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Chronic obstructive pulmonary disease (COPD) is the integrated form of chronic

obstructive bronchitis and pulmonary emphysema, characterized by persistent

small airway inflammation and progressive irreversible airflow limitation. COPD is

characterized by acute pulmonary exacerbations and associated accelerated lung

function decline, hospitalization, readmission and an increased risk of mortality,

leading to huge social-economic burdens. Recent evidence suggests ∼50% of

COPD acute exacerbations are connected with a range of respiratory viral infections.

Nevertheless, respiratory viral infections have been linked to the severity and frequency

of exacerbations and virus-induced secondary bacterial infections often result in a

synergistic decline of lung function and longer hospitalization. Here, we review current

advances in understanding the cellular and molecular mechanisms underlying the

pathogenesis of COPD and the increased susceptibility to virus-induced exacerbations

and associated immune dysfunction in patients with COPD. The multiple immune

regulators and inflammatory signaling pathways known to be involved in host-virus

responses are discussed. As respiratory viruses primarily target airway epithelial cells,

virus-induced inflammatory responses in airway epithelium are of particular focus.

Targeting virus-induced inflammatory pathways in airway epithelial cells such as Toll

like receptors (TLRs), interferons, inflammasomes, or direct blockade of virus entry and

replication may represent attractive future therapeutic targets with improved efficacy.

Elucidation of the cellular and molecular mechanisms of virus infections in COPD

pathogenesis will undoubtedly facilitate the development of these potential novel

therapies that may attenuate the relentless progression of this heterogeneous and

complex disease and reduce morbidity and mortality.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the umbrella
term for chronic obstructive bronchitis and pulmonary
emphysema, and is characterized by persistent small airway
inflammation and progressive irreversible airflow limitation
(1–5). COPD is associated with acute pulmonary exacerbations,
accelerated lung function decline and increased risk of mortality
(6, 7). As a common global epidemic, COPD affects 10%
of the population and is the third leading cause of death
worldwide (3). Viral and bacterial infections are key elements
in the pathogenesis of exacerbations (5–9). Recent evidence
suggests respiratory viral infections cause ∼50% of COPD acute
exacerbations (5, 6, 10). Secondary bacterial infections often
ensue with pronounced illness (6).

However, the underlying mechanisms of how viruses subvert
host immune defense systems in COPD exacerbations are not
completely understood. Herein, we review current advances
in understanding the cellular and molecular mechanisms
associated with the increased susceptibility to virus infections.
As respiratory viruses preferentially infect airway epithelial
cells, we focus on virus-induced inflammatory responses in
airway epithelium. Understanding these pathogenic pathways
may facilitate the development of potential novel therapies to
attenuate the relentless progression of the disease.

COPD PATHOGENESIS

Cigarette smoking is the predominant etiologic factor in the
development of COPD (3–5). Other risk factors include host
genetic factors, which is most evident in alpha-1 antitrypsin
(AAT) deficiency (11–13). Recently, childhood respiratory viral
infections have been postulated as an independent risk factor
associated with COPD later in life (14). Other environmental
factors such as pollutant and occupational exposure to dusts or
fumes, particularly organic dusts are strongly associated with
COPD (4, 13, 15, 16). Social deprivation is also a factor in the
development of COPD (6, 17, 18).

Cigarette smoke and other inhale noxious gases induce an
abnormal inflammatory response, that is further amplified
by protease and oxidative stress, which are central to COPD
pathogenesis (8, 11). Persistent small airway inflammation
and the resulting destruction of the lung architecture leads
to emphysema and loss of lung elastic recoil, chronic
bronchitis induced mucus hypersecretion and airflow
obstruction, as well as peribronchial fibrosis (11, 19, 20).
Excessive neutrophilic infiltration and associated proteolytic
enzymes including neutrophil elastase are hallmark features of
smoke-induced inflammation (19, 21–25). Consequently, the
protease/antiprotease imbalance contributes to the pathogenesis
of emphysema due to the increased breakdown of elastin and loss
of elastic recoil in the lung parenchyma (19, 21–24). Diminished
activity of protein phosphatase 2A (PP2A), a regulator of the
inflammatory response in the airways, has been demonstrated
in COPD and upregulation of PP2A activity can ameliorate
inflammation in a cigarette smoke model of COPD by reducing
activity of the cysteine protease, cathepsin S (26). Recent

