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Abstract

Motivation: Live cell segmentation is a crucial step in biological image analysis and is also a challenging task be-
cause time-lapse microscopy cell sequences usually exhibit complex spatial structures and complicated temporal
behaviors. In recent years, numerous deep learning-based methods have been proposed to tackle this task and
obtained promising results. However, designing a network with excellent performance requires professional know-
ledge and expertise and is very time-consuming and labor-intensive. Recently emerged neural architecture search
(NAS) methods hold great promise in eliminating these disadvantages, because they can automatically search an
optimal network for the task.

Results: We propose a novel NAS-based solution for deep learning-based cell segmentation in time-lapse micros-
copy images. Different from current NAS methods, we propose (i) jointly searching non-repeatable micro architec-
tures to construct the macro network for exploring greater NAS potential and better performance and (ii) defining a
specific search space suitable for the live cell segmentation task, including the incorporation of a convolutional long
short-term memory network for exploring the temporal information in time-lapse sequences. Comprehensive evalu-
ations on the 2D datasets from the cell tracking challenge demonstrate the competitiveness of the proposed method
compared to the state of the art. The experimental results show that the method is capable of achieving more con-
sistent top performance across all ten datasets than the other challenge methods.

Availabilityand implementation: The executable files of the proposed method as well as configurations for each
dataset used in the presented experiments will be available for non-commercial purposes from https://github.com/
291498346/nas_cellseg.

Contact: erik.meijering@unsw.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Live cell segmentation has received increasing attention in past years
due to its key importance for further progress in biological research
(Meijering, 2012; Xing and Yang, 2016). However, live cells in
time-lapse microscopy sequences usually exhibit complex spatial
structures and temporal behaviors, which make their segmentation a
challenging task. In the past years, many researchers have made sub-
stantial efforts for tackling this task and achieved promising results
(Dimopoulos et al., 2014; Kong et al., 2015). Recently, with the
huge success of deep learning in various image processing problems,
deep neural networks have been proposed for microscopy cell seg-
mentation (Al-Kofahi et al., 2018; Araújo et al., 2019; Huang et al.,
2020; Jalali et al., 2021).

Among the proposed networks, U-Net (Ronneberger et al.,
2015) is one of the most renowned due to its demonstrated effective-
ness and efficiency. In fact, after this, the U-shaped network has be-
come the de facto standard architecture for cell segmentation tasks.
Several variants and improvements on U-Net have been made by
researchers for better performance. For example, Drozdzal et al.
(2016) proposed using both long and short skip connections for a U-
shaped network to benefit the segmentation. Hollandi et al. (2020)
proposed combining both Mask R-CNN and U-Net to predict the
segmentation and thus improve the accuracy of the nucleus segmen-
tation. Arbelle and Raviv (2019) proposed an integration of convo-
lutional long short term memory (CLSTM) and U-Net to exploit
temporal information to support the cell segmentation decisions.
Long (2020) proposed an enhanced U-Net with a modified encoded
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branch for cell nucleus segmentation in a low-resources computing
scenario. Despite the impressive performance of these popular net-
works, their architectures were designed manually by experts for
months or even years, and further improving them by hand is very
time-consuming and labor-intensive, limiting the rate of progress in
the field. Also, designing such networks requires a large amount of
professional knowledge and expertise in the field, and thus traps the
average researchers without such capability. In addition, a growing
demand for increasingly more complex architectures has severely
challenged researchers.

