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a b s t r a c t

With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express
protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the
biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse
group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies
have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they
contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-
coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been
linked to neurodegenerative disease and several types of cancer. Here we summarise what is known
about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that
aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along
with its possible clinical utility as a biomarker or therapeutic target.
© 2018 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past ten years, advances in sequencing technologies
have led to the discovery that the human genome is widely tran-
scribed into RNA; however, only 2% of the RNA produced is trans-
lated into proteins [1,2]. This means that the cellular contribution of
the non-coding transcriptome is expanding. In particular, long,
non-coding RNAs (lncRNAs) have emerged as regulators of normal
cellular events and various disease states, including cancer [3,4].

As one class of non-coding RNAs, lncRNAs are defined as tran-
scripts greater than 200 nucleotides and containing little or no
protein-coding potential. The size criterion distinguishes lncRNAs
from smaller, non-coding RNAs, such as microRNAs (miRNAs) and
piwi-interacting RNAs (piRNAs) [5,6]. Studies indicate that most
lncRNAs are synthesised by RNA polymerase II (Pol II) and are
processed similarly to messenger RNAs (mRNAs), with capping,
splicing and polyadenylation [7]. However, some lncRNAs, like Pol II
transcript metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), have unique processing events that distinguish them
frommRNAs [8,9]. In addition to Pol II transcription, some lncRNAs
are transcribed by RNA polymerase III (Pol III) [10,11], adding
r B.V. on behalf of KeAi Communica
another level of transcriptional complexity to this class of non-
coding RNAs.

Not surprisingly, much scientific effort has been directed to-
wards the discovery and annotation of lncRNAs in humans [12,13].
This has subsequently led to a proliferation of specialized lncRNA
databases, such as NONCODEv5 [14] that integrates data from the
genomes of 17 different species and LNCipedia [15] that contains
close to 150,000 human annotated lncRNAs.

With tens of thousands of lncRNAs in human cells [14,16], there
are significant challenges to understand their cellular roles,
particularly as lncRNAs are often expressed at lower levels than
mRNAs and exhibit poor sequence conservation across various
species [17]. However, lack of sequence conservation does not
equate to lack of function [18]. In recent years, significant progress
has been made in characterising biological functions of lncRNAs.
There are now many examples of lncRNAs affecting cellular pro-
cesses like development, differentiation and proliferation, in
addition to their impact at every level of gene expression from
chromatin remodeling to translation [3,4,9,19e22].

This review will focus on BC200, an lncRNA that was first
discovered in primate brain in 1987 [23]. Conserved in humans
[24], initial studies on human BC200 were focused on its neural-
specific, dendritic localisation [25]. A link to cancer was provided
a few years later by a key study revealing BC200 RNA expression in
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a number of human tumours by Northern blot analysis and in situ
hybridization [26]. In that study, the authors found BC200
expression to be substantially increased in certain tumours, like
breast, cervix, oesophagus, lung, ovary, parotid and tongue, while it
is undetectable in corresponding normal tissues and in other can-
cers, such as bladder, colon and liver [26]. More recent in-
vestigations propose that BC200 has roles in cell migration,
proliferation and survival [27e34] e all suggesting that BC200
contributes to cancer development and progression.

In this review, we outline the general features of BC200 lncRNA,
including its transcription, sequence elements and expression
patterns. We then refer to BC200's evolutionary emergence and
detail its analogues. To better understand BC200's functional sig-
nificance, we present current knowledge of the RNA's protein in-
teractions within the cell, highlighting several recent publications.
Lastly, BC200's associationwith human disease, focusing on cancer,
is discussed, along with the use of BC200 as a cancer diagnostic or
prognostic biomarker.

2. Overview of BC200 lncRNA

2.1. Features of BC200 from transcription to cellular localisation

2.1.1. BC200 biosynthesis
BC200, also known as brain cytoplasmic RNA 1 (BCYRN1), is a

non-coding RNA, sense-transcribed from its gene locus situated on
human chromosome 2 between the protein-coding genes for
calmodulin 2 (CALM2) and epithelial cellular adhesion molecule
(EPCAM) [35,36]. BC200 was the first example of a primate, tissue-
specific Pol III transcript [37], altering the view that Pol III was only
responsible for the synthesis of transfer RNA (tRNA) and 5 S ribo-
somal RNA (rRNA) [10,11].

Recent work from Kim et al. (2017) offers an in-depth analysis of
BC200 biosynthesis [38]. Prior to this study, analysis of the BC200
promoter region included the identification of a putative TATA box
and two internal A and B box promoter elements [39], which are
common features of Pol III promoters [11,40]. With their study, Kim
et al. confirmed the critical role of the TATA box and internal pro-
moter elements for BC200 transcription. In addition, the authors
demonstrated that the 100-base pair (bp) region upstream to
BC200 transcription start site (TSS) is characterized by two distinct
regions: �100 to �36 bp, which is bound by transcription factors
independent to the internal promoter elements, and a�35 to�6 bp
region inwhich the binding of transcription factors is dependent on
the A and B box elements (Fig. 1A).

The authors further revealed that TATA binding protein (TBP)
binds to the �100 bp region in human cervical carcinoma (HeLa)
cells and that a deletion of the TATA box leads to an impaired BC200
transcription [38]. Indeed the TATA box and TBP-binding seems to
be part of a conserved core promoter that is required for all
eukaryotic polymerases [41].

While core promoter elements are essential for basal tran-
scription, further levels of transcriptional regulation can be ach-
ieved by specific transcription factors binding to promoter
elements and influencing transcriptional output. With regard to
BC200 synthesis, two studies have examined the influence of spe-
cific transcription factors, c-MYC [27] and estrogen receptor a (ERa)
[28], in lung and breast cancer cell lines respectively. Given that the
MYC proto-oncogene is deregulated in many cancers [42,43], it
remains to be seen if MYC drives BC200 expression in other cancers
besides non-small cell lung cancer (NSCLC) [27]. Like other pro-
moters, the specific transcription factors that regulate BC200
transcription at any given timewill likely be dependent on cell type
and context. Therefore, in addition to experimentally identifying
themembers of BC200 transcriptional network, it will be important
to understand how the network is integrated and regulated within
a wider cellular environment. Certainly there is still much to be
discovered about the specific details BC200 biosynthesis, particu-
larly in diseased cells.