research has proposed a role for formylated peptides and formyl
peptide receptor (FPR) receptor signaling in the initiation and
progression of lung disease in current and former smokers
(27, 28). These peptides are present in tobacco leaves and are
actively secreted by bacteria or passively released from dead and
dying host cells after tissue injury (29). FPR1 and FPR2 activation
may play a role in neutrophil migration, degranulation, reactive
oxygen species (ROS) production, and phagocytosis (29, 30).
A novel cross-talk mechanism was identified in neutrophils,
by which signals generated by the purinergic receptor for ATP
(P2Y2) reactivate ligand-bound inactive FPRs, which resume
signaling (31). Furthermore, a role for purinergic receptors in the
pathophysiology of COPD has been demonstrated in human and
experimental models (32–35), however, further work is needed
to elucidate its role in the immune dysfunction associated with
COPD (36). Excessive production of ROS results in an oxidant-
antioxidant imbalance leading to oxidative stress and is a major
predisposing feature in the development of the disease (37–41).
Therefore, a vicious cycle is created in which inflammation drives
a protease-antiprotease and oxidant-antioxidant imbalance, as
well as multiple intracellular cell signaling mechanisms, which
potentiate inflammation, goblet cell hyperplasia and mucus
hypersecretion (8, 40).

Chronic low-grade respiratory syncytial virus (RSV) infection
has also been implicated in COPD pathogenesis (42–45).
However, the detection of RSV infection in stable COPD
remains controversial (46, 47). Hogg and colleagues showed that
the E1A region of the adenovirus may contribute to COPD
pathogenesis by enhancing soluble ICAM-1 expression and
inflammatory cells infiltration (48). In contrast, another study
failed to demonstrate the persistent presence of adenovirus V or
E1A (49). Polosukhin at al. detected Epstein Barr Virus (EBV)
positive cells in COPD lung tissue sections by immunochemistry
staining (50). Consistent with this finding, we have demonstrated
that EBV DNA is frequently present in COPD sputum compared
with unaffected smokers (51). Latent viral infections and
cigarette smoke may synergistically contribute to the chronic
inflammation in COPD (52). COPD is a heterogeneous disease
with a complex etiology, however, acute and chronic lower
respiratory tract infections occur with increased frequency in
patients with COPD. Whatever the cause, it is clear that a
defective host response plays an important role and improving
our understanding of the mechanisms involved is essential to
improving prevention and treatment strategies.

AIRWAY EPITHELIUM DYSFUNCTION IN
COPD

Normal airway epithelial cells play a pivotal role in innate
immune defense. They act as a barrier to pathogens and noxious
stimuli and produce mediators and enzymes to orchestrate and
maintain proper functioning of the innate and adaptive immune
responses (24, 53, 54). As illustrated in Figure 1, the COPD
airway epithelium responds to cigarette smoke by secreting
inflammatory mediators and recruiting immune cells to the site
of damage to orchestrate the inflammatory response. A robust
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infiltration of macrophages and CD8+ T cells, and to a lesser
extent CD4+ T cells, in the airway mucosa as well as elevated
neutrophils in the airway lumen are the hallmark features of
COPD inflammation, the degree of which correlates to disease
severity (46, 55). Increased levels of epithelial-derived CXCL9
(MIG), CXCL10 (IP-10), and CXCL11 (I-TAC) and their receptor
CXCR3 has been demonstrated to contribute, in part, to the
mechanism of CD8+ cellular accumulation (40, 53, 54). CD8+

T cells release IP-10, TNF-α, IFN-γ, perforins, and granzyme,
and have been associated with alveolar epithelial cell apoptosis
(19, 37, 56, 57). As COPD progresses, elevated numbers of
dendritic cells and B lymphocytes also appear in the airways
and alveolar walls. CD8+ T cells and B cells organize into
lymphoid follicles and may contribute to increased “immune
surveillance” in COPD (19, 37, 39). The airway epithelium also
releases a cascade of secondary mediators including cytokines,
lipid mediators, growth factors, proteases, antiproteases and ROS
to escalate COPD inflammation (53, 54, 58). Cigarette smoke
and other irritants also activate epithelial cells and macrophages
to release neutrophil and macrophage chemoattractants, such as
LTB4, IL-8, and related CXC chemokines (MCP-1, GRO-α and
GM-CSF), which contribute to the development of emphysema
(39, 46, 59, 60).

