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Abstract: The limited accuracy of cerebral infarct detection on CT images caused by the low contrast
of CT hinders the desirable application of CT as a first-line diagnostic modality for screening of
cerebral infarct. This research was aimed at utilizing convolutional neural network to enhance the
accuracy of automated cerebral infarct detection on CT images. The CT images underwent a series of
preprocessing steps mainly to enhance the contrast inside the parenchyma, adjust the orientation,
spatially normalize the images to the CT template, and create a t-score map for each patient. The
input format of the convolutional neural network was the t-score matrix of a 16 × 16-pixel patch. Non-
infarcted and infarcted patches were selected from the t-score maps, on which data augmentation
was conducted to generate more patches for training and testing the proposed convolutional neural
network. The convolutional neural network attained a 93.9% patch-wise detection accuracy in the
test set. The proposed method offers prompt and accurate cerebral infarct detection on CT images. It
renders a frontline detection modality of ischemic stroke on an emergent or regular basis.

Keywords: computed tomography; cerebral infarct detection; acute ischemic stroke; artificial
intelligence; deep learning

1. Introduction

Shortening the time from onset to treatment is critical for improving the prognosis of
acute ischemic strokes. In the era of reperfusion therapy for acute ischemic strokes, the
capability of quick detection of cerebral infarct and a prompt referral from a busy emergency
room to a neurology specialist for thrombolysis or thrombectomy is important [1].

The computed tomography (CT) has been the first-line diagnostic modality for pa-
tients who are suspected to have an acute stroke [2]. Among all strokes, approximately 87%
are ischemic and the rest are hemorrhagic [3]. On CT images, the presence of intracranial
hemorrhage can be easily detected. However, detecting cerebral infarct due to ischemic
stroke has not been easy. It is because lesion boundaries of ischemic strokes in CT im-
ages are not clearly defined [4]. Both CT and magnetic resonance imaging (MRI) can be
used for delineation of brain stroke lesions [5,6]. In the recent two decades, researchers
have been devising automated cerebral infarct delineation methods to allow for operator-
independence, reproducibility, and a considerable saving of detection time [5,7,8]. Due to
the relatively lower image contrast [9], accurate delineation with CT poses more challenges
than with MRI.

The traditional algorithms for automated infarct delineation were devised on the
basis of a set of feature extraction rules defined by the algorithm developers after a careful
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and profound investigation on a set of clinical data [6]. It is difficult to achieve perfec-
tion, because some features are hidden and hard to discern. This factor undermined the
performance of traditional automated cerebral infarct delineation algorithms. In contrast
to traditional automated methods, artificial intelligence methods based on deep neural
networks can learn image features from the training data [10]. They can potentially facili-
tate the cerebral infarct modeling and alleviate the limiting factor of traditional non-deep
learning methods [11]. In particular, the convolutional neural networks (CNN), a class of
artificial neural network, use convolution kernels to extract specific image features. They
have been successfully applied in different image classification problems [12].

Motivated by the need for improving the prognosis and treatment of acute ischemic
strokes, this research developed a CNN-based automated method to facilitate a facile
and quick cerebral infarct detection on brain CT images. Image preprocessing, statistical
analysis-based detection, and data augmentation were used to enhance the detection
performance of the developed CNN.

2. Materials and Methods
2.1. Image Data
2.1.1. Subjects

This research utilized radiological cerebral imaging data of 59 subjects with acute is-
chemic stroke recruited with informed consent at Landseed International Hospital, Taoyuan,
Taiwan. The recruited subjects included 35 males and 24 females. They aged between 32
and 74 and averaged 60 years of age. The protocol of this research had been reviewed and
approved by the Institutional Review Board (IRB) of Landseed International Hospital. The
collected radiological imaging data included CT images and MRI of each subject’s head
scan. The average time from an individual subject’s CT scan to MRI scan was 108.81 h.
The purpose of collecting the MRI data was mainly to provide more precise cerebral in-
farct location information to facilitate the training and testing of the CNN. The cerebral
infarct regions of the collected MRI’s were delineated by an experienced neurologist (Chen
YW) [8,13]. Among the 59 recruited subjects, 38 with cerebral infarction so minor that
their CT images contained no trace of infarct were picked up to form a control group. The
remaining 21 recruited subjects formed a patient group, from which 16 were randomly
selected for the training set and the other five were the test set for the CNN modeling.

2.1.2. Image Acquisition Protocol

A 24-row GE BrightSpeed S CT scanner manufactured by GE Medical Systems
(Chicago, IL, USA) was used to acquire all the CT images. The CT scan was performed at
120-kV tube voltage. A standard convolution kernel was used for the reconstruction of CT
images. The number of slices for each subject was 28. Each slice contained 512 × 512 voxels
with a voxel size of 0.49 × 0.49 × 5 mm3.

A Signa HDxt 1.5T Optima edition (GE Healthcare, Waukesha, WI, USA) was used to
acquire all the MRIs, including the diffusion-weighted magnetic resonance images (DWIs)
(repetition time (TR) = 6000 ms, echo time (TE) = 82.8 ms, flip angle = 90◦, field of view
(FOV) = 230 × 230 mm2, matrix = 128 × 128, in-plane resolution = 1.79 × 1.79 mm2, slice
number = 24, slice thickness = 5 mm, slice gap = 1 mm), the T1w sequence (TR = 2400 ms,
TE = 24 ms, echo train length (ETL) = 6, FOV = 230 mm, number of excitations (NEX) = 2,
matrix size = 288 × 192, slice thickness = 5 mm, and slice gap = 1 mm), and the apparent
diffusion coefficient (ADC) map (b = 1000 s/mm2).