To tackle the above issues, neural architecture search (NAS),
which can automatically search the optimal architecture for a given
task, has emerged in recent years (Elsken et al., 2019; Hutter et al.,
2019). NAS can be seen as a subfield of automated machine learning
and its research focuses on three main aspects: search space, search
strategy and performance estimation strategy. The search space
defines which architectures can be represented in principle.
Generally, it includes the selection of basic operations (BOs) used to
build a block (micro structure) and the backbone architecture used
to define the outer network (macro structure). Current works can be
divided into two categories based on the definition of search space:
(i) searching repeatable micro structure while keeping the macro
structure fixed (Cai et al., 2018b; Liu et al., 2018; Zela et al., 2019),
and among them, the NASNet (Zoph et al., 2018) is a representa-
tive; and (ii) jointly search repeatable micro structure and macro
structure (Liu et al., 2019; Yan et al., 2020) for exploring more
architectural variations. The search strategy details how to explore
the search space, and the methods can be divided into three catego-
ries: (i) evolutionary algorithms (Lu et al., 2019; Xie and Yuille,
2017), (ii) reinforcement learning-based methods (Cai et al., 2018a;
Zoph et al., 2018) and (iii) gradient-based methods (Brock et al.,
2018; Liu et al., 2018). The performance evaluation refers to the
process of (i) estimating the performance of the candidate architec-
tures to select an optimal architecture that achieves high predictive
performance and (ii) evaluating the optimal architecture for final
performance.

Since NAS was proposed, it has mainly solved natural image and
language tasks. Concerning medical image segmentation tasks, only
few works have been proposed (Mortazi and Bagci, 2018; Yang
et al., 2019). The current practice in this field is to respectively
search repeatable micro structures for down and up blocks and con-
struct a U-shaped network. For example, Weng et al. (2019) pro-
posed a NAS-U-Net based on the U-Net for segmenting 2D prostate
MRI (magnetic resonance imaging), liver CT (computed tomog-
raphy) and nerve ultrasound images. Zhu et al. (2019) proposed a
V-NAS, which is a DARTS-style (Liu et al., 2018) differentiable
NAS U-Net, for lung and pancreas 2D CT image segmentation. Kim
et al. (2019) proposed a scalable NAS for 3D medical image segmen-
tation based on a 3D U-Net. Wang and Biswal (2020) proposed a
NAS solution for MRI gliomas image segmentation based on a 3D
U-Net. There are also several works designed for non-U-shaped net-
works such as NAS based on adversarial network (Dong et al.,
2019) and deep belief network (Qiang et al., 2019). Generally, the
underlying idea of these methods is introducing common BOs (e.g.
convolution, pooling, etc.) prevalent in current NAS methods to de-
fine the search space and searching repeatable micro architectures to
construct the macro network. This limits the search space and poten-
tial of NAS to find more efficient architectures. Also, employing
these methods for live-cell segmentation is likely not optimal, as they
focus on spatial information and do not exploit temporal informa-
tion. The recently proposed nnU-Net (Isensee et al., 2021) is a self-
configuring segmentation method inspired by U-Net, which has
achieved promising performance in international biomedical seg-
mentation competitions. However, unlike NAS, which aims to find
an optimal architecture, it focuses on the non-architectural aspects
in the segmentation methods and aims to design an automatic pipe-
line for given architectures.

Therefore, in this article, we propose a NAS-based solution for
time-lapse microscopy cell segmentation with specifically defined
search space and non-repeatable micro structures. Building on and
significantly extending our preliminary conference report (Zhu and

Meijering, 2020), we design four new BO sets for the micro architec-
ture searching, which incorporate operations suitable for the time-
lapse microscopy cell segmentation task. For example, we incorpor-
ate a CLSTM network to better explore the temporal information in
time-lapse sequences. Also, different from the current NAS methods,
we propose to jointly search non-repeatable micro structures to con-
struct the macro network. This allows different layers of the macro
network to have their own focuses, and thus allows the macro net-
work to better achieve the exploration and fusion of multiscale fea-
tures. We conduct experiments on all 2D cell tracking challenge
(CTC) datasets (Ulman et al., 2017) to comprehensively evaluate the
performance of our method. Experimental results demonstrate the
competitiveness of the proposed method compared to the state of
the art. The searched networks achieve more consistent top perform-
ance on the ten datasets than the other challenge methods.

The contributions of this work are summarized as follows. First,
we are the first to extend NAS to time-lapse microscopy cell segmen-
tation. Second, we propose to jointly search non-repeatable micro
structures to construct the macro network, which augments and
complements the much-studied repeatable one. Third, we define a
novel search space, which incorporates four types of candidate oper-
ation sets and searchable skip connections. And fourth, we show ex-
perimentally that the proposed NAS approach is capable of
optimizing the architecture to improve the performance of a given
macro network.

