancer (A549), and human
embryonic stem cell (H1-hESC).
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As depicted in Fig. 1, the first module of DMAK is the
curation of raw data sources from ENCODE, including
DNA methylation, RNA-seq, Tumor Suppressor Gene
(TSG) and corresponding genetic annotation and analysis;
within the work, we emphasize on cross-cell DNA meth-
ylation profiling information for detecting differentially-
methylated loci and regions with the 3 benchmark cell
lines, lung cancer A549, breast cancer MCF-7 and T-47D.

The second module mainly focuses on genomic anno-
tation and cross-cell function analysis on the curated
DNA methylation data in RRBS format17,18, we have
implemented function annotation for methylated CpG
sites, identified differentially-methylated regions (DMR),
and classified the hyper- and hypo-methylated regions
(or differential DMR candidates).19 The detailed analysis
procedure and results are given in the following section.

The third module includes the function integration
and visualization for the annotated results, which
includes the functional association network for tumor
suppressor genes identified from the hyper- or hypo-
DMRs derived from the above analysis, Gene Ontol-
ogy and corresponding clinical outcome analysis.

We curated information and constructed the compre-
hensive knowledgebase using NGS data sources (namely
RRBS, ChIP-seq and RNA-seq) mainly from ENCODE
and TCGA, and the clinical survival resources retrieved
from TCGA, together with other commonly-used tools,
and the self-compiled programs.

Annotation and analysis procedure in DMAK

This section discusses the functions and analysis pro-
cedure in DMAK. As depicted in Fig. 2, the panel pro-
vides the 4 categories of annotation information,
namely, the site methylation levels for all 19 cell lines,
individual DMR-Genes (hyper- and hypo-methylated
cases for each cell line), specific DMR-Genes (cell-spe-
cific hyper- and hypo-methylated cases) and common
DMR-Genes (common hyper- and hypo-methylated
cases) for the 3 selected benchmark cell lines (A549,
MCF-7 and T-47D), respectively. Right after those
radio options are the corresponding drop-down selec-
tion; together with Segment to View, Rows to View
and Download options, which constitute an integra-
tive operation panel for DMAK (Fig. 2).

Thus, corresponding to the panel, the annotation
and analysis mainly covers the following sections,

Statistical information detected for sequencing read
coverage

We performed statistical calculation for the sequenc-
ing reads coverage counts (Cs and Ts) for the 688,445
CpG sites across all 19 cell lines listed above. For con-
sistence, all DNA methylation data from ENCODE
are based on the RRBS platform. The illustrative out-
put is given in Table 1,

Figure 1. Schematic illustration for DMAK structure and function. The left panel covers data preprocess for pan-cancer cell lines (namely,
cell line curation and data format process); the middle panel includes annotation and integrative analysis on the curated ENCODE data,
namely DNA methylation CpGs annotation, identification of differentially-methylated CpGs and regions; the right panel covers function
integration and visualization, which provides clues for further multi-scale validation.
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Statistical analysis and annotation for the identified
genes from DMRs

We identified genes overlapping with all DMRs
(hyper-DMRs and hypo-DMRs) with reference to
each cell type (A549, MCF-7 and T-47D), respectively;

then we further annotated those gene candidates with
other information (symbol, log2 fold change of RNA-
seq expression profile, TSG, genomic location and
methylation level), thus it provides a thorough over-
view for those DMRs, depicted in below Table 2.

Summary panel of genome-wide DNA methylation
for the 19 cell lines

This panel gives the statistical summary for the
genome-wide methylation level for the 19 cell lines,
which provides a general guide for comparing DNA
methylation status across multiple cells, pairwise com-
parison or cross-cell analysis in Table 3.

Function integration and visualization

This section discusses function integration and visual-
ization for the analysis results, including pairwise
DNA methylation, differential DNA methylation and
corresponding differential RNA expression compari-
son between cell lines, and identified genes of interest
that are overlapped with the hyper- and hypo-DMRs,
respectively (Fig. 3).

Furthermore we attempt to detect whether there
exist any functional association between those identi-
fied genes from hyper-DMRs and hypo-DMRs, from
protein level we can determine whether or not there is
any potential functional link among those identified
protein-coding genes,20 which can further explain the
differential expression between those genes qualita-
tively, especially for the genes belonging to tumor sup-
pressor genes (TSG).18,21,22

Thus we annotated the genes identified from DMRs
with TSG information, filtered out those from unknown
sources, and constructed the TSG functional association
networks for hyper-DMR and hypo-DMR, respectively.

Due to space limitation, Fig. 4 depicts the 20-TSG func-
tional association structures for hyper-DMRs. For validat-
ing the high fidelity of the analysis results, those 20 TSGs
are randomly selected from the TSG list for each case.

Figure 2. Schematic panel of annotation and analysis procedure
in DMAK. It provides the 4 categories of annotation information,
together with genomic Segment to View, Rows to View and
Download options.

Table 1. Schematic illustration of statistical information for calculated methylation level (in percentage) from RRBS profiling technology.
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And interestingly, we find most of those TSGs are
functionally associated to form clusters. In Fig. 4, only
4 out of 20 TSGs are dissociated from the TSG cluster.
Those structures further confirm TSGs are highly
physically connected and functional associated in
DMRs for the T-47D breast cancer case.

Next, we attempt to identify the clinical association
with those gene candidates fromDMRs, here for demon-
stration purpose, we resort to lung carcinoma study
(A549 cell) in Fig. 3.