2.2. Image Preprocessing

The preprocessing of the CT images was implemented on MATLAB (MathWorks,
Inc., Natick, MA, USA) with applications of the Statistical Parametric Mapping program,
SPM8 (Functional Imaging Laboratory, Institute of Neurology, University College London,
London, UK). The CT images of the control group and those of the patient group had to
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go through different preprocessing steps, as described below in Sections 2.2.1 and 2.2.2,
respectively. Moreover, image processing of the patients’ MRI is described in Section 2.2.3.

2.2.1. Preprocessing of the Control CT Images

In this phase, the control CT images were first processed to establish our own CT
template in the MNI (Montreal Neurological Institute) space that was supposed to be more
suitable for the local subjects than other MNI templates were, considering the difference in
the CT protocols and the brain shapes between the local subjects and the subjects involved in
the creation of MNI templates. Furthermore, an average CT map and a standard deviation
map that represented the descriptive statistics of the control CT images were constructed.
Phase One comprised Step C1–C7, as described below.

Step C1. DICOM to NIfTI conversion
The original DICOM file format of the control CT images was converted into the

three-dimensional NIfTI-1 (Neuroimaging Informatics Technology Initiative) file format.
Since SPM8 uses NIfTI-1 as the file format of image data, this conversion facilitated the
subsequent image preprocessing with SPM8.

Step C2. Resetting the CT image orientation
The origin of the CT images after Step C1 were shifted to roughly align to their

anterior commissure of the individual brain space. The purpose of this step was to raise
the performance of normalizing the CT images to the standard brain space with SPM8 in
next step.

Step C3. Spatial normalization to the MNI space
The CT images after Step C2 were spatially aligned to the MNI152 template of MNI

space using the normalization tool of SPM8. The dimension of each control CT changed
from the original 512 × 512 × 28 voxels to 181 × 217 × 181 voxels after this step.

Step C4. Pixel intensity transformation
The pixel intensities of the CT images after Step C3 were piecewise transformed

using invertible formulas as proposed by Rorden et al. [14]. The pixel intensities were in
Hounsfield unit (HU). HU from −1000 to −100 was transformed to 0–900 with the formula
HU + 1000. HU from −99 to 100 was transformed to 911–3100. HU from 101 to 1000 was
transformed to 3101−4000 with the formula HU + 3000.

Step C5. Establishing our own CT template in MNI space
All the control CT images after Step C4 were voxel-wise averaged across subjects to

form our own CT template in MNI space.
Step C6. Spatial normalization to our own CT template
The CT images after Step C2 were spatially normalized to our own CT template

established in Step C5. Notice that this step was similar to Step C3, except that the target
template was our own CT template instead of the MNI152 template.

Step C7. Pixel intensity transformation
This step was the same as Step C4, except that the input of this step was the control

CT images after Step C6.
Step C8. Elimination of the skull and CSF
The mean and standard deviation of the voxel intensity in the whole brain after Step

C7 were calculated to reveal the probability distribution of voxel intensity. Ventricles and
brain contour were segmented by thresholding with (mean − 2 × standard deviation) and
(mean + 2 × standard deviation), respectively. After applying ventricle and brain masks,
the resulted CT image contained only the brain parenchyma, without the CSF or the skull.

Step C9. Spatial smoothing of the normalized CT image
The CT images after Step C8 were spatially smoothed with a spatially stationary

Gaussian filter. To maximize the detection performance, we adopted the evaluation result
done by Gillebert et al. [4] and chose the size of the Gaussian smooth kernel to be 5-mm
FWHM (Full-Width at Half-Maximum).

Step C10. Establishing the average CT map and the standard deviation CT map
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The average CT map and the standard deviation CT map constituted a voxel-specific
statistic description of all the control CT images. In the average CT map, each voxel was
assigned the average of the preprocessed values at all the corresponding voxels of the
control CT images. Similarly, in the standard deviation CT map, each voxel was assigned
the standard deviation of the preprocessed values at all the corresponding voxels of the
control CT images.

2.2.2. Preprocessing of the Patient CT Images

The purpose of this preprocessing was to construct a t-score map for each patient. It
comprised Steps P1–P7, as described below. Some of these steps were the same as some of
the preprocessing steps of the control CT images described in Section 2.2.1.

Step P1. DICOM to NIfTI conversion
This step was the same as Step C1, except that the input of this step was the patient

CT images.
Step P2. Resetting the CT image orientation
This step was the same as Step C2, except that the input of this step was the patient

CT images after Step P1.
Step P3. Normalizing the patient’s CT images to our own CT template
This step was similar to Step C6, except that the input of this step was the patient

CT image after Step P2. The dimension of each patient CT changed from the original
512 × 512 × 28 voxels to 181 × 217 × 181 voxels after this step, resulting in a voxel-to-
voxel correspondence between the patient’s CT image and our own CT template. This
enabled a cerebral infarct detection based on a statistical analysis of patient’s CT image
with reference to the control CT images.