2.1.2. BC200: structural elements and cellular localisation
Named after the length of its unique single exon of 200 nucle-

otides [23,25], sequence analysis of BC200 RNA sequence revealed
three distinct sequence domains: a 50 Alu element, a central
adenosine-rich region and a 30, 43-nucleotide, unique region con-
taining a cytosine-rich stretch [25] (Fig. 1B).

Unlike many lncRNAs that remain and function in the nucleus,
BC200 is classified as a small, cytoplasmic RNA (Ensembl release
90) [44]. Importantly, many of its molecular interactions involve
proteins located in the cytoplasm (described in the following sec-
tion). Initial evidence for its cytoplasmic location was based on its
presence in the cytoplasmic, poly (A)þ RNA fraction of monkey and
human brain samples [23]. More recent experiments have involved
cell fractionation followed by quantitative, reverse transcription,
polymerase chain reaction (qRT-PCR) to monitor relative expres-
sion levels of BC200 in nuclear versus cytoplasmic fractions [28,30].
In these experiments, BC200 is primarily present in the cytoplasm;
however, it should be pointed out that there is a small, but
detectable amount of BC200 in the nuclear fraction as well [28,30].
In an alternative approach using an antibody directed against
BC200 RNA, Shin et al. (2017) observed punctate staining in both
the cytoplasm and nucleus of cervical carcinoma cells and co-
localisation of BC200 with proteins in processing bodies (P
bodies) [45]. Taken together, BC200 is largely cytoplasmic; yet, with
evidence that the RNA modulates alternative splicing of an
apoptotic regulator protein, Bcl-x (B cell lymphoma 2 family
member) [28], additional nuclear functions for BC200 cannot be
ruled out.

2.1.3. BC200: confirmation of non-coding status
One surprising experimental observation in the lncRNA field has

been that cytoplasmic lncRNAs are often found associated with
translational machinery through ribosome profiling data [46,47],
calling into the question their non-coding status. A study by
Carlevaro-Fita et al. (2016) raises the possibility that the ribosome
may play a role in regulating the degradation of cytoplasmic
lncRNAs [48]. Interestingly, an increasing number of reports
demonstrate that non-coding transcripts might in fact code for
small peptides [46,49]. The identification of these peptide-coding,
‘non-coding’ RNAs remains difficult. As ribosome occupancy alone
is not proof of the coding status [50], it still hints at the coding
potential of the transcript. Indeed the line between lncRNAs and
mRNAs is blurred, and it is not as clear cut as once was assumed
[51,52]. In examining the coding potential of BC200 using published
ribosome profiling data [53e57] in the GWIPS-viz Genome Browser
from RiboGalaxy [58], we confirmed that BC200 does not associate
with ribosomes, reflecting its true non-coding status as previously
described [37].

2.1.4. BC200: tissue and cell-type expression
Indicative of its name, BC200 is found in the primate brain

[23,25]. Among neural cells, BC200 is highly expressed in dendrites,
where is it thought to play a role in local translational control
[24,25,59e62]. Given its expression in the nervous system, there
have been numerous studies examining BC200's molecular in-
teractions in neurons [63e68], along with reports examining the
precise function of BC200 [60,62]. The reader is referred to a recent
review by Sosi�nska et al. [69] that comprehensively addresses what
is known about BC200 in the regulation of neuronal gene
expression.



Fig. 1. Schematic representation of human BC200 promoter region, secondary structure and sequence similarity to 7SL and BC 1 RNAs.
(A) The BC200 promoter is divided into three domains. The first is transcription factor (TF) binding site I located between position �100 and �36 bp. The second is TF binding site II
located between �35 bp and �6 bp, which contains a TATA box. The binding of TFs to this region is dependent on the third domain, containing two internal promoter elements, A
box and B box. TATA binding protein (TBP) binds to the BC200 promoter in the region located between �100 bp to 30 bp [38]. Additional transcription factors that influence the
BC200 promoter are not shown. (B) Folding parameters of BC200 RNA (accession number NR038088.1) were determined by mFold [156] and used in forna, an RNA secondary
structure visualization tool [157]. Structural elements are colour-coded as follows: Green e stems (canonical helices); red e multiloops/junctions; yellow e interior loops; blue e

hairpin loops; orange e 30 unpaired region. The Alu-like, A-rich and unique regions of BC200 are indicated. (C) Pairwise alignment of BC200 with 7SL (human; accession number
X04248.1) and BC1 (mouse; accession number NR001568.1) using MultiAlin [158]. Nucleotides are coloured blue if they are identical between two of the three RNAs; red indicates
identical nucleotides among the three non-coding RNAs.
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Outside of neural tissue, BC200 is expressed in testes and ovary
[30]; however, for this review, our focus is on BC200's link to
various cancers. While BC200 is present in non-neuronal immor-
talized cell lines [30], it was a seminal study by Chen at al. that
provided the first evidence of BC200 expression in various tumour
types [70]. This was followed by the work of Iacoangeli et al. who
examined BC200 specifically in invasive and pre-invasive breast
cancer [71].

Since there is existing information about BC200, its interacting
proteins and proposed mechanisms of action from neuronal sys-
tems, it is possible that there are mechanistic overlaps in neoplastic
cells. However, recent work by Singh et al. [28] provides the first
evidence of BC200's role in alternative splicing in breast cancer
cells, something not observed previously in neurons. Therefore,
BC200 might have roles in cancer initiation and/or progression that
cannot be anticipated from previous studies.