In lung carcinoma, it is recently reported that a long
non-coding RNA, UCA1 (Urothelial cancer associated

Table 2. Schematic illustration for the identified gene information (SYMBOL and ENTREZ ID), log2 fold change, methylation percentage,
tumor suppressor gene category (TRUE/FALSE), loci (Promoter, CDS, Gene, 50UTR, 30UTR and Intron) and related methylation level
(HYPER/HYPO) from DMRs with reference to T-47D cell type.

Table 3. Summary panel of statistical information calculated from the RRBS profiling data across the 19 ENCODE cell lines.
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1) can up-regulate a potent oncogene ERBB4 (Erb-B2
receptor tyrosine kinase 4) by binding a microRNA,
miR-193-3p, during transcriptional regulation.23

We use ERBB4 (2q33.3-q34) and UCA1 (19p13.12)
as the study case for lung cancer, together with
Kaplan-Meier probability analysis on the RNA-seq
data and clinical survival information (lung adenocar-
cinoma, LUAD) retrieved from TCGA.1,5

Thus, based on the total clinical trial enrolment of
3,568 patients (LUAD), we calculate the clinical asso-
ciation anchored with the 2 candidate genes; as illus-
trated in Fig. 5, the results validate the 2 genes as the
promising biomarkers or potential therapy targets in
lung carcinoma.

Materials and methods

DNA methylation arrays 450K

The HumanMethylation 450K Beadchip assay is a CpG-
specific array technology and allows for the high-resolu-
tion, genome-wide DNAmethylation profiling with over
450,000 CpGs covering 99% of all RefSeq genes.24-26

Reduced representation bisulfite sequencing (RRBS)

Reduced representation bisulfite sequencing, or
RRBS, is a large-scale random approach for analyz-
ing and comparing genomic methylation patterns.
BglII restriction fragments of 500–600 bp sized

Figure 3. Schematic illustration of function integration and visualization for the annotated results for the ENCODE cell lines. Top left
panel depicts the DNA methylation profile statistics for the 19 cell lines; bottom left panel for the genome-wide DNA methylation pair-
wise comparison between MCF-7 and T-47D cells, the methylation correlation coefficient is 0.7659 although both are from breast can-
cers; top right panel gives pairwise comparison between differential DNA methylation and RNA expression status for A549, with weak
anti-correlation value, -0.004045, for the hyper-DMR case, bottom right depicts the gene information for GALNT3 at 2q24.1.
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selected, together with adapters assembled, were
further treated with bisulfite, PCR amplification
and clone, and finally sequenced to target methyl-
ated CpG sites. From the converted and uncon-
verted read counts at each CpG, the sample
coverage and methylation level (in percentage) can
be acquired.11,27,28

Annotation for the significant differentially-
methylated CpG sites (SDMC)

Here we select one cell line (A549, MCF-7 and T-47D)
as the reference cell type, and the annotation results
are further filtered based on the lifted methylation dif-
ference threshold (at least 25% methylation difference
for the paired groups). And the SDMC list contains

106,252 DMCs,29,30 together the related statistical
p-value and adjusted q-value are also provided.

Statistical analysis for the differentially-methylated
regions

We identified 16,277 DMR candidates from all the
DMCs, with the adjusted q-value �0.01, CpG base
methylation difference cutoff, 25, and DMR mean
methylation difference cutoff, 20. Within those candi-
dates, 8,936 entries present hyper-methylated and
7,341 with hypo-methylated status. With the lifted
thresholds, namely adjusted q-value � 0.001, differen-
tially-methylated CpG base count �5, we further
detected 7,537 significant DMRs (Sig-DMRs), where
3,512 entries are significantly hypermethylated-DMRs

Figure 4. Illustrative diagram for functional protein association network inferred for the tumor suppressor genes (TSG), identified from
hyper-DMRs. The nodes represent the protein-coding genes (including TSGs) detected from DMRs, and links represent the association
evidences.

BIOENGINEERED 187



(Sig-Hyper-DMRs), and 4,025 significantly hypome-
thylated-DMRs (Sig-Hypo-DMRs).

Tools used in the curation and analysis

Bowtie231 was used to align sequencing reads; SAM-
tools32 and BAMtools33 were used to process the
aligned sequencing reads; methylKit30 was used to
analyze part of RRBS data, and DEseq34 was used to
analyze RNA-seq data.

Conclusion

DMAK provides a comprehensive annotation and
analysis knowledgebase for pan-cancer study. It con-
tains 3 modules of curated reference results for ready-
to-use information sharing and rapid reanalysis.

The first module of the knowledgebase is about raw
data preprocess, and we retrieved DNA methylation
data from ENCODE and clinical resources from
TCGA. The second is for annotation and function
analysis; in this study case, we focused on DNA meth-
ylation in breast cancer cell, T-47D, annotated and
identified the differentially-methylated sites and
regions, and further identified the underlying tumor
suppressor genes within the regions. The third is for
function integration and visualization procedures. We
further constructed the functional association network
for the identified tumor suppressor genes, and further
performed the clinical association study with the
DMR genes of interest, which can provide statistically
significant evidences for the hyper-methylated and

hypo-methylated processes in the transcriptional reg-
ulation context.

Our work provides a versatile and comprehensive
platform for the corresponding biomedical research,
especially for the genome-wide study, to interrogate
and validate their hypothesis in an efficient and uni-
form way.

In coming days, further annotation and analysis
results concerning pan-cancer analysis will be updated
into the knowledgebase, thus it constitutes an interac-
tive and efficient approach for biologists to carry out
their research with knowledgebase.

Availability
DMAK is deployed at gladex.shinyapps.io/DMAK/ and dma2.
hhuc.edu.cn/DMAK/.
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