The mechanism of neutrophilic inflammation has been
linked to CD11b/CD18 on neutrophils binding to ICAM-
1 on bronchial epithelium, which is up-regulated in COPD
(54, 61–63). Neutrophils migrate to the respiratory tract and
release serine proteases, matrix metalloproteinases (MMPs)
and oxidants (24, 40, 46). Neutrophil serine proteases are
associated with emphysema, mucus hypersecretion, increased
risk of exacerbation and accelerated forced expiratory volume in
1 s (FEV1) decline (64–66). Subsequently, these proteases degrade
extracellular matrix components leading to the destruction of
the alveolar wall, epithelial barrier dysfunction, reduction in
mucociliary clearance, mucus hypersecretion and goblet cell
metaplasia through activation of the epidermal growth factor
receptor (EGFR) (37, 59, 64). Moreover, alveolar epithelial cells
also secrete transforming growth factor-β (TGF-β) which may
contribute to small airway fibrosis and emphysema (67).

MOLECULAR MECHANISMS ASSOCIATED
WITH VIRAL-INDUCED COPD
EXACERBATIONS

Viral-Induced COPD Exacerbations
Acute exacerbations of COPD are characterized by a sudden
decline in lung function, hospitalization and high mortality
(7, 9, 46). The complicated interaction between the host
and viral or bacterial infections or co-infection, as well as
environmental factors, precipitate the onset of exacerbations.
These factors amplify the inflammatory burden in the small
airway, overpowering host anti-inflammatory mechanisms
leading to profound airway obstruction in COPD (46, 68–70).
Severe virus-associated exacerbations also induce elevated levels
of CD8+ T cells, neutrophils, eosinophils, TNF-α and IL-6 in the
sputum of COPD patients (68–70).

Exacerbations often occur seasonally accompanied by
common cold-like symptoms implicating respiratory viral
infections rather than hitherto suspected bacterial infection
(43, 44). Respiratory virus infection, including human rhinovirus
(HRV), influenza virus (IAV), coronavirus, RSV, human
parainfluenza, metapneumovirus (hMPV) and adenovirus
initiate nearly 50% of COPD exacerbations often with more
severe symptoms (69–73). Viruses have developed a myriad
of aversion strategies to subvert and manipulate host immune
responses and these have been recently reviewed elsewhere
(74, 75). Most respiratory viruses target airway epithelial cells
leading to epithelial barrier destruction, microvascular dilatation,
oedema and immune cell infiltration (58, 70–72). These viruses
are associated with small airway secondary bacterial infection,
thus magnifying the inflammatory response in COPD leading
to a synergistic deterioration in lung function and prolonged
hospitalization (42, 44, 71).

As detailed below, recent research has focused on immune
regulators and inflammatory signaling pathways orchestrating
the underlying mechanisms of increased susceptibility to virus-
associated exacerbation and the exaggerated inflammatory
response in COPD airways and potential therapeutic inventions.

T Cell Exhaustion
Although accumulated CD8+ T cells are present in greater
numbers in severe COPD, a diminished CD8+ T cell
antiviral response, worsened airflow limitation and respiratory
symptoms have been reported in IAV and HRV-induced COPD
exacerbations (68, 71, 76, 77). As a result, CD8+ cells potentially
amplify airway epithelium destruction and promote tissue
injury through mechanisms including direct cytotoxic effects,
pro-inflammatory signaling and recruitment of other immune
cells, leading to increased susceptibility to virus infections of
airway epithelium (42–44, 69).