2.2. History of BC200

2.2.1. Evolution of BC200
Unlike protein-coding RNAs, lncRNAs have limited sequence

conservation among different species. This has caused significant
debate because the lack of sequence conservation has led to the
idea that lncRNAs are simply “transcriptional noise” [72]. Combined
with challenges to test the functionality of many lncRNAs in ho-
mologous animal model systems [73], the biological functionality
of the majority of lncRNAs remains to be discovered and robustly
validated.

To better understand how lncRNAs became part of the human
transcriptome, several mechanisms for the evolution of lncRNAs
have been proposed [74]. Of those, one way that lncRNAs can
emerge is by insertion of a transposable element into the genome
that then becomes a functional transcriptional locus [74,75]. The
first report of monkey BC200 highlights its sequence identity with a
human Alu monomer [76] and refers to a retropositional event that
led to BC200 [23].

By comparing the human BC200 (BCYRN1) gene sequence with
the orthologous loci of the prosimians e galago, lemur and tarsier,
Kuryshev et al. established that BC200 is absent from prosimian
lineages [77]. They proposed that the BC200 gene arose between 35
and 55 million years ago, due to the insertion of a monomeric Alu
element in the lineage leading to primates (Anthropoidea) [77].
Through successive events of substitutions and insertions, the gene
continued to evolve until the Homininae subfamily, composed of
gorillas, chimpanzees and humans [77].

2.2.2. BC200 and 7SL RNA: a common Alu element
From its initial characterisation by Tiedge et al., in 1993, it was

shown that human BC200 shared sequence similarity to 7SL RNA,
the 300-nucleotide, non-coding RNA that forms the signal recog-
nition particle (SRP) [25,78]. As mentioned earlier, BC200 has a 50

Alu element that has very high sequence homology to the Alu-J
repetitive element found in the human genome [76] and the Alu
domain of 7SL RNA (Fig. 1B) [25,76]. In terms of evolution, 7SL RNA
is in fact the progenitor of BC200, and BC200 is the result of ret-
roposition of Alu monomers, followed by exaptation into the hu-
man genome [79]. Importantly, the Alu region of both BC200 and
7SL genes contains A box and B box internal Pol III promoter ele-
ments for efficient transcription [25,80]. This region also contains
the binding site for the SRP protein heterodimer, SRP9/14, as dis-
cussed below [81].

2.2.3. Analogues of BC200
Since the evolutionary event that led to the emergence of BC200

is relatively recent, no orthologs of BC200 have been identified
outside of the primate order [37]. However, BC200 shares charac-
teristics with lncRNAs in other species, suggesting that they could
share similar functions in the cell [37,82].

Brain cytoplasmic 1 (BC1) is a non-coding RNA of 152 nucleo-
tides that is specific to rodents [83,84]. In addition to sharing the
same tissue and cellular localisation as BC200 in neuronal dendrites
[25,84], BC1 is characterised by a tripartite structure, similar to
BC200, comprised of a 50 domain that forms an extended stem loop
structure, a central A-rich region and a 30 terminal stem loop
structure [85]. This reflects its evolutionary origin by retroposition
of alanine transfer RNA (tRNAAla) [83]. Moreover, BC1 is transcribed
by Pol III [39] and appears to play a role in translational regulation
[86]. Indeed, BC1 and BC200, despite their independent evolu-
tionary origins, have very similar sequences (Fig. 1B); therefore, it is
not surprising that both of these non-coding RNAs interact with
some of the same cellular proteins (Section 3).

Potential analogues to BC200 have also been found outside of
mammals in Caenorhabditis elegans (C. elegans), although the
C. elegans non-coding transcriptome is not fully characterised. A
recent RNA sequencing study identified three potential analogues
of BC200, based on the observation that the 50 region of the non-
coding RNAs inc394, inc465 and inc467 show high sequence sim-
ilarity with the BC200 50 Alu domain [87]. Similar to BC200 and BC1,
each of the C. elegans transcripts contains an internal promoter
element, approximately 10e20 nucleotides downstream of the
transcription start site, suggesting that these RNAs could be tran-
scribed by Pol III [87,88] Further sequence analysis showed that
inc394 shares the greatest similarity to BC200, with a sequence
identity of up to 65% when sequence gaps are excluded [87]. In
terms of functional analysis, inc394, inc465 and inc467, were
shown to interact with the orthologous RNA binding complex,
SRP9/14 [65,81,87]. While further characterisation of C. elegans
non-coding RNAs is needed, it certainly raises the possibility that
BC200 may have other analogues that will be uncovered with RNA
sequencing approaches.

3. BC200 protein binding partners: a reflection of its
function?

Since BC200, BC1 and 7SL RNAs share many sequence charac-
teristics (Fig. 1C), it is plausible to assume that they could have
overlapping functions in the cell through their interactions with
proteins.

Here we highlight currently known BC200 protein binding
partners and indicate that many proteins have been shown to also
interact with BC1 or 7SL RNAs. By analysing these interactions and
determining how these lncRNA-protein complexes affect cell
function, future studies can apply this information to determine the
role(s) that BC200 plays in cancer (Table 1).

3.1. BC200 and BC1 share protein partners

This section summarises information regarding a number of
proteins that bind to both BC200 and BC1. Considering the neuronal
expression of BC200 and BC1 [25,84], many of these studies focus
specifically on interactions in the dendrites of neurons.

3.1.1. La protein
La protein is found in nearly all eurkaryotic cells and is a human

auto-antigen that binds to terminal poly-uridylate tails (UUU-30OH)
of Pol III transcripts [89,90]. It is involved in many different aspects
of RNA metabolism and regulates the downstream processing of
RNAs, including transport and cap-independent translation [91,92].
In their study, Kremerskothen et al. showed in vitro and in vivo that
BC1 and BC200 interacts with La, and that the interaction with



Table 1
BC200 protein interactors. Some protein interactors are common between BC200, BC1 and 7SL RNAs; whereas others interact only with BC200. This suggests that the RNAs,
along with their associated proteins, form different functional complexes in cells.