2 Materials and methods

In this section, we firstly describe our specifically defined search
space. Then, our search strategy followed by the performance esti-
mation strategy are presented.

2.1 Search space
We propose to jointly search non-repeatable micro architectures to
construct the macro network. For the macro network, we still follow
the routine of constructing a U-shaped network due to its success
and transferability in biomedical image segmentation (Section
2.1.1). For the micro architecture, we propose a novel search space
suitable for the time-lapse microscopy cell segmentation task
(Section 2.1.2).

2.1.1 Macro network

In essence, U-shaped networks are composed of mutually connected
down-sampling and up-sampling blocks. The down blocks are re-
sponsible for feature embedding which compresses the resolution
and extracts target sensitive information, and the up blocks are re-
sponsible for mixing the embedded features with the outputs of hori-
zontally corresponding down blocks to recover the position
information for predicting the segmentation. In our NAS network,
the macro network still follows this approach. Yet unlike the trad-
itional U-Net, our macro network (i) has n down blocks and nþ 2
up blocks, which is determined by our task; (ii) the n down blocks
and the first n up blocks are symmetrical, and there is no additional
convolutional layer in the middle of the network; and (iii) the skip
connection is included in the architecture search of the up block, so
it is not a simple concatenation but an automatically searched
operation.

Figure 1 illustrates the schematic of our NAS network. Its input
is a time-lapse microscopy cell image and the outputs are the seg-
mentation and markers images, the latter of which contain cell blobs
that can be used to further improve the segmentation in case of adja-
cent cells in the image (see Supplementary Section S1 for more
details). These two outputs are generated by blocks consisting of
only a convolutional layer and a softmax or sigmoid layer. Ahead of
the down blocks, there is a block used to generate the inputs for the
following down blocks. It is added due to the required two inputs
for each down or up block. These three blocks are fixed during the
NAS. Therefore, for our NAS network, n down blocks and nþ 2 up
blocks need to be searched. Note that these down and up blocks are
jointly searched to have their own architectures rather than sharing
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a same architecture. For the down block, its two inputs are defined
as the outputs of the previous and pre-previous down blocks, and
for the up block, its two inputs are defined as the output of the previ-
ous up block and the output of the horizontally corresponding down
block.

2.1.2 Micro search space

To explain the search space, we start with the definition of a set of
BOs which are the fundamental elements in the down and up blocks.
The selection of BOs is important because it directly affects the NAS
performance and efficiency. Based on the principle of no redundancy
and reduced parameters, in this article, we propose to (i) limit all
convolution operations to a size of 3�3 pixels and pooling opera-
tions to a size of 2� 2 pixels, (ii) use convolution operations with a
stride of 2 pixels to achieve the down and up operations, (iii) incorp-
orate depthwise-separable convolution (Chollet, 2017) operations to
reduce network parameters and (iv) incorporate shuffle convolution
(Zhang et al., 2018) operations to reduce computation cost. Also,
considering the particularity of the time-lapse microscopy cell seg-
mentation task that the sequences contain both spatial and temporal
properties, we incorporate CLSTM operations to exploit cell dynam-
ics. In addition, for better cell segmentation performance, we adopt
the atrous convolution (Chen et al., 2018) operation intentionally
proposed for image segmentation and the squeeze-and-excitation
(Hu et al., 2018) operation aimed to suppress redundant features
while enhance useful features. Overall, we design four sets of BOs
for the micro architecture search, as summarized in Table 1.

Different BO sets have different BOs, which are designed based
on their own functions. For example, the temporal BO set is used to
capture the temporal information of cell sequences and thus contains
only the CLSTM operation. The down BO set is used to halve the di-
mension of feature maps and thus contains various down-sampling
operations. The same underlying idea goes for up and normal BO
sets. The identity operation in the normal BO set refers to only group
normalization and ReLU calculations, which aims to further reduce
network parameters. Note that all BOs in down and up blocks are
followed by group normalization and ReLU activation. The reasons
for choosing group normalization are: (i) it has better performance
than batch normalization (Wu and He, 2018) and (ii) it is suitable
for segmentation tasks that have small batch size.