Step P4. Pixel intensity transformation
This step was the same as Step C4, except that the input of this step was the patient

CT images after Step P3.
Step P5. Elimination of the skull and CSF
This step was the same as Step C8, except that the input of this step was the patient

CT images after Step P4.
Step P6. Spatial smoothing of the normalized CT image
This step was the same as Step C9, except that the input of this step was the patient

CT image after Step P5.
Step P7. Constructing the t-score map
After the individual patient’s CT images had gone through the above steps, a t-score

would be evaluated for each voxel. The collection of the t-scores of the whole-brain voxels
is called the t-score map of the individual patient. A t-score reveals the relative intensity of a
patient voxel with respect to the probability distribution of the corresponding control voxels
across all the control subjects. Referring to the method presented by Gillebert et al. [4] and
Crawford et al. [15], the t-score of a patient voxel was defined as:

t =
p − XC√

(n + 1)/n × sC
(1)

where p was the intensity of the voxel of the individual patient, n was the sample size
of the control group, and XC and sC were the average and the standard deviation of the
intensity, respectively, of the corresponding voxels across all the control subjects. The
values of XC and sC were taken from the control group’s average CT map and standard
deviation CT map, respectively, which had been established in Step C10. In Equation (1),
the denominator contained a correction factor

√
(n + 1)/n to account for the uncertainty

of the control mean and standard deviation.

2.2.3. Infarct Segmentation and Spatial Normalization on MRI

The training of the proposed CNN required training data of both non-infarcted and
infarcted CT images. Semi-automated infarct segmentation on the collected MRIs was
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conducted by the experienced neurologist (Chen YW) to provide precise infarct location
information. Furthermore, the segmented infarcted regions must be normalized to a
standard template (common to that for standard CT template). The following steps describe
the image processing on the MRIs.

Step M1. DICOM to NIfTI conversion
The original DICOM file format of the MRIs was converted into the three-dimensional

NIfTI-1 file format to facilitate the subsequent image preprocessing with SPM8.
Step M2. Infarct segmentation on the DWIs
The experienced neurologist (Chen YW) conducted semi-automated infarct segmenta-

tion on the DWIs. The ADCs were referred to in this step to eliminate artifacts.
Step M3. Resetting the DWI orientation
The origin of the DWIs after Step M1 were shifted to roughly align to their anterior

commissure of the individual brain space. The purpose of this step was to raise the
performance of normalizing the DWIs to the standard brain space with SPM8 in the
next step.

Step M4. Spatial normalization to the MNI space
The DWIs after Step M3 were spatially aligned to the MNI152 DWI template of MNI

space using the normalization tool of SPM8.
Step M5. Establishing our own DWI template in MNI space
All the DWIs after Step M4 were voxel-wise averaged across subjects to form our own

DWI template in MNI space.
Step M6. Spatial normalization to our own DWI template
The DWIs after Step M3 were spatially normalized to our own DWI template estab-

lished in Step M5. Notice that this step was similar to Step M4, except that the target
template was our own DWI template instead of the MNI152 template.

2.3. Infarct Detection
2.3.1. CNN Structure

The CNN architecture we proposed in this research consisted of 17 layers, including
an input layer, three convolutional layers, three batch normalization layers, three rectified
linear unit (ReLU) layers, three max pooling layers, a fully connected layer, a dropout layer,
a Softmax layer, and a classification layer (output layer). Figure 1 shows the architecture of
our proposed CNN structure.

Figure 1. Schematic illustration of the proposed CNN architecture for the patch-wise classifica-
tion task.
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2.3.2. Training and Testing of CNN

The convolutional neural network was trained with the training data taken from the
t-score maps, which were the output of the image preprocessing. The input to the CNN
was in the form of a matrix of 16 × 16 t-scores pertaining to 16 × 16 contiguous pixels in a
square area on a CT slice. The training data consisted of t-score matrices of both infarcted
and non-infarcted patches. The infarcted patches were taken on patient CT areas whose
corresponding MRI areas contained some infarcted pixels, as was known by referring to the
corresponding MRI slices that had been segmented and spatially normalized as described
in Section 2.2.3. The non-infarcted patches were taken on the control CT areas at locations
roughly matching the locations of the infarcted patches.

A large amount of data is needed for the training of a convolutional neural network.
Training with insufficient data may lead to overfitting and compromise the detection
accuracy of the network. However, the collected clinical data, especially infarcted data,
usually will not suffice the required amount for CNN training. To solve this problem, we
conducted data augmentation to increase the size of the training dataset. Figure 2 illustrates
how data augmentation of an infarcted patch was conducted. Shown in Figure 2a is a
t-score map that contains an infarcted region in the red box. In Figure 2b, the golden box
demarcates the original infarcted patch. The eight blue lines emanating from the center of
the original patch represent the eight directs, along which the center of the original patch
was shifted to define additional patches. Data augmentation of non-infarcted patches was
also conducted in the same way. An additional patch would not be adopted if the shifting
altered it from an infarcted patch to a non-infarcted patch or vice versa. An additional patch
must also remain parenchyma-bounded to be adopted. An additional patch containing
pixels in the skull or in the ventricle would not be adopted. After data augmentation,
there were 2656 infarcted patches available. With the addition of 2826 randomly picked
non-infarcted patches, the training dataset contained 5482 patches. Among these patches, a
randomly selected 80% (4386 patches) were used for the CNN training and the remaining
20% (1096 patches) were used for validation. By resampling the training set and the
validation set, cross validation was repeatedly conducted for five times. Note that about
the same amounts of infarcted and non-infarcted data were used for the network training,
despite the infarcted regions possibly only taking up a small portion of the entire brain.
This was to avoid imbalanced training, which could result in a network model that favored
the classification accuracy of the majority class and might lead to misclassification of the
minority class.