In COPD, prolonged receptor–ligand interaction during T cell
activation may be linked to T cell exhaustion. McKendry and
colleagues investigated increased CD8+ activation through the
programmed cell death protein (PD)-1 exhaustion pathway as a
potential mechanism of viral-induced COPD exacerbations (76).
Dysregulation of T-cell cytotoxicity was associated with elevated
levels of PD-1, which further increased following influenza
infection in COPD patients (76). In contrast, infection-induced
expression of the ligand PD-L1 on COPD macrophages was
diminished, with a concomitant increase in IFN-γ release. These
synergistic effects may cause excessive T-cell inflammation in
response to virus infection.

The NF-κB Pathway
The NF-κB pathway is consistently activated in COPD
macrophages and airway epithelium, in particular, during
bacterial or viral infections (78). Upon pathogen stimulation,
the canonical pathway is mainly triggered by Toll like receptors
(TLRs) and pro-inflammatory cytokines such as TNFα and
IL-1 leading to the activation of the RelA containing NF-κB
complexes. This initiates the translocation of RelA (p65)/p50 to
the nucleus, where it induces the transcriptional response of pro-
inflammatory and cell survival genes (78–80). The alternative
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FIGURE 1 | Mechanisms of airway immunity dysfunction in COPD. Cigarette smoke and noxious agents activate epithelial cells and macrophages to release

chemotactic factors such as CXCL9 (MIG), CXCL10 (IP10), and CXCL11 (I-TAC), which increase CD8+ T cells, dendritic cells, B lymphocytes and eosinophil

infiltration into the airway mucosa. These inflammatory cells together with macrophages and epithelial cells initiate an inflammatory cascade that triggers the release of

inflammatory mediators such as TNF-α, IFN-γ, proteases (such as MMPs), inflammatory cytokines and chemokines (IL-1, IL-6, IL-8) and growth factors. These

inflammatory mediators sustain the airway mucosal inflammatory process in COPD, which cause elastin degradation and emphysema. Epithelial cells and

macrophages also release TGF-β, which stimulates fibroblast proliferation resulting in small airway fibrosis. During exacerbation, the inflammatory burden in the small

airways over-powers host anti-inflammatory mechanisms leading to profound alveolar damage and inflammation. Cigarette smoke and other irritants activate epithelial

cells and macrophages to release neutrophil chemoattractants, such as LTB4, IL-8, TNFα, CXC chemokines (MCP-1, GRO-α, and GM-CSF). CXC chemokines also

act as chemoattractants for monocytes. Cigarette smoke causes increased level of ROS produced in the airways is reflected by increased markers of oxidative stress.

Oxidative stress is involved in several events in the pathogenesis of COPD including oxidative inactivation of anti-proteases and surfactants, mucus hypersecretion,

alveolar epithelial injury, remodeling of extracellular matrix and apoptosis. Neutrophils bind to ICAM-1, the level of which has been found to upregulated in bronchial

epithelial cells in COPD. Neutrophils then migrate to the respiratory tract under the control of IL8/LTB4 chemotactic gradient. These cells then release proteases that

break down connective tissue in the lung parenchyma, resulting in emphysema. Neutrophil elastase release in airway induces epithelial barrier dysfunction, mucus

hypersecretion and reduces mucociliary clearance. GM-CSF, Granulocyte-macrophage colony-stimulating factor: GRO-α, Growth-regulated oncogene-α; ICAM-1,

epithelial intercellular adhesion molecule-1; LTB4, leukotriene B4; IL, interleukin; IP10, CXCL10, interferon g-induced protein 10; I-TAC, CXCL11, interferon-inducible

T-cell α chemoattractant; MCP-1, monocyte chemoattractant protein-1; MIG, CXCL9, monokine induced by g interferon; MMPs, matrix metalloproteinases; RANTES,

regulated on activation, normal T cell expressed and secreted; ROS: reactive oxygen species; TGF, transforming growth factor; TNF-α, Tumor necrosis factor-α; IFN,

interferon.

non-canonical NF-κB pathway signals through a subset of
receptors to activate the kinase NIK and IKKα complexes and
downstream NF-κB2 p100 leading to the p52/RelB nucleus
translocation and lymphoid organogenesis and B cell activation
(78, 79).