Protein
name

Protein function Role of the complex with BC200 Experimental system Reference

Common to
BC200 and BC1

La Human autoantigen; many aspects of RNA
metabolism

Links BC200 to the ribosome Human and rat brain
lysate

[63]

FMRP mRNP transport and translation Stabilizes interaction of BC200 with mRNA Mouse brain lysate [68]
PABP Regulates translation initiation BC200 sequesters PABP, preventing translation

initiation of other polyadenylated mRNAs
Human and mouse
brain lysate

[66,102]

Pura RNA binding protein BC200 is a linker between the protein and mRNA In vitro system [104]
eIF4A Helicase Prevents formation of 48 S complex Rat brain lysate [86]
eIF4B Controls translation initiation BC200 blocks eIF4B to prevent translation initiation In vitro system [60]

Common to
BC200 and 7SL

SRP9/14 Translational elongation arrest Unknown Primate brain lysate [65,81]

Interaction only
with BC200

SYNCRIP Alternative splicing regulation, polyadenylation,
mRNA metabolism, transport

Multifunctional, ultimately involved in synaptic
plasticity

Human brain lysate [64,112]

RHAU/
DX36

Helicase BC200 stabilizes unwound RNA HEK293T, MCF-7, HeLa,
SK-BR-3 cells

[118]

hnRNP
E1/E2

Translation activation Translation regulation Rabbit reticulocyte
lysate

[120]

hnRNP
A2/B1

Alternative splicing regulation Splicing of Bcl-x MCF7 cells [28]

J. Samson et al. / Non-coding RNA Research 3 (2018) 131e143 135
BC200 was dependent on the 30 end of the transcript [63]. From this
study, the authors propose that a La homodimer bridges the 50 Alu
domain of BC200 to the ribosome to exert translational elogation
arrest, together with SRP9/14 [63]. Another study, however, sug-
gests that the interaction with BC200 and La is not part of a func-
tional RNP complex in neuronal dendrites because the La protein
cannot be detected [66].
3.1.2. Fragile X mental retardation protein (FMRP)
FMRP is a neuronal protein involved with messenger ribonu-

cleoprotein (mRNP) transport and localised protein synthesis at
synapses, which is critically important for synaptic plasticity
[93e95]. Mutated or absent FMRP is responsible for the fragile X
mental retardation syndrome, the most common cause of inherited
mental retardation [94]. While FMRP is involved in mRNP transport
and translational repression of mRNAs, it has also been shown to
interact with BC200 and BC1 [68,96]. In their work, Zalfa and col-
leagues propose that the complex formed by FMRP and BC RNAs
stabilizes or facilitates the interactions with FMRP-targeted mRNAs
that are translationally repressed. In addition, they hypothesize
that polyA-binding protein (PABP) might further stabilize this
complex [96].

Interactions between BC200/BC1 and FMRP are not clear cut
however. Kremerskothen et al. (1998) reported conflicting data,
indicating that BC200 does not bind to FMRP [63]. While others
report that FMRP and BC1 are unable to form a specific complex
in vitro under physiological conditions [97]. Additionally in 2008,
Iacoangeli et al. demonstrated that FMRP function in translational
inhibitionwas independent of BC1 [98]. Moreover, they did not find
evidence of an interaction between BC1 and FMRP in vitro or in vivo
and show that FMRP is binding to mRNA targets in BC1 knockout
mice, similar to that observed in wild-type animals [98]. Indeed, a
subsequent study suggested that FMRP and BC1 RNA act in a
sequential, but independent way to inhibit activity-stimulated
translation [99]. Despite the efforts of many groups, the precise
mechanisms of FMRP function through any engagement with
BC200 lncRNA are still unclear.
3.1.3. Poly A-Binding protein (PABP)
PABP is an RNA-binding protein that binds mostly to the poly(A)

tails of mRNA [100]. As both BC200 and BC1 non-coding RNAs have
A-rich central domains (Fig. 1B), Muddasheety et al. investigated
the possibility that PABP is associated with BC200/BC1 RNPs [66].
Since PABP influences translation initiation through an interaction
with eukaryotic initiation factor 4G (eIF4G) [101], the authors
proposed that BC200 and BC1 bind to PABP, forming stable RNPs
that can modulate translation initiation [66]. Alternatively, Kon-
drashov et al. (2005) suggested that BC200 exerts its translational
inhibitory effects by acting as a competitor for PABP [102]. This is
supported by a subsequent study that observed strong inhibitory
effects of naked BC200/BC1 RNAs on translation in reticulocyte
lysate and transfected cell systems, while the inclusion of PABP
reduced this effect [61]. One conclusion from these studies is that
other protein partners may also play a role in BC200-mediated
translational repression. Such an example is eIF4A, which will be
discussed below. Indeed, Lin et al. attribute less than 20% of
translational repression competence to the sequestration of PABP
by BC200 [62].
3.1.4. Pura
Pura is a single-stranded DNA and RNA-binding protein that is

conserved throughout evolution and has multiple roles, from
transcriptional activation to cell growth [103]. Using a knockout
mouse system, it was demonstrated that Pura has an essential role
in dendrite development [104]. As dendrites contain numerous
localisedmRNAs [105] and BC200/BC1 [25,84], Johnson et al. (2006)
were the first to link Pura binding to an mRNA known to be
translated in dendrites, microtubule-associated protein 1B mRNA
(Map1B), and to BC200 and BC1 non-coding RNAs [104]. Interest-
ingly, sequence complementarity between Map1B mRNA and
BC200/BC1 RNAs had been noted in an earlier study [96].
Combining these observations, Johnson et al. proposed that Pura
functions with BC200/BC1 to target certain mRNAs for localised
translation in dendrites. This supports the hypothesis that BC200
may act as a linker between certain proteins and mRNAs, allowing
transient regulation and/or modification. Indeed the possibility of
BC200 interactions with other RNAs has not been fully explored,
particularly outside of a neuronal context.
3.1.5. Eukaryotic initiation factor 4A (eIF4A) and eukaryotic
initiation factor 4B (eIF4B)

Eukaryotic initiation factors are essential for translation initia-
tion, including events such as cap-recognition and binding of the
48 S pre-initiation complex to mRNAs [106]. To examine the role of
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BC200/BC1 RNAs in this process, Wang and al. showed that BC1 is
capable of inhibiting the formation of the 48 S initiation complex by
targeting eIF4A, an ATP-dependent, RNA helicase [86]. In 2008, Lin
et al. went on to show that BC200 and BC1 interfere with eIF4A's
catalytic mechanism by blocking the factor's helicase activity, while
enhancing its ATPase activity [62]. Both studies suggest a role in
translational repression for these two non-coding RNAs.