Figure 2. An example of data augmentation. (a) A t-score map with an infarcted region in the red box.
(b) The golden box represents the initial patch location. The green boxes are examples of additional
patches due to the data augmentation. The blue lines show the eight shifting directions to create the
additional patches.
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The stochastic gradient descent with momentum (SGDM) optimizer was used for
training CNN, and the loss function in the classification output layer was a cross entropy
function. The initial and final learning rates of the CNN model were set to 10−5 and
10−7, respectively. The maximum epoch was 1000, the maximum iterations was 8000, the
momentum coefficient was 0.9, and the size of the mini-batch to use for each training epoch
was 500. In addition, we used the dropout regularization in the fully connected layer in
order to avoid overfitting. The dropout ratio was set to 0.5 and the weight decay was set
to 0.005.

2.3.3. Clinical Application

When applying the trained CNN for clinical cerebral infarct detection, each cerebral
CT slice of about 181 × 217 pixels will be divided into about 153 nonoverlapped patches of
16 × 16 pixels. After deleting patches containing pixels outside of the parenchyma or in
the ventricle, about 13,000 patches will be obtained from the 181 slices of a patient. Each
of these patches will be independently detected with the trained CNN to check for the
existence of cerebral infarction. Cerebral hemorrhage and infarct detection on a patient
suspected of a stroke is crucial for accurate treatment decision making. Detection of cerebral
hemorrhage from CT images is relatively easier. However, detection of cerebral infarct
is not as easy. The cerebral infarct detection with the trained CNN could attain a high
accuracy rate and would be faster than the traditional automated infarct detection methods,
making it suitable for emergent detection of cerebral infarct when CT is available.

3. Results

Shown in Figure 3 are some intermediate images produced during the preprocessing
steps. The images in the top row are, from left to right, an original control CT image, the
result of the spatial normalization (Step C3), and the result of intensity transformation (Step
C4). The images in the central row are, from left to right, the average CT map of all control
CT (Step C10), the standard deviation CT map of all control CT (Step C10), and a patient CT
image after normalization to our own CT template (Step P3). The images in the bottom row
are, from left to right, the result of spatial smoothing by the kernel with a 5-mm FWHM
(Step P6), the t-score map (Step P7), and the ischemic infarct area drawn by the clinician.

The result of training and testing the proposed CNN is shown in the confusion
matrices in Table 1. The performance of the CNN is evaluated in terms of the accuracy rate,
defined as:

Accuracy rate =
TP + TN

TP + TN + FP + FN
(2)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively. Table 1 indicates that the proposed CNN attained a good accuracy
rate of 94.4% in the training set. The accuracy rate in the test set was 93.9%.

Table 1. Evaluation of the proposed method.

Training Set Test Set

Positive Negative Positive Negative

Infarct TP = 46.81% FN = 0.87% TP = 46.26% FN = 0.73%

Non-infarct FP = 4.72% TN = 47.61% FP = 5.38% TN = 47.63%

Accuracy rate 94.4% 93.9%

Sensitivity 98.2% 98.4%

Specificity 91.0% 89.8%
Note: TP = True Positive, FP = False Positive, TN = True Negative, FP = False Negative.
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Figure 3. An illustration of the intermediate images in the image preprocessing steps. (a) An original
control CT image; (b) the result of the spatial normalization; (c) the result of intensity transformation;
(d) the average CT map of all control CT; (e) the standard deviation CT map of all control CT; (f) a
patient CT image after normalization to our own CT template; (g) the result of spatial smoothing
by the kernel with a 5-mm FWHM; (h) the t-score map; (i) the ischemic infarct area drawn by the
experienced neurologist.

The output of cerebral infarct detection with the proposed CNN is exemplified in
Figure 4. The detected infarcted patches on a CT slice are marked by red squares on the
t-score map of the CT slice in Figure 4a, whereas, in Figure 4b, they are marked by red
squares on the intensity-transformed brain parenchyma image, i.e., the CT image after Step
P5. Shown in Figure 4c is the corresponding MRI slice on which the red area represents
the detected infarct delineated by the experienced neurologist mentioned above (Chen
YW) [13] with a semi-automated method.
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Figure 4. An exemplary result of infarct detection by the proposed CNN. (a) The detected infarcted
patches were marked with red squares on the t-score map. (b) They were also marked on the intensity-
transformed brain parenchyma image, i.e., the CT image after Step P5. (c) The red area on the MRI
represents the detected infarcted region delineated by the experienced neurologist.

Using the coordinates of the detected infarcted patches on the t-score map, we can
identify the corresponding brain areas on Brodmann areas or Eve Atlas. For example,
Figure 5a shows a detected infarcted patch on the t-score map. This detected infarct
corresponded to an acute infarction in the right middle cerebral artery (MCA) territory
delineated by the experienced neurologist. Figure 5b shows that this detected infarcted
patch covered a portion of area 48 (Retrosubicular area) of the Brodmann areas, which is
a small part of the medial surface of the temporal lobe. Figure 5c shows that it involved
areas EA25 (INSULAR), EA47 (External_capsule_left), EA60 (PUTAMEN_left), and EA62
(GLOBUS_PALLIDUS_left) on the Eve Atlas. Note that the patient CT images were spatially
normalized to MNI space in Step P3 and the Brodmann areas and EVE Atlas had also been
normalized to the MNI space. A detected infarcted patch had the same coordinates on the
patient’s CT image, the Brodmann areas, and the EVE Atlas. Hence, mapping a detected
infarcted patch to the Brodmann areas or EVE Atlas was conducted simply by using the
same coordinates and required no image processing.