Persistent or prolonged activation of NF-κBmay contribute to
COPD pathogenesis by switching on the transcriptional response
of pro-inflammatory cytokines, chemokines, cell adhesion
molecules (CAMs), proteases, and inhibitors of apoptosis
to amplify inflammation. Therefore, strategies, which block

the activation of NF-κB, offer attractive therapeutic options
to regulate COPD inflammation. Several IKK-β inhibitors
have been identified to inhibit p65 nuclear translocation
and exert anti-inflammatory effects (81, 82). Lung-targeted
overexpression of RelB has also been demonstrated to protect
against cigarette smoke–induced inflammation by reducing
inflammatory mediator production (83). In COPD airway
epithelium, influenza virus infection increased microRNA-
125a/b, which directly inhibits A20 and mitochondrial antiviral-
signaling protein (MAVS) to promote inflammation and impair
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antiviral responses in COPD (84). Thus, miR-125a/bmay provide
a potential therapeutic target for both inflammation and antiviral
responses in COPD.

TLR Sensing and EGFR Signaling
Figure 2 illustrates key virus innate recognition signaling
pathways in COPD airway epithelium. Briefly, ssRNAs of HRV,
RSV, and IAV are recognized by TLR3 in the endosomes which
consequently activate IRF-3 via the Toll/IL-1 receptor domain-
containing adaptor (TRIF), leading to the induction of IFN-
β and IFN-λ1. Other endosomal TLRs (TLR7/8 and TLR7/9)
recognize the dsRNAs of IAV and adenovirus through MyD88-
dependent pathway to activate NF-κB and IRF-7 to secrete pro-
inflammatory mediators and IFNs, respectively. TLR4 expressed
on the cell surface senses RSV and IAV, signaling through both
the MyD88 and TRIF pathways to activate NF-κB and IRF-7.
The airway epithelium may recognize EBV by endosomal TLRs
and TLR2 at the cell surface to activate downstream pathways
(85, 86). As a risk factor for RSV-induced COPD exacerbations,
TLR3 activation has been found to correlate with lung function
deterioration during exacerbations highlighting TLR3 blockade
as a therapeutic target (87). However, Silkoff et al. showed that
TLR3 inhibition was inefficient in attenuating HRV-induced
experimental asthma exacerbation (88).

Many TLRs recognize pathogen-associatedmolecular patterns
(PAMPs) to activate airway epithelial EGFR signaling cascades.
Aberrant EGFR signaling promotes progressive lung fibrosis
and mucus hypersecretion; characteristic features of COPD,
asthma and cystic fibrosis pathogenesis (24, 89). The EGFR
cascade consists of multiple receptors and extracellular ligands
that function via receptor auto-phosphorylation and cytoplasmic
protein binding of four downstream complexes including the
mitogen-activated protein kinases/extracellular signal–regulated
kinases (MEK/ERK), phosphatidylinositol 3-kinases/protein
kinase B (PKB) (PI3K/AKT), Just Another Kinase/signal
transducer and activator of transcription (JAK/STAT) and
mammalian target of rapamycin (mTOR) pathways (89). In a
murine COPD model, EGFR activation through PI3K inhibited
ciliated cell apoptosis and allowed IL-13 to stimulate the trans-
differentiation of ciliated to goblet cell metaplasia (90). HRV
infection induced the phosphorylation of PKD, a downstream
kinase of PI3K. PKD inhibitors have been reported to effectively
block HRV, poliovirus (PV) and foot-and-mouth disease virus
(FMDV) replication at an early stage of infection, highlighting
the potential of PKD inhibition in anti-HRV therapy in COPD
(91). Chronic inflammation can also induce ICAM-1 and its
ligand fibrinogen has been shown to promote EGFR-dependent
mucin production in the airways of subjects with mucus
hypersecretion (92).

EGF and the EGFR ligand, TGF-α, have been reported
to directly enhance TNF-α-induced IL-8 secretion in airway
inflammation (93). Ganesan et al. found that abnormal EGFR
activation contributed to enhanced IL-8 expression in COPD
airways via the NF-κB regulator, FoxO3A (94). Interestingly,
TLR3 also induced EGFR activation and EGFR ligands (TGF-α
and amphiregulin), which in turn promote EGFR-ERK signaling
and mucin production through an autocrine/paracrine loop (95).