Continuing with BC200's effects on eurkaryotic translation
initiation factors, another report shows that neuronal BC RNAs
mediate translational inhibition by binding to eIF4B. In doing so,
BC200/BC1 prevents this factor from interacting with 18 S ribo-
somal RNA (rRNA) in the small ribosomal subunit [59]. In this case,
the BC RNAs are acting as competitors of 18 S rRNA for access to
eIF4B. In an extension of this work, a subsequent study demon-
strated that BC RNA interactions with eIF4B decrease upon neural
stimulation that results in dephosphorylation of eIF4B [60]. Once
the BC RNAs have reduced affinity for dephosphorylated eIF4B, the
factor can fully participate in translation initiation [60]. Signifi-
cantly, this work highlights the possibility of post-translational
modifications as a level of regulation in BC200-protein complex
formation and activity.

3.2. BC200 and 7SL e Alu-interacting heterodimer, signal
recognition particle proteins 9 and 14 (SRP9/14)

Several studies have shown that SRP9/14 and BC200 interact
[61,65,81]. SRP9/14 heterodimer is a well-known component of the
signal recognition particle (SRP), an RNP that recognises and co-
translationally targets secretory proteins to the endoplasmic re-
ticulum (ER) [107]. As mentioned earlier, 7SL RNA is a 300-
nucleotide, non-coding RNA that forms the scaffold of SRP [78]
and interacts with six polypeptides, SRP9/14, SRP19, SRP54, SRP68
and SRP72 [108]. In SRP, the heterodimer SRP9/14 mediates trans-
lation elongation arrest, pausing translation briefly to allow
engagement between the signal sequence of the nascent poly-
peptide and the translocon machinery in the ER membrane
[109,110].

Given the sequence conservation between BC200 and 7SL, Bovia
et al. were the first to show that human SRP9/14 interacts with
BC200 lncRNA; this result was subsequently confirmed in vivo by
another group [65]. Unsurprisingly, rodent SRP9/14 does not
interact with BC1, which does not have an Alu domain [81]; how-
ever, a recent study on BC200 analogues in C.elegans shows that
inc394, inc465 and inc467 do interact with C.elegans SRP9/14 [87].
It remains to be assessed whether this common characteristic be-
tween humans and C.elegans has functional meaning.

Despite SRP9/14 and BC200's involvement in translational
events, the specific role of the interaction between the heterodimer
and BC200, as components of an RNP complex, still remains
unclear.

3.3. BC200-specific protein interactors

3.3.1. Synaptotagmin-binding, cytoplasmic, RNA-interacting
protein (SYNCRIP)

SYNCRIP [64] is part of the heterogeneous nuclear ribonucleo-
protein (hnRNP) protein family that is involved in splicing regula-
tion, polyadenylation and other aspects of mRNA metabolism and
transport [111]. The interaction between BC200 and SYNCRIP was
first described in a study where the authors showed that the A-rich
region of BC200 binds to SYNCRIP's N-terminal RNA recognition
motifs (RRMs) in vitro binding assays, combined with immuno-
precipitation from human brain extracts [64]. SYNCRIP had previ-
ously been described as a component of RNA granules and was
implicated in RNA localisation and/or translational control in
dendrites [112e114]. Therefore, SYNCRIP could support BC200
translational repressor function by playing the role of a linker be-
tween neuronal RNA granules and the dendritic translation ma-
chinery [64].

As Duning et al. (2008) solely investigated BC200/SYNCRIP
interaction in a neuronal context, it would be of interest to deter-
mine if a similar interaction exists in cancer cells. One possible lead
regarding a potential link to cancer comes from Grosset et al.
(2000), who discovered that the mRNA of the proto-oncogene, c-
fos, is stabilised by a protein complex that includes NSAP1, also
known as SYNCRIP [115]. Furthermore, this study discussed the role
of SYNCRIP as a bridge between the major protein-coding region
determinant of instability and the poly(A) tail of c-fos, thereby
preventing its deadenylation and subsequent degradation [115].
Given the ability of BC200 to bind to both SYNCRIP and PABP, it is
interesting to speculate whether the lncRNA might act as a scaffold
to facilitate the interaction.

3.3.2. RNA helicase associated with AU-rich element (RHAU/
DHX36)

RHAU/DHX36 is an ATP-dependent, DEAH-box, RNA helicase
that can unwind both DNA and RNA quadruplexes [116,117]. By
performing RNA co-immunoprecipitation screens to identify novel
RNAs that interact with RHAU, Booy and al. (2015) identified BC200
[118]. Contrary to the repressive control BC200 imposes on eIF4A
helicase activity, the BC200-RHAU interactions did not appear to
impair RHAU helicase function; however, they did characterise a
RHAU-dependent ability of BC200 to bind to unwound RNA quad-
ruplex sequences [118]. From their work, the authors postulated
that RHAU may recruit BC200 to stabilise and prevent refolding of
unwound RNA quadruplexes [118], providing further evidence that
BC200's cellular roles will likely involve interactions with proteins
and other RNAs.