Figure 5. Mapping the detected infarcted patches onto the Brodmann areas and EVE atlas template.
(a) The location of an infarcted patch detected by the proposed CNN on the t-score map. (b) The
location of the infarcted patch is mapped onto the Brodmann areas. (c) The location of the infarcted
patch is mapped onto the EVE atlas template.

The proposed method was implemented with MATLAB programming. The MATLAB
program takes about 5 min per patient from reading the image files until finishing the infarct
detection. The program ran under Microsoft Windows 10 in a desktop computer with an
Intel Core i7 CPU and an 8-gigabyte RAM, without a GPU (graphics processing unit).
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4. Discussion

The performance of the automated cerebral infarct delineation on MRI has been proved
to render accurate results due to the high contrast of MRI [8]. However, MRI is normally
not readily available immediately following the stroke onset. On the contrary, CT is a more
convenient modality that can be utilized short after the stroke onset. The result of this
research shows that by incorporating the power of deep learning with CNN, the accuracy
of the automated cerebral infarct detection on CT could attain an acceptable level (93.9%
in the test set). Hence, the automated cerebral infarct detection on CT can potentially be
good enough for a frontline detection of cerebral infarction, despite the lower contrast of
CT images.

In this research, the patch size was selected after considering the accuracy rate, detec-
tion time, and even network training time. Training time was quite tolerable in this research,
because our simple network did not require a long training time. The most important factor
to consider would be the accuracy rate. Among the 32 × 32, 16 × 16, and 8 × 8 patch sizes,
the 16 × 16 patch size led to 93.9% accuracy rate and the 8 × 8 patch size is on par with it,
whereas the 32 × 32 patch size only led to an accuracy rate over 80%. The detection time
affects the end user’s working efficiency and convenience and is, hence, also important.
We first supposed that it would be the fastest with the 8 × 8 patch size. However, in fact,
the fastest was with the 16 × 16 patch size, which was about 50% faster than with the
8 × 8 patch size. The reason was because the patch number extracted from a patient’s CT
images with the 8 × 8 patch size was four times that with the 16 × 16 patch size. Thus, the
16 × 16 patch size was a better selection than the other two sizes.

With the proposed method, a large infarct shown as the red area in Figure 4c was
faithfully detected as a mosaic of 15 contiguous tesserae (patches) shown in Figure 4a,b.
The shapes of the true infarct in the individual tesserae were versatile, as can be seen in
Figure 4a. In the scope of some patches, the infarct took the whole patch area, whereas in
some others patches, the infarct took a small area. The infarct shapes in different patches
were different. This detection result has demonstrated the capability of the proposed
CNN in detecting infarcts of various morphologies. This result has also confirmed that
the 16 × 16 patch size was truly an adequate selection for the proposed CNN. Moreover,
this result has also corroborated the sufficiency of the training data by data augmentation
fulfilled with only the shifting operation, without using other operations, such as rotation,
flipping, cropping, padding, or intensity transforms.

As stated in Section 2.1.1, infarcted images of 16 recruited subjects and non-infarcted
images of 38 recruited subjects were used for the training of the proposed CNN. One may
question whether the number of subjects were too small and, hence, whether the proposed
network could be insufficiently trained. In fact, the training and the infarct detection
of the proposed CNN was patch-wise instead of slice-wise or subject-wise. After data
augmentation on the original patches, there were totally 4176 patches for the training of the
proposed CNN. Thus, the amount of the training dataset was sufficiently large, as has been
evidenced by the high accuracy rate of our trained CNN.

The pixel intensity transformation carried out in Step C4, Step C7, and Step P4 changed
the HU of every pixel. It was an important image preprocessing function. The performance
of our method would not have been satisfactory without this effort. The approximate HUs
of air and bone are −1000 and 1000, respectively. The pixels in the intracranial tissues have
HUs near 0. For example, the HU of CSF = 0, white matter = 25, gray matter = 35, and
blood = 60 [14]. In Steps C4, C7, and P4, the distance between two consecutive HUs in the
range −99 to 100 was enlarged by 11 times. Thus, the contrast of different tissues in the
brain were enhanced. On the other hand, the HUs from −1000 to −100 and from 101 to
1000 only received a constant raise without a contrast enhancement. Another effort of the
image preprocessing that contributed to the high accuracy rate was the elimination of the
CSF, carried out in Step C8 and P5. CSF could have intensities close to those of the cerebral
infarcts and might lead to false positive results. For instance, in the CT image shown in
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Figure 6, the intensity in the CST was close to that in the infarct region. The CST would be
falsely detected as infarcted if it was not eliminated.

Figure 6. This CT image shows similar intensities of the CST and the infarct region. The CST could
be falsely detected as infarcted if not eliminated before the infarct detection.