Collectively, TLR antiviral defensemechanisms integrate with the
EGFRmediated epithelial proliferation/repair pathways and may
play an important role in viral-induced airway remodeling and
airway disease exacerbations (93, 95, 96).

Viral infection per se also activates EGFR and EGFR
signaling to ERK1/2, while STATs control the severity of
HRV mediated airway inflammation. In vitro, HRV induced
goblet cell hyperplasia was demonstrated to function through
NF-κB-dependent MMP-mediated TGF-α release, leading to
EGFR activation and mucus secretion (97). Interestingly, virus-
induced EGFR activation suppressed interferon regulatory factor
1 (IRF1)-dependent IFN-λ airway epithelial antiviral signaling
(98, 99). Inhibiting virus-mediated EGFR signaling augmented
IRF1, IFN-λ secretion and viral clearance, indicating EGFR
pathways as potential therapeutic targets in viral-induced COPD
exacerbations (99).

Cytoplasmic-Sensing Pathways
As shown in Figure 2, the airway epithelium also detects viral
invasion through cytoplasmic pathogen recognition receptors.
DNA and RNA viruses release their genomes into cytoplasm,
which are detected by the host through cytoplasmic retinoic acid-
inducible gene I/melanoma differentiation-associated protein 5-
mitochondrial antiviral-signaling protein (RIG-I/MDA5–MAVS)
RNA-sensing and the cyclic GMP–AMP synthase- signaling
effector stimulator of interferon genes (cGAS–STING) DNA-
sensing pathways, respectively (100). Upon ss/dsRNA binding,
the RNA helicases, RIG-I and MDA5, interact with the adaptor
protein MAVS on the mitochondrial outer membrane to activate
the downstream signaling of type I interferon antiviral responses
(100, 101). In contrast, the cGAS receptor senses retroviral
replication products, dsDNA and RNA/DNA hybrids, to induce
the synthesis of cGAMP which binds and activates STING (100).
Interferon γ-inducible protein 16 (IFI16), a novel DNA sensor,
has been found to recruit STING to activate type I IFN signaling
through an unknown molecular mechanism (102). STING and
MAVS also stimulate downstream multiple kinase signaling
cascades resulting in IRF3 phosphorylation and NF-κB nuclear
translocation (101, 102).

The primary consequence of these virus-sensing pathways
is the induction of type I/type III IFNs and IFN stimulated
genes as well as the production of inflammatory cytokines
and chemokines. Attenuation of the IFN response following
virus infection could result in uncontrolled viral replication
and an escalated inflammatory response, a potential mechanism
of virus-induced exacerbations in COPD. IFNα/β deficiency
has been demonstrated in bronchial biopsies of asthmatic
patients with rhinovirus-induced exacerbations and smoking-
induced COPD (103). Farazuddin et al. have demonstrated that
quercetin, a potent antioxidant and anti-inflammatory agent
with antiviral properties, effectively mitigates rhinovirus-induced
COPD exacerbation in a mouse model (104). Elevated ICAM-1
expression on the surface of airway epithelium has been directly
linked to the mechanism of increased susceptibility of HRV-
induced acute exacerbation. As the receptor of the major group
of HRV and a ligand of lymphocyte function-associated antigen
1 (LFA-1) on neutrophils, ICAM-1 over-expression has been
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FIGURE 2 | Intracellular Viral Sensing Pathways. DNA and RNA viruses release their genomes in the cytoplasm, where host innate sensors for nucleic acids reside.