Before describing the down and up blocks, we first define the
fundamental computing unit (CU) in them. A CU is constructed by
all BO candidates from a BO set. Figure 2 exhibits its structure and
we can see it refers to a fusion of multiple BOs. For each BOi in a
CU, there is a parameter wi whose softmax transformation is
assigned to it as a weight. This parameter controls the contribution
of the BO to the CU output, and therefore, the CU output is a
weighted sum of all the BOs. During the search, the weights of BOs
that contribute more to the CU output will be increased and the
weights of BOs that contribute less to the CU output will be reduced.
Thus, the NAS can determine the optimal BO by selecting the largest
weight. We name these parameters as BO parameters.

In our NAS network, there are four types of CUs (named as T, D,
U and N CUs respectively) which are corresponding to the four BO
sets (T, D, U and N BO sets). For example, the U CU contains the

Input image

Down block 1

Down block 2

Down block n Up block 1

Up block n-1

Up block n

markers
Up block n+1

Up block n+2

Conv

Softmax

Conv

Sigmoid

Fig. 1. Schematic of the proposed NAS network. The macro architecture is a U-shaped network, where the blue and red rectangles represent the down and up blocks to be

searched respectively. Each down or up block has two inputs and one output (rectangles). The dashed line arrows within the blocks represent possible forward data paths and

each possible path corresponds to a set of operations to be searched. The first green rectangle ahead of the down blocks consists of two convolutional layers followed by a group

normalization layer and is used to generate the inputs for the subsequent down blocks. The last two green rectangles after the up blocks consist of only a convolutional layer

and a softmax or sigmoid layer and are used to generate the output segmentation and markers. The solid line arrows represent the forward data paths

Table 1. Four BO sets designed for the micro architecture search

BO set type BO candidates

Temporal (T) CLSTM

Down (D) 1. Max-pooling

2. Average-pooling

3. Down conv

4. Down atrous conv

5. Down depthwise-separable conv

6. Down squeeze-and-excitation

Up (U) 1. Up conv

2. Up atrous conv

3. Up depthwise-separable conv

4. Up squeeze-and-excitation

Normal (N) 1. None

2. Identity

3. Conv

4. Atrous conv

5. Shuffle conv

6. Depthwise-separable conv

7. Squeeze-and-excitation

Note: We named them as T, D, U and N, respectively.
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four BOs in the U BO set. The same underlying ideas go for T, D
and N CUs. In the following description of the down and up blocks,
for conciseness, we omit the structure of a CU and only use a purple
rectangle labeled with CU type (T, D, U and N) to represent it.

As mentioned above, our NAS jointly searches non-repeatable
micro architectures to construct the macro structure. This means
each down and up block has its own architecture. Yet to avoid an
overly large search space, they share the same basic structures.
Figure 3 illustrate the basic structures for down and up blocks re-
spectively. Each block has two inputs, three nodes and one output.
The inputs are the feature maps learned by the previous layers. The
nodes are clusters of CUs, represented as circles in the figure. The
number of CUs in these three nodes are in ascending order because
in addition to the two inputs, the output of the previous nodes will
be input to the following nodes. For the down block, its output is the
concatenation of the outputs of three D CUs connecting to the three
nodes. For the up block, its output is the concatenation of the out-
puts of three nodes.

The dashed lines represent possible forward data paths connect-
ing to CUs. The NAS takes control of selecting paths for each node
and selecting BOs for each CU. We define the search space for down
and up blocks as follows. For the down block, since we expect it to
extract both spatial and temporal characteristics and embed the tar-
get sensitive features, we define its BOs search from a space com-
posed of T, D and N BO sets. Specifically, the BOs corresponding to
the two inputs are taken from the T BO set, the BOs corresponding
to the block output are from the D BO set, and all the other BOs are
from the N BO set. For the up block, since its responsibility is to de-
code the embedded features and search for the connection operation

with high-level features in the horizontally corresponding down
block, we define its BOs search from a space composed of U and N
BO sets. Specifically, the BOs corresponding to the input from the
previous up block are taken from the U BO set and all the other BOs
are from the N BO set. This way, the information transfer operation
achieved by the skip connections in traditional methods is automat-
ically searched. Also, by including the T BO set in the search space
for the down block, our network can encode spatial-temporal fea-
tures, which is especially suitable for segmentation in time-lapse
sequences. In addition, there are fewer BOs in the up blocks com-
pared to the down blocks, which reduces the size of the search space
and simplifies the search.