There is a possible change with time in the boundary line of an infarcted region in
the brain past stroke onset, so the radiological images taken at different times after stroke
may have different detectable cerebral infarct boundaries. For example, the manifestation
of an infarcted cerebral region on the DWI becomes brighter in the first several days after
the onset, and it gradually turns darker in the following several days. In this retrospective
research, there was a delay of 3.8 ± 1.5 (mean ± standard deviation) days between a re-
cruited subject took CT and MRI scans. In this research, in order to use supervised learning
to train the proposed CNN for detecting cerebral infarcts from CT images, the results of the
semi-automated MRI infarct delineation by the experience neurologist mentioned above
were taken as the correct output for the network training. Due to the time delay of taking
an MRI scan after taking a CT scan, there was a discrepancy between the detected cerebral
infarct boundary on the MRI and the real cerebral infarct boundary at the time of CT scan.
This discrepancy became a source of error for network training and a limit to the accuracy
rate of the proposed CNN.

Brain atrophy can happen with ageing in forms of general or focal shrinkage of brain
structure [16]. However, it is usually not easy to attain age matching of the control group
and the patient group. As described in Section 2.2 (Step P7), the t-score of each pixel of
the patients was obtained by using the probability distribution of all the control CTs as the
reference. Hence, the accuracy of the cerebral infarct detection might be affected by the
ageing effect. In other words, the false detection (false positive or false negative) might
be due to the unmatched ages between the patient group and the control group. Shown
in Figure 7 is an example of the result of cerebral infarct detection with our method on
the CT of an elderly patient from the test set. In Figure 7a, the red square on the right
hemisphere encompassed a darker area that was actually the image of a sulcus formed due
to ageing and filled with fluid. As shown in Figure 7b, this sulcus location of the patient
got high t-scores when its intensities were compared with the average intensities at the
corresponding location of the control group, where there was no sulcus. This caused the
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patch to be falsely detected as an infarcted patch. To alleviate this problem, it is important
to implement an age match between the control group and the patient group. Provided
enough subjects can be recruited, a better strategy is to form several control groups of
different age ranges and establish different average CT maps and standard deviation CT
maps (in Step C10) for patients of different age groups.

Figure 7. An example of a false positive caused by age mismatch between the control group and the
patient group. (a) An elderly patient’s CT slice after Step P5. The dark area inside the red square on
the right hemisphere was non-infarcted and was a sulcus due to ageing. (b) The t-score map of the
CT slice after Step P7. Notice the high t-scores in the sulcus encompassed by the red square on the
right hemisphere, which led to a false positive detection of this patch.

Physicians have been applying grading systems as a basis for decision making after
stroke onset. ASPECTS is a widely used means for evaluating early ischemic changes
in acute strokes [17]. The scoring is based on non-contrast CT scans. To compute the
ASPECTS, 1 point is subtracted from 10 for any evidence of early ischemic change in any of
the 10 defined regions. In fact, ASPECTS evaluation does not cover all the cerebral areas
and sometimes the physicians may want to know the cerebral infarct location in terms of a
more precise brain map. Figure 5 exemplifies mapping the detected cerebral infarct patches
to two popular brain maps with finer brain parcellation. The Brodmann’s map, as shown
in Figure 5b, is the most popular cortical map. In this map, the human cerebral cortex is
divided into 52 areas on the basis of the observations of the cytoarchitecture. Each area
is assigned a number [18]. The JHU-MNI-ss atlas, also called the Eve atlas, as shown in
Figure 5c, from Johns Hopkins University, emphasizes the parcellation of the white matter,
while also containing the grey matter. It is a single-subject female brain with an isotropic
resolution of 1 mm3 in the standard MNI coordinates [19].

It was found that the infarct volume has a correlation with the National Institutes
of Health Stroke Scale (NIHSS) [20]. Hence, including NIHSS in the training data could
possibly enhance the network training effectiveness and raise the detection accuracy. NIHSS
is used to evaluate the level of neurological deficits due to acute cerebral infarction. It is
scored by rating the patient’s ability in answering questions and performing activities. A
trained observer requires less than 10 min to complete the rating of the 15-item neurologic
examination of NIHSS. Considering the short rating time and the possibly higher detection
accuracy, it seems worthwhile to conduct NIHSS rating and incorporate NIHSS in the
network training.

A literature review has found few papers similar to this work that applied deep
learning with CNN for cerebral infarct detection on brain CT. Tuladhar et al. [21] developed
a CNN-based infarct segmentation method and attained a Dice similarity coefficient (DSC)
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of 0.45%. The generalization of their model was strengthened by using independent multi-
center datasets for training, test and validation, as well as using ground truth segmentations
by multiple expert observers. Sales Barros et al. [22] utilized a three-CNN approach for
cerebral infarct segmentation and attained a 0.57 average DSC of voxel-wise accuracy and
a 0.88 intraclass correlation coefficient (ICC) of infarct volume. The three CNNs were
developed for the delineation of subtle, intermediate, and severe infarcts, respectively.
Gautam et al. [23] used CNN to classify brain CT into hemorrhagic stroke, ischemic stroke,
or normal and attained a 92.22% classification accuracy.

The most valuable application of the automated CT cerebral infarct detection will
be for the prompt detection of cerebral infarction using the CT taken in the emergency
room. As the phrase “time is brain” emphasizes, the brain nerves quickly lose function
when a stroke occurs. Incorporating the proposed CNN for the accurate real-time CT-based
cerebral infarct detection can help save brain function in time and enhance the efficiency of
stroke care.