3.3.3. Heterogeneous nuclear ribonucleoprotein E1 and E2 (hnRNP
E1 and E2)

Besides SYNCRIP descibed above, other hnRNP family members
also interact with BC200. Using yeast three-hybrid screening [119],
Jang et al. (2016) identified two novel, candidate binding partners
of BC200, hnRNP E1 and E2, that were subsequently confirmed by
electromobility shift assays [120]. Given the role of BC200 in
translational repression, the group investigated the link between
these new interactors and this function. They found that translation
of a luciferase reporter gene was inhibited by BC200; however, the
addition of E1 and E2 relieved the inhibition [120]. Since this was an
in vitro investigation, future work will likely examine whether the
BC200 interacts with hnRNP E1 and E2 in vivo.

3.3.4. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/
B1)

Although nearly all of the previous studies suggest that BC200
function is related to translational repression, a recent study has
reported that BC200 is involved in splicing through an interaction
with the RNA-binding protein hnRNPA2/B1 in breast cancer cells
[28]. Singh et al. (2016) sought to understand the mechanism of
BC200, following the observation that BC200 is highly expressed in
breast cancer cells [28]. To do this, they created a CRISPR/Cas9
generated, BC200 knockout cell line. Using the BC200 knockout cell
line, they observed a suppression of cell growth, due to expression
of Bcl-xS, the pro-apoptotic isoform of Bcl-x [121]. Through sub-
sequent experiments, the authors demonstrate that BC200 in-
teracts with Bcl-x mRNA and hnRNP A2/A1. These interactions
inhibit the splicing factor, Sam68, thereby promoting formation of
the short, pro-apoptotic protein, Bcl-xS. In this scenario, BC200
plays an oncogenic role in breast cancer.



Table 2
BC200 lncRNA expression in disease contexts. BC200 RNA levels vary across dis-
ease contexts. However, in many cancer types, studies indicate the BC200 is present
at higher levels.

Pathology Tissue BC200 expression
associated

Reference

Alzheimer's
Disease

Brain Up/Down [124e127]

Cancer Breast Up [28,31,70,71,147
e149]

Cervix Up [33]
Ovary Up/Down [29,70]
Lung Up [27,70]
Parotid Up [70]
Tongue Up [70]
Oesophagus Up [70,150]
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In conclusion, while some partners of BC200 are common with
those of BC1 or 7SL RNAs, other studies have found specific protein
interactors to BC200. While many of the identified BC200-binding
proteins support a function for BC200 in translation repression, it
is likely that BC200 RNPs are dynamic. With one study demon-
strating that BC200 is involved in the regulation of the alternative
splicing in cancer cells, this raises the question as to whether this
function only appears in a disease context due to upregulation of
BC200 expression. Based on the evidence so far, we suspect that
BC200 is necessary at multiple regulatory levels, e.g. in transport of
mRNA to the dendrite and followed by regulation of mRNA trans-
lation in the dendrite. It is quite possible that BC200 and its binding
partners form RNA regulons to coordinate multiple cellular events
[122].
Stomach Up [32]
Colon Up [34]
4. BC200 RNA in disease contexts

Although lncRNAs are usually expressed at lower levels than
protein-coding genes in physiological contexts, many lncRNAs have
dysregulated expression in pathological contexts, such as neuro-
degenerative disorders or cancer. BC200 is not different in this re-
gard (Table 2), and here we focus on our current understanding of
BC200 expression in neurological disease and cancer and the utility
of BC200 in a clinical context (Fig. 2).
Fig. 2. Expression of BC200 in association with disease contexts.
BC200 lncRNA has been linked to many human diseases, mostly through observed alteratio
fully understand how BC200 can affect cells and influence diseases, detailed examination o
characterisation of BC200's molecular interactions and experimental determination of how
4.1. BC200/BC1 RNA in neurodegenerative disease

4.1.1. BC200 is altered in Alzheimer's disease (AD)
BC200 has been implicated in Alzheimer disease (AD) due to its

altered expression [123,124]. Mus et al. (2007) found that in normal
aging, levels of BC200 are reduced by more than 60% between the
ns to its RNA expression levels in normal versus affected tissue or tumour (Table 2). To
f its biological roles in each disease context is required. This will require biochemical
these interactions directly influence cellular processes.
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ages of 49 and 86 [125]. In comparison, BC200 RNA levels were
significantly elevated in AD brain, compared to normal matched
controls [125]. Since BC200 RNA was specifically observed in brain
regions that are related to the disease, it was hypothesized that
elevated BC200 RNA is involved with synaptodendritic deteriora-
tion in AD neurons [125]. However, this contradicts an earlier
report that stated that AD-affected neocortex exhibits a 70%
reduction in BC200 levels compared to age-matched controls [126].
While the difference might be explained by sampling location
[123], BC200 appears to be dysregulated in AD [124]. Some studies
have tried to understand the role of BC200 in AD, questioning
whether it affects microtubule-dependent mRNP transport,
contributing to axonal and dendritic blockage [124]. However,
another study has linked BC200 with necrosis [127].

4.1.2. BC200 rodent analogue, BC1, is implicated in the regulation of
neuronal receptors

At present, literature detailing the role of BC200 in neurological
pathologies remains confined to AD. However, the rodent analogue
BC1 has been documented to mediate signalling events within
neurons. In a study lead by Centonze [128], BC1 knockout mice
were used to assess the influence of this RNA on the dopamine D2
receptor (D2DR). D2DR is a G-protein coupled receptor found in
dopaminergic neurons that upon stimulation initiates a range of
signalling cascades that mediate various physiological responses
[129]. Interestingly, the study by Centonze et al. [128] determined
that BC1 is a regulator of dopamine transmission. The group
concluded that the mechanism, though not fully defined, is not the
result of direct translational regulation of the receptor. Instead, BC1
seemed to affect proteins involved in the receptor's turnover and/or
stability [128]. In another BC1 study, Zhong and co-workers [130]
demonstrated that BC1 regulates group 1 metabotropic glutamate
receptors (mGluRs) and is necessary for excitation-repression ho-
meostasis in neurons. The absence of BC1 in vivo animal models
was shown to provoke epileptogenic vulnerability, indicative of
neuronal hyperexcitability [130]. Importantly both studies link BC1
regulatory RNA with neuronal receptor function and synaptic
plasticity, which impacts overall brain function [93,131]. In humans,
D2DR and mGluRs are implicated, and to some degree targeted
therapeutically, in neurodegenerative diseases, including AD, Par-
kinson's (PD) and Huntingdon's (HD) [132,133].