2.2 Search strategy
The search process aims to find the optimal micro architecture of
each block. More specifically, it decides (i) which forward data path
is selected for each node and (ii) which BO is selected for each CU.
In our work, we require each node to have two paths for the
searched network and each CU will keep only one BO. For the BO
selection, the NAS learns the BO parameters and the BO with the
highest wi will be kept. Regarding the path selection, current meth-
ods (Wang and Biswal, 2020; Weng et al., 2019) also use the highest
BO parameters wi for making decision. This is feasible when the
number of BOs in the BO sets is more or less the same, but when the
number of BOs in different BO sets is imbalanced, the NAS tends to
select the path with a small number of BOs because such BO weights
tend to be higher than those of BOs in a large BO set. Therefore, we
propose to assign a weight wi for each CU to tackle this issue. We
name these parameters as CU parameters. This way, the path can be
selected based on the CU parameter corresponding to this path.

Overall, in this article, there are two classes of parameters: archi-
tecture parameters (including BO and CU parameters) and kernel
parameters (the values of the filters). Therefore, we choose to use a
gradient-based method to alternately optimize the two classes of
parameters. For each class of parameters, there is a separate opti-
mizer and the two optimizers worked sequentially in each iteration.
Specifically, when training the architecture parameters, the kernel
parameters are fixed, and vice versa. Once the training of architec-
ture parameters is finished, the optimal architecture can be derived
by pruning redundant BOs and paths. Finally, in order to save GPU
memory, we use the method proposed in (Cai et al., 2018b) as our
search strategy.

2.3 Performance estimation strategy
The performance estimation strategy aims to evaluate the perform-
ance of the architecture candidates without using a standard training
and validation process so as to reduce the computation cost. In our
work, during the NAS, we divide the training dataset into about
60% training set and 40% validation set, and the performance is
estimated on a subset of the validation set. Specifically, 60 batches
of size 8 samples from the validation set. Then, after obtaining the
optimal architecture, we train it from scratch using the entire train-
ing dataset and report its performance on the test dataset.

3 Results

In this section, we firstly present the implementation details of our
NAS setup. Then, the datasets and metrics used for performance
evaluation are described. Finally, we show the searched networks
and report the segmentation performance on benchmark datasets.

3.1 Experimental settings
The configurations of our NAS are empirically set as follows. The
number of the down blocks n is set to be three, and thus the number
of up blocks is five. Therefore, the total size of the search space is in
the order of 1010 possible network configurations and the parameter
size is about 0.29 M. The number of kernels (channels) in the feature
map of each BO is set to 16 and we do not double the number when
halving or doubling the resolution of the feature map. Therefore, the
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Fig. 2. The structure of the CU where BOi is selected from a BO set, wi is its weight

and m is the number of BOs in the set
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Fig. 4. The architectures found by NAS for down (blue rectangle) and up (red rectangle) blocks for dataset DIC-C2DH-HeLa. The digit following a letter represents the BO

number in the BO set corresponding to the letter. For example, N4 represents the atrous convolution

Table 2 Segmentation results and ranks of our NAS-produced networks on the ten 2D CTC datasets compared with the state-of-the-art (top-

1)

Method State-of-the-Art Our Networks

OPCSB (#); SEG (#); DET (#) OPCSB; SEG; DET Ranks/count

Dataset

BF-C2DL-HSC 0.905 (1); 0.818 (1); 0.995 (our) 0.893; 0.792; 0.995 3; 3; 1/14

BF-C2DL-MuSC 0.878 (1); 0.777 (1); 0.982 (2) 0.805; 0.644; 0.966 10; 11; 6/14

DIC-C2DH-HeLa 0.925 (3); 0.870 (3); 0.979 (3) 0.912; 0.863; 0.960 3; 4; 3/27

Fluo-C2DL-Huh7 0.843 (our); 0.752 (our); 0.935 (our) 0.843; 0.752; 0.935 1; 1; 1/5