5. Conclusions

In this research, we developed a fully automated method for cerebral infarct detection
from CT images. The convolutional neural network structure was adopted to deliver
artificial intelligence that is capable of extracting image features from the CT data and
classifying image patches of CT images into infarcted or non-infarcted ones. Data augmen-
tation supplemented the limited amount of clinical data to ensure sufficient training of the
convolutional neural network, which prevented overfitting and enhanced the detection
accuracy. Image preprocessing on the patient data and the control data emphasized the
critical information pertaining to successful cerebral infarct detection from CT images. The
CNN attained about 93.9% accuracy in cerebral infarct detection from CT images in the test
set. The proposed CNN-based detection method could provide an assistance in the first-step
diagnosis of cerebral infarction with CT scan, which is low-cost and readily available.

Author Contributions: Conceptualization, S.-J.P., Y.-W.C. and J.-Z.T.; methodology, S.-J.P., Y.-W.C.
and J.-Z.T.; software, S.-J.P. and J.-Y.Y.; validation, S.-J.P., Y.-W.C., J.-Y.Y. and J.-Z.T.; formal analysis,
S.-J.P., Y.-W.C. and J.-Z.T.; investigation, S.-J.P. and J.-Z.T.; resources, Y.-W.C. and K.-W.W.; data
curation, S.-J.P., J.-Y.Y. and K.-W.W.; writing—original draft preparation, J.-Y.Y.; writing—review and
editing, S.-J.P., Y.-W.C. and J.-Z.T.; visualization, Y.-W.C., J.-Y.Y., K.-W.W. and J.-Z.T.; supervision,
S.-J.P., Y.-W.C. and J.-Z.T.; project administration, S.-J.P., Y.-W.C. and J.-Z.T.; funding acquisition, S.-J.P.,
Y.-W.C. and J.-Z.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Joint Research Center of National Central University and
Landseed International Hospital, Taiwan, grant numbers NCU-LSH-109-A-00, NCU-LSH-108-A-006,
and NCU-LSH-107-B-00. It was also supported by the Ministry of Science and Technology, Taiwan,
grant number MOST 110-2221-E-038-008.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Landseed International
Hospital (protocol code IRB-16-024-B1) on 26 October 2016.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El Tawil, S.; Muir, K.W. Thrombolysis and thrombectomy for acute ischaemic stroke. Clin. Med. 2017, 17, 161–165. [CrossRef]
2. Kurz, K.D.; Ringstad, G.; Odland, A.; Advani, R.; Farbu, E.; Kurz, M.W. Radiological imaging in acute ischaemic stroke. Eur. J.

Neurol. 2016, 23, 8–17. [CrossRef]
3. Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S. Heart Disease and Stroke Statistics—2018

Update: A Report from the American Heart Association. Circulation 2018, 137, E67–E492. [CrossRef]
4. Gillebert, C.R.; Humphreys, G.W.; Mantini, D. Automated delineation of stroke lesions using brain CT image. NeuroImage Clin.

2014, 4, 540–548. [CrossRef] [PubMed]

http://doi.org/10.7861/clinmedicine.17-2-161
http://doi.org/10.1111/ene.12849
http://doi.org/10.1161/CIR.0000000000000558
http://doi.org/10.1016/j.nicl.2014.03.009
http://www.ncbi.nlm.nih.gov/pubmed/24818079


Biomedicines 2022, 10, 122 14 of 14

5. Guo, D.; Fridriksson, J.; Fillmore, P.; Rorden, C.; Yu, H.; Zheng, K.; Wang, S. Automated lesion detection on MRI scans using
combined unsupervised and supervised methods. BMC Med. Imaging 2015, 15, 1–21. [CrossRef]

6. Ušinskas, A.; Dobrovolskis, R.A.; Tomandl, B.F. Ischemic Stroke Segmentation on CT Images Using Joint Features. Informatica
2004, 15, 283–290. [CrossRef]

7. Cauley, K.A.; Mongelluzzo, G.J.; Fielden, S.W. Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using
Image Intensity Inhomogeneity Correction. Int. J. Biomed. Imaging 2019, 2019, 1720270. [CrossRef] [PubMed]

8. Tsai, J.-Z.; Peng, S.-J.; Chen, Y.-W.; Wang, K.-W.; Wu, H.-K.; Lin, Y.-Y.; Lee, Y.-Y.; Chen, C.-J.; Lin, H.-J.; Smith, E.E.; et al. Automatic
detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted
mr imaging and apparent diffusion coefficient map. Biomed. Res. Int. 2014, 2014, 963032. [CrossRef]

9. Boers, A.M.; Marquering, H.A.; Jochem, J.J.; Besselink, N.J.; Berkhemer, O.A.; Van der Lugt, A.; Beenen, L.F.; Majoie, C.B.; MR
CLEAN investigators. Automated Cerebral Infarct Volume Measurement in Follow-up Noncontrast CT Scans of Patients with
Acute Ischemic Stroke. Am. J. Neuroradiol. 2013, 34, 1522–1527. [CrossRef]

10. Wang, W.; Yang, Y. Development of convolutional neural network and its application in image classification: A survey. Opt. Eng.
2019, 58, 040901. [CrossRef]