Though BC200 shares extensive similarity with BC1 (Fig. 1C), the
convergence of their functional roles, specifically in neuropatho-
logical contexts, remains to be fully explored. Despite the scientific
investigations so far, the exact role of BC200 in AD and other
neurodegenerative diseases is unclear, with further studies
necessary.

4.2. BC200 in cancer

4.2.1. Association of BC200 with cancer
Since the discovery of the existence of lncRNAs, numerous

studies have focused on identification, differential expression, and
to a more limited degree, the underlying biological roles of lncRNAs
in cancer. There are many excellent reviews on this topic
[3,134,135]. Without doubt, the fast pace at which lncRNAs are
being identified through RNA sequencing efforts is continuing
[2,16,136]. While we have collated information about BC200's as-
sociation with cancer below, there are still many unanswered
questions regarding how the lncRNA specifically influences the
altered biology of a cancer cell. Given BC200's many unique char-
acteristics, i.e. Pol III transcript, mostly cytoplasmic localisation and
small size, it may be that BC200 will occupy different functional
roles, compared to more well-characterised, cancer-associated
lncRNAs, such as MALAT1 and HOTAIR, that have nuclear roles in
regulation of gene expression [137,138].
The initial suggestion that BC200 might have any role in cancer

was described ten years ago. Fundamental work by Chen et al. [70]
demonstrated that BC200 lncRNA was detectable in carcinomas of
the breast, cervix, oesophagus, lung, ovary, parotid and tongue,
while no expression was found in normal tissue, through immu-
nohistochemistry analyses of tissue sections. The authors were the
first to suggest a link between BC200 and the induction and/or
progression of the tumour, but there was no molecular evidence to
support that association directly [70].

While upregulation of BC200 RNA expression in cancer cells is
not reflective of an overall increase in Pol III transcription [70],
there is a report that BC200 expression is responsive to c-MYC and
that c-MYC binds to the BC200 promoter region in non-small-cell
lung cancer (NSCL) cells [27]. Given many cancers are driven by
the MYC oncogene [42,43], it is quite possible that BC200 expres-
sion will be higher in MYC-driven cancers, although this has not
been exhaustively examined. Interestingly a new report found that
elevated Pol III transcription in early breast cancer tumourigenesis
is driven by epigenetic changes, coupled with MYC [139]. Epige-
netic control of BC200 expression is currently unknown.

4.2.2. Role of BC200 in cancer
Although the association between BC200 and cancer is estab-

lished, numerous questions remain: how is BC200 expressed in
cancer contexts, when it cannot be detected in normal tissue? Is the
unusual BC200 pattern of expression functionally relevant with the
cancer progression? Are there dynamic changes to a collective set
of BC200-binding proteins? Does BC200 interact with other RNAs
or DNA in cancer cells? What do the molecular interactions of
BC200 tell us? Are certain pathways or cell behaviours particularly
affected by modulation of BC200 lncRNA levels?

Recent studies are beginning to tackle the mechanisms of BC200
action and their impact in cancer cells. In 2015, Hu and al. showed
that in NSCL cancer, the oncogenic transcription factor c-MYC binds
to the BC200 promoter and induces its expression [27]. Moreover,
they observe that in absence of BC200, migration and invasion is
affected in vitro, corresponding with a reduction in the expression
of the matrix metalloproteases, MMP9 and MMP13 [27]. Secretion
of these enzymes by cancer cells is necessary for the initial steps of
tumour cell invasion and metastasis [140] Thus, the authors
conclude that BC200 contributes to cell metastasis by promoting
expression of MMP9 and MMP13 [27].

The observation that BC200 could contribute to metastasis is
supported by another study that shows that after knockdown of
BC200 in cervical carcinoma (HeLa) and breast cancer cell lines, cell
migration is reduced [31]. However, instead of offering a mecha-
nism involving MMPs, they propose that BC200 promotes migra-
tion and invasion by affecting the stability of the S100A11 mRNA,
encoding a calcium sensing protein that is tightly associated with
cell motility and invasiveness [31,141].

As described earlier, Singh et al. (2016) provided evidence of a
novel regulatory function, with BC200 modulating alternative
splicing of Bcl-x in the context of breast cancer [28]. Their work
implies that BC200 plays an oncogenic role by negatively regulating
apoptosis, allowing rogue cells to avoid cell death. In addition, their
study indicated that the oestrogen receptor (ER) binds to the BC200
promoter, positively regulating its expression in breast cancer cell
lines [28]. However, since most cases of advanced breast cancer
have lost expression of ER [142,143], it seems likely that the
expression of BC200 lncRNA may become dependent on other
factors such as c-MYC as the tumour progresses [42,139,144].

In 2017 another study demonstrated that BC200 is critical for
breast cancer cell survival [30]. They found that cell growth is
inhibited, and apoptosis is induced, after knockdown of BC200 in
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proliferating cells [30]. Leading on from this observation, this raises
the possibility of BC200 as a candidate for specific drug targeting of
tumour cells. The same study notes that the lethality of BC200
knockdown is restricted to actively proliferating cells [30], making
BC200 an attractive cancer therapeutic target.

