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Abstract

In silico approaches are increasingly considered to improve breast cancer treatment. One of these treatments, neoadjuvant
TFAC chemotherapy, is used in cases where application of preoperative systemic therapy is indicated. Estimating response
to treatment allows or improves clinical decision-making and this, in turn, may be based on a good understanding of the
underlying molecular mechanisms. Ever increasing amounts of high throughput data become available for integration into
functional networks. In this study, we applied our software tool ExprEssence to identify specific mechanisms relevant for
TFAC therapy response, from a gene/protein interaction network. We contrasted the resulting active subnetwork to the
subnetworks of two other such methods, OptDis and KeyPathwayMiner. We could show that the ExprEssence subnetwork is
more related to the mechanistic functional principles of TFAC therapy than the subnetworks of the other two methods
despite the simplicity of ExprEssence. We were able to validate our method by recovering known mechanisms and as an
application example of our method, we identified a mechanism that may further explain the synergism between paclitaxel
and doxorubicin in TFAC treatment: Paclitaxel may attenuate MELK gene expression, resulting in lower levels of its target
MYBL2, already associated with doxorubicin synergism in hepatocellular carcinoma cell lines. We tested our hypothesis in
three breast cancer cell lines, confirming it in part. In particular, the predicted effect on MYBL2 could be validated, and a
synergistic effect of paclitaxel and doxorubicin could be demonstrated in the breast cancer cell lines SKBR3 and MCF-7.
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Introduction

Breast cancer and network-based approaches
For the successful treatment of breast cancer, the most common

type of cancer in women worldwide, knowledge of cancer-

treatment responsiveness is most useful. Substantial progress was

made in understanding disease mechanisms of breast cancer, but

many questions are still unanswered. The rise of genome-scale

gene expression profiling allowed for identification of biomarkers

that help to further subcategorize known groups of breast cancer,

among them luminal (ER+/HER22), HER2-enriched (HER2+)

and triple-negative (ER2/PR2/HER22) types.

Profiling approaches were first based on the identification of

single, differentially expressed genes or of gene sets (signatures).

Nowadays, research follows an integrative approach utilizing

gene/protein interaction networks, thereby reflecting that biolog-

ical processes are performed by genes/proteins/molecules inter-

acting with each other and not acting individually [1–9]. Some

specific approaches are detailed below. Especially for breast

cancer, the utilization of subnetworks instead of single genes as

biomarkers has been suggested as they provide higher prediction

accuracy for both prognosis and classification purposes [10,11],

even though the value of network-based methods is still a matter of

debate [12]. In terms of complexity, network-based approaches go

beyond former analysis methods, as the number of genes in the

human genome is surprisingly low (around 23,000 protein coding

genes), but the number of interactions and dependencies between

them allows for a large variety of processes in the cell.

Working Hypothesis of our Approach
The work presented here attempts to extract the molecular

mechanisms that are relevant for successful chemotherapeutical

breast cancer treatment from a gene/protein interaction network.

More precisely, our work hypothesis is that our method

ExprEssence can use gene expression data to extract a subnetwork

from an all-purpose gene/protein interaction network, which

includes some of the most important mechanisms related to the

differences between responders and non-responders to TFAC

therapy.

Input data and related approaches
Specifically, we used an all-purpose gene/protein interaction

network based on the STRING database [13], into which large

genome-scale datasets, assembled from more than 200 patients
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from various breast cancer subtypes [14] were integrated. Patient

collectives of this size enable unprecedented statistical power and

robustness despite subgroup differences. We applied our previ-

ously published method ExprEssence [15] to identify altered gene/

protein interactions that characterize the differences between the

responders and non-responders to neoadjuvant TFAC therapy.

We assume these differentially regulated interactions to be related

or even critical for therapy outcome. Knowing about the

differences between responders and non-responders may help to

gain more detailed insights into both the progression of breast

cancer and how it is affected by drugs, which is of high relevance

for choosing individualized cancer treatment.

Besides ours, there are several network-based approaches

aiming to identify genes or proteins involved in the response to

a treatment or external condition [3,4,7], including the pioneering

work of Ideker et al. [1]. We compare the results of our method to

two such methods, OptDis [7] and KeyPathwayMiner [9,16]

investigating the same breast cancer dataset by all methods. We

find that ExprEssence generates subnetworks more directly

associated with disease- and drug-related processes than the other

methods. Furthermore, using the subnetwork extracted by

ExprEssence, we inferred a hypothesis about a mechanism

putatively contributing to TFAC mode of action in chemotherapy,

and we experimentally validated it in part.

Materials and Methods

In silico a nalyses
Gene/protein interaction network and gene expression

data. The interaction network, from which the subnetworks of

ExprEssence and KeyPathwayMiner were extracted, was based on

the STRING database, version 9.0 [13]. It contained all human

interactions scoring at least 0.85 for experimental, database or

textmining evidence channels.

We used breast cancer therapy -related gene expression data

from the MicroArray Quality Control (MAQC)-II study ([14],

GSE20194). The data were generated at the MD Anderson

Cancer Center (MDACC, Houston TX, USA). In this study,

transcriptome data as well as ER, PR and HER2 receptor status of

230 patients with newly diagnosed breast cancer were acquired by

fine-needle aspiration before neoadjuvant chemotherapy with

TFAC (a combination of paclitaxel (TaxolH), 5-fluorouracil,

doxorubicin (AdriamycinH) and cyclophosphamide). The patients

were classified as responders (48) or non-responders (182) after

tumor resection. The gene expression