11. Maier, O.; Schröder, C.; Forkert, N.D.; Martinetz, T.; Handels, H. Classifiers for Ischemic Stroke Lesion Segmentation: A Compari-
son Study. PLoS ONE 2015, 10, e0145118. [CrossRef] [PubMed]

12. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.
2017, 29, 2352–2449. [CrossRef]

13. Chen, Y.W.; Gurol, M.E.; Rosand, J.; Viswanathan, A.; Rakich, S.M.; Groover, T.R.; Greenberg, S.M.; Smith, E.E. Progression of
white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 2006, 67, 83–87. [CrossRef]

14. Rorden, C.; Bonilha, L.; Fridriksson, J.; Bender, B.; Karnath, H.O. Age-specific CT and MRI templates for spatial normalization.
Neuroimage 2012, 61, 957–965. [CrossRef] [PubMed]

15. Crawford, J.R.; Garthwaite, P.H.; Howell, D.C. On comparing a single case with a control sample: An alternative perspective.
Neuropsychologia 2009, 47, 2690–2695. [CrossRef]

16. Rusinek, H.; De Santi, S.; Frid, D.; Tsui, W.-H.; Tarshish, C.Y.; Convit, A.; De Leon, M.J. Regional Brain Atrophy Rate Predicts
Future Cognitive Decline: 6-year Longitudinal MR Imaging Study of Normal Aging. Radiology 2003, 229, 691–696. [CrossRef]

17. Warwick Pexman, J.H.; Barber, P.A.; Hill, M.D.; Sevick, R.J.; Demchuk, A.M.; Hudon, M.E.; Hu, W.Y.; Buchanet, A.M. Use of the
Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute Stroke. Am. J. Neuroradiol. 2001,
22, 1534–1542.

18. Judaš, M.; Cepanec, M.; Sedmak, G. Brodmann’s map of the human cerebral cortex—or Brodmann’s maps? Transl. Neurosci. 2012,
3, 67–74. [CrossRef]

19. Oishi, K.; Faria, A.; Jiang, H.; Li, X.; Akhter, K.; Zhang, J.; Hsu, J.T.; Miller, M.I.; Van Zijl, P.C.M.; Albert, M.; et al. Atlas-based
whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and
Alzheimer’s disease participants. Neuroimage 2009, 46, 486–499. [CrossRef] [PubMed]

20. Yaghi, S.; Herber, C.; Boehme, A.K.; Andrews, H.; Willey, J.Z.; Rostanski, S.K.; Siket, M.; Jayaraman, M.V.; McTaggart, R.A.; Furie,
K.L.; et al. The Association between Diffusion MRI-Defined Infarct Volume and NIHSS Score in Patients with Minor Acute Stroke.
J. Neuroimaging 2017, 27, 388–391. [CrossRef]

21. Tuladhar, A.; Schimert, S.; Rajashekar, D.; Kniep, H.C.; Fiehler, J.; Forkert, N.D. Automatic Segmentation of Stroke Lesions
in Non-Contrast Computed Tomography Datasets with Convolutional Neural Networks. IEEE Access 2020, 8, 94871–94879.
[CrossRef]

22. Barros, R.S.; Tolhuisen, M.L.; Boers, A.M.; Jansen, I.; Ponomareva, E.; Dippel, D.W.J.; Van der Lugt, A.; Van Oostenbrugge, R.J.;
Van Zwam, W.H.; Berkhemer, O.A.; et al. Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks. J. Neurointerv. Surg. 2020, 12, 848–852. [CrossRef] [PubMed]

23. Gautam, A.; Raman, B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomed. Signal.
Process. Control 2021, 63, 102178. [CrossRef]

http://doi.org/10.1186/s12880-015-0092-x
http://doi.org/10.15388/Informatica.2004.060
http://doi.org/10.1155/2019/1720270
http://www.ncbi.nlm.nih.gov/pubmed/31531008
http://doi.org/10.1155/2014/963032
http://doi.org/10.3174/ajnr.A3463
http://doi.org/10.1117/1.OE.58.4.040901
http://doi.org/10.1371/journal.pone.0145118
http://www.ncbi.nlm.nih.gov/pubmed/26672989
http://doi.org/10.1162/neco_a_00990
http://doi.org/10.1212/01.wnl.0000223613.57229.24
http://doi.org/10.1016/j.neuroimage.2012.03.020
http://www.ncbi.nlm.nih.gov/pubmed/22440645
http://doi.org/10.1016/j.neuropsychologia.2009.04.011
http://doi.org/10.1148/radiol.2293021299
http://doi.org/10.2478/s13380-012-0009-x
http://doi.org/10.1016/j.neuroimage.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19385016
http://doi.org/10.1111/jon.12423
http://doi.org/10.1109/ACCESS.2020.2995632
http://doi.org/10.1136/neurintsurg-2019-015471
http://www.ncbi.nlm.nih.gov/pubmed/31871069
http://doi.org/10.1016/j.bspc.2020.102178

	Introduction 
	Materials and Methods 
	Image Data 
	Subjects 
	Image Acquisition Protocol 

	Image Preprocessing 
	Preprocessing of the Control CT Images 
	Preprocessing of the Patient CT Images 
	Infarct Segmentation and Spatial Normalization on MRI 

	Infarct Detection 
	CNN Structure 
	Training and Testing of CNN 
	Clinical Application 


	Results 
	Discussion 
	Conclusions 
	References