Fluo-C2DL-MSC 0.761 (4); 0.687 (our); 0.876 (4) 0.760; 0.687; 0.832 2; 1; 3/32

Fluo-N2DH-GOWT1 0.952 (2); 0.938 (5); 0.980 (6) 0.948; 0.933; 0.963 2; 2; 5/43

Fluo-N2DH-SIMþ 0.905 (7); 0.832 (7); 0.983 (4) 0.887; 0.807; 0.967 5; 6; 10/38

Fluo-N2DL-HeLa 0.954 (8); 0.923 (8); 0.994 (1) 0.951; 0.917; 0.984 3; 3; 13/41

PhC-C2DH-U373 0.959 (3); 0.927 (3); 0.991 (3) 0.954; 0.927; 0.982 3; 2; 7/31

PhC-C2DL-PSC 0.859 (1); 0.743 (1); 0.975 (1) 0.847; 0.733; 0.962 2; 2; 5/33

Note: The (arbitrary) numbers in parentheses indicate different methods. It can be seen that the top-1 performances are achieved by different methods, including

ours. The count in the last column is the total number of competing methods.

(a)

(g)(f)

(e)(d)(c)(b)

(j)(i)(h)

Fig. 5. Segmentation results (colored contours) of our NAS-produced networks on the ten 2D CTC datasets. (a) DIC-C2DH-HeLa, (b) Fluo-C2DL-MSC, (c) Fluo-N2DH-

GOWT1, (d) Fluo-N2DH-SIMþ, (e) Fluo-N2DL-HeLa, (f) PhC-C2DH-U373, (g) PhC-C2DL-PSC, (h) BF-C2DL-HSC, (i) BF-C2DL-MuSC and (j) Fluo-C2DL-Huh7
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output of each node has 16 channels because it is the sum of the
BOs, and the output of each block has 48 channels because it is the
concatenation of the outputs of three nodes. The input to the NAS
network is randomly cropped patches of size of 256�256 pixels
from original images. We also randomly augment the data for
increasing variability by (i) random horizontal and vertical flip, (ii)
random 90� rotation, (iii) random sequence reverse ([T,T-1,...,2,1])
and (iv) random affine and elastic transformations. The batch size is
set to be 8 and the NAS is stopped when the architecture does not
change for 60 epochs or when the maximum number of epochs 300
is reached. The unroll length for the CLSTM is 2. We use Adam
(Kingma and Ba, 2015) optimizer with learning rate 0.0003 and
weight decay 0.0001 to learn both the architecture and kernel
parameters. The experiments are run using four NVIDIA V100
GPUs (see Acknowledgements for used resources and Supplementary
Section S4 for running times).

The loss functions used to train the model are as follows. As
shown in Figure 1, the network generates two outputs, namely the
segmentation and markers images. The segmentation image has two
(or four) channels (depending on the dataset as detailed in
Supplementary Table S1) representing the probability of each pixel
belonging to the background and cell regions (and touch and gap
regions). The markers image is a single-channel map representing
the probability of each pixel belonging to a cell marker. The ground-
truth training images for both are obtained from the annotated cell
instance segmentation and tracking labels provided with the CTC
datasets (see Supplementary Section S2 for details). Using these, we
employ the classical weighted cross-entropy loss function
(Ronneberger et al., 2015) to penalize the segmentation, and a bin-
ary cross-entropy loss function (Arbelle and Raviv, 2019) to penalize
the markers, and the final loss is set to be the sum of the two.