Adding to the existing literature, there have been a few studies
published in 2018 indicating that BC200 is overexpressed in colon,
stomach and cervical cancers [32e34]. In each of these studies,
BC200 RNA levels were elevated in tumour versus adjacent normal
tissues from patients, as determined by qRT-PCR. To begin to
characterise how BC200 influences cancer cell behaviour, Ren et al.
[32], Peng et al. [33] and Wu et al. [34] utilized corresponding cell
lines to modulate BC200 expression by siRNA knockdown. Inter-
estingly, each study revealed different possible mechanisms of
BC200 action (Table 3). These included upregulation of EpCAM
[32]; targeting of miRNA-138 [33]; and phosphorylation of signal
transducer and activator of transcription 3 (STAT3) [34]. Further
experiments will certainly focus on the similarities and differences
of BC200's cellular mechanisms among cancers with different tis-
sue origins.

Collectively, BC200 been linked to three hallmarks of cancer
[145] e cell proliferation, migration and resistance to apoptosis.
Taken together, scientific findings thus far reinforce the idea that
BC200 may be useful as potential therapeutic target in the treat-
ment of multiple types of cancer.
4.2.3. Using BC200 as a cancer biomarker
As cancer research and treatment embraces new genome,

transcriptome and proteome-wide technologies, there has been the
emergence of “precision medicine” that heavily relies on the
development and validation of biomarkers [146]. Herewe highlight
studies focused on the discovery of BC200 as a cancer biomarker.

In 2004, Iacoangeli et al. were the first to propose the use of
BC200 as a prognostic indicator of ductal carcinoma in situ (DCIS), a
non-invasive form of breast cancer [71]. They argued that BC200 is
a suitable marker, as the transcript is not detected in the early
stages of DCIS but gradually increases as the tumour progresses to
more advanced stages of DCIS and to invasive carcinoma [71,147].
Moreover, they showed that high expression of BC200 is associated
with high, nuclear-grade DCIS, which is an indicator of aggressive
cancer cell behaviour [71]. Collectively, the data supported the idea
that BC200might be involved in the regulation of cellular processes
that affect breast cancer migration and invasiveness [148,149].
Indeed BC200's involvement in breast cancer migration and inva-
siveness has been observed in subsequent studies [28,30].

Similar to studies in breast cancer, Zhao et al. showed that in
oesophageal squamous cell carcinoma (ESCC), BC200 RNA expres-
sion is elevated in tumour cells compared to adjacent normal tissue
[150]. Additionally they showed that high expression of BC200 RNA
correlated with poor prognosis and shorter disease-free survival
[150], suggesting that BC200 might be a useful prognostic marker
Table 3
Role of BC200 in cancer progression. BC200's specific role in cancer progression remain
BC200's mechanism of action. Although there will likely be additional context-depende
cells, including increased cell proliferation, migration and resistance to apoptosis.

Cancer tissue Process affected Mechanism

Breast Proliferation Link with cell cycle pro
Apoptosis Regulation of Bcl-x alte
Cell migration Modulation of S100A1

Cervix Proliferation and cell migration Targeting microRNA-1
Lung Cell migration Regulation of MMP9 an
Stomach Proliferation, apoptosis and cell migration Regulation of EpCAM e
Colon Proliferation and cell migration STAT3 phosphorylation
for ESCC. Recent work by Hu et al. [27], Ren et al. [32], Peng et al.
[33] andWu et al. [34] presented similar findings of elevated BC200
RNA in tumour versus normal adjacent tissue from patient samples
for lung, gastric, cervical and colon cancers. This suggests a role in
tumour induction and/or progression, raising the possibility that
BC200 could be clinically utilised for diagnostic and/or prognostic
purposes.

Given the almost negligible expression in non-proliferating
normal tissues, strong induction of BC200 may a reliable indica-
tor of increased proliferatione one of the hallmarks of cancer [145].
Using BC200 as a biomarker may enable medical professionals and
patients to make informed decisions regarding treatment, partic-
ularly given the correlation between transcript abundance and
cancer progression. While this is the hope, practical use of BC200 as
a cancer biomarker faces many challenges, based on the historically
low success rate of clinical translation [146,151]. More realistically,
it is possible that BC200 could be one of many lncRNAs to form an
oncology non-coding RNA biomarker panel. This is an area that is
currently undeveloped.

In summary, BC200 lncRNA has recently started to attract
increased attention for its role in cancer. Although the specific
details of its molecular mechanisms are currently unclear, BC200
appears to contribute to a number of different cancer hallmarks,
including cell proliferation, migration and resistance to apoptosis
[145]. Futureworkwill likely reveal novel roles for BC200 lncRNA in
cancer.
5. Discussion

With an increasing number of studies focusing on the role of
BC200, it is the shortest, long non-coding RNA that has an emerging
importance in cancer biology. With this review, we aimed to
summarise previous work on BC200, while highlighting
outstanding questions regarding its role and molecular in-
teractions, particularly in cancer.

Most of the RNA-protein interactions described here are specific
to the neurological context where BC200 is naturally expressed.
Studies in cancer have yet to replicate these results, and there is
data suggesting that BC200 function in cancer might be different to
its predicted role as a translational repressor [28]. Although most
studies concur that BC200 is important in several key features of
cancer e like cell proliferation, survival and migration, only few
studies have been able to offer a mechanism that unravels its exact
function. This will certainly be the focus of future research. Indeed,
with tens of thousands of different long non-coding RNAs, only a
handful have been functionally characterised in cancer, like MALAT
and HOTAIR [152e155]. Therefore, a better understanding of
BC200's mechanism in cancer will contribute equally to research in
cancer biology and to the general knowledge on long non-coding
RNAs. Simultaneously, studies focusing on BC200 as a potential
diagnostic biomarker of early-stage cancers must precisely identify
s an active area of investigation. However, some studies have begun to understand
nt mechanisms identified, BC200 does affect several defining features of neoplastic

Reference

gression [28]
rnative splicing [39]
1 mRNA stability [29]
38 (miR138) [33]
d MMP13 expression [27]
xpression [32]
; regulation of b-catenin, cyclin D1, cyclin E and c-MYC expression [34]
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when its expression is detected, in addition to correlating BC200
expression with cancer development.
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