Upon ss/dsRNA binding, RIG-I engages the adaptor protein MAVS on the mitochondrial outer membrane. The cGAS receptor recognizes dsDNA and the RNA:DNA

hybrids generated during retroviral replication and catalyzes the synthesis of cGAMP, which is the primary agonist of the adaptor protein STING. Another sensor, IFI16

can recruit STING in response to cytoplasmic DNA through a molecular mechanism yet to be described. Both STING and MAVS stimulate downstream signaling

cascades that involve multiple kinases and finally lead to IRF3 phosphorylation and nuclear translocation. The primary consequence of these virus sensing pathways is

the induction of type I IFN and IFN stimulated genes. cGAS, cyclic GMP-AMP synthase; cGAMP, 2′3′guanosine-adenosine monophosphate; IFI16, interferon-g

inducible protein 16; IKK, IkB kinase; IRF3, interferon regulatory factor 3; MAVS, mitochondrial antiviral-signaling protein; RIG-I, retinoic acid inducible gene-I;

ss/dsRNA, single-stranded/double-stranded RNA; vRNA/DNA, viral RNA/DNA; STING, stimulator of interferon genes; TANK, TRAF-associated NF-kB activator;

TBK1, TANK binding kinase 1.

shown on epithelial cells in smokers and patients with COPD
(63, 105, 106). Blocking ICAM-1may also represent as a potential
therapeutic option in HRV-induced exacerbations.

Direct Targeting of Viral Binding, Entry, and
Replication
Strategies that directly prevent virus binding, entry and
replication may provide attractive alternatives in the treatment
of COPD exacerbations (107). Capsid binders represent
attractive potential inhibitors of HRV entry, however, they

are strain-specific and have shown no effect on improving
lung function and exacerbation in clinical trials to date (106).
Mousnier and colleagues demonstrated that a dual inhibitor of
human N-myristoyltransferases NMT1 and NMT2 can inhibit
host-cell N-myristoylation and completely prevent rhinoviral
replication, highlighting the therapeutic potential of targeting
myristoylation in blocking rhinovirus infection in COPD (108).
Short palate, lung, nasal epithelium clone 1 (SPLUNC1), a
multifunctional host defense protein, was demonstrated to
inhibit IAV binding and entry into airway epithelial cells,
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indicating an antiviral role for this protein in the airways
(109). Therefore, in the COPD lung, SPLUNC1 degradation
by proteases such as neutrophil elastase and/or inactivation
by cigarette smoke may increase susceptibility to viral as
well as bacterial infections, in addition to airway dehydration
(110, 111). Recent research suggests that, in addition to
modulating neutrophil chemotaxis, FPR2 signaling may be
an important player in viral replication and IAV pathogenesis
(30, 112, 113).

Inflammasome
The inflammasome is a multiprotein pro-inflammatory
complex and serves as an important link between the innate
and adaptive immune responses. Inflammasomes that are
activated by IAV RNA, EBV and adenoviral DNA include
the nucleotide binding and oligomerization domain (NOD)-
like receptor family pyrin domain-containing 3 (NLRP3)
protein, absent in melanoma 2 (AIM2) protein and IFI16
protein (114). The inflammasome complexes assemble
after recognition of PAMPs or danger-associated molecular
patterns (DAMPs) induced by virus-killed cells or tissue
damage and interact with apoptosis-associated speck like
protein containing a caspase recruitment domain (ASC)
via caspase activation and recruitment domains (CARD)-
CARD/caspase-1 pathway (115–117). Activation of the
inflammasome complex results in the autocatalytic cleavage
of caspase-1 and ultimately leads to the production of
pro-inflammatory cytokines including IL-1β, IL-18 and
pro-IL-33 (116, 117). Upon maturation, these cytokines
mediate inflammatory responses by activating lymphocytes
and facilitating their infiltration to the site of primary infection

and by inducing IFNs and other pro-inflammatory cytokines
secretions (116).

CONCLUDING REMARKS

COPD is a heterogeneous and complex disease resulting from the
deregulation of multiple immune regulators and inflammatory
signaling pathways. Significant progress has been made to
elucidate the causative mechanism of COPD pathophysiology
including viral infection in disease development, severity and
exacerbations. Targeting virus-induced inflammatory pathways
such as T cell exhaustion, NF-κB, TLRs, EGFR, interferons
and the inflammasome provide attractive future therapeutic
options. Understanding the cellular and molecular mechanisms
of virus-induced COPD pathogenesis could potentially limit
pathogen-mediated disease exacerbations and minimize viral-
associated inflammation, tissue destruction and pulmonary
function deterioration.
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