3.2 Datasets and metrics
We use all ten 2D CTC benchmark datasets to comprehensively
evaluate the performance of our method. These datasets are time-
lapse image sequences of moving and dividing cells, recorded using
fluorescence, bright-field, phase-contrast or differential interference
contrast (DIC) microscopy. The videos cover a wide range of cell
types, spatial and temporal resolutions and signal-to-noise ratios,
which makes the evaluation of our method more persuasive. For
each sequence, there are two datasets: one contains both original
image data and reference annotations for training and another with-
out annotations for testing. The performance metrics of the cell seg-
mentation benchmark (OPCSB, SEG and DET) are used to evaluate
the segmentation performance. For full details about the datasets
and the performance metric, we refer to Ulman et al. (2017).

3.3 Performance evaluation
Application of our proposed NAS method produces architectures for
each dataset. As an example, see Figure 4 for the DIC-C2DH-HeLa
dataset (Supplementary Section S3 shows the architectures for the
other datasets). To comprehensively evaluate the performance of our
method, we conducted experiments on the ten 2D CTC datasets. We
submitted our segmentations of the test sets to the CTC evaluators
to compare with the state-of-the-art methods and we received the
evaluation results from them. Table 2 reports the OPCSB, SEG and
DET results and the CTC ranks of our method in the latest round
(May 2021). As can be seen from Table 2 and the leaderboard on
the CTC website, our method ranks among the top-3 for eight data-
sets and among the top-10 for the remaining two according to
OPCSB. It is worth noting that so far, no method has achieved such
consistent top performance on all ten datasets, which demonstrates
the effectiveness of the proposed method. Our method achieves bet-
ter results for the SEG metric than for DET. This is not surprising, as
our method was optimized specifically for accurate segmentation of
cells and their boundaries, not for detection. Our method performs
least optimal on the BF-C2DL-MuSC dataset due to systematic over-
segmentation. Representative examples of our final segmentation
results for the ten 2D CTC datasets are shown in Figure 5. We note
that our method achieved remarkable results especially on the

comparatively more challenging datasets, such as PhC-C2DL-PSC,

Fluo-C2DL-MSC and Fluo-C2DL-Huh7, showing complex cell
shapes and many closely adjacent cells.

4 Discussion

In this article, we proposed a NAS-based solution for time-lapse mi-
croscopy cell segmentation. Different from the current NAS meth-

ods, we jointly searched non-repeatable micro structures to
construct the macro network which augments the much-studied re-

peatable one. This allows different layers of the macro network to
have their own focuses and thus enable the network to better explore

and fuse multiscale features. Also, we defined a specific search space
for the time-lapse microscopy cell segmentation task, including the

incorporation of CLSTM for extracting spatiotemporal information,
the atrous convolution for better segmentation, etc.

Our NAS is inclined to select the atrous convolution operation

(including atrous, down atrous and up atrous), which accounts for
the largest proportion, to form the architectures. This operation

rarely appeared in previous NAS works or did not appear so fre-
quently in their searched networks. This can be explained from the

following two aspects: (i) the atrous convolution was intentionally

designed for tackling image segmentation issues by enlarging the re-
ceptive field to enable each convolution capture information at dif-

ferent scales while many of the current NAS works focus on image
classification and natural language processing; (ii) despite the

achievements of NAS applied in image segmentation, the operations
and architectures required for different tasks are different. This sup-

ports our claim that defining a specific search space suitable for the
time-lapse sequence is important. We also conclude that our NAS

tended to select the depthwise-separable convolution for all the three
types of operations (down, up, normal). Squeeze-and-excitation is

often selected as part of the down and up operation, but hardly as
the normal operation. This makes sense, as it can strengthen the fea-

tures of important channels and weaken the features of unimportant
channels, which is meaningful for the down and up sampling pro-

cess. Also, the NAS hardly selected the max-pooling, down convolu-
tion and none operations, which is consistent with current

experience in manual network design.
Comprehensive evaluations on the benchmark datasets from the

CTC demonstrate the competitiveness of the proposed method com-

pared to the state of the art. The results show that the method can
achieve more consistent top performance across all ten datasets than

the other methods. Altogether our findings show the great potential
of NAS to yield improved neural networks for a wide range of cell

segmentation problems. Although we have focused on 2D segmenta-
tion, the proposed method may be extended to 3D segmentation

using slice-by-slice processing, and we also aim to develop a fully 3D
implementation in the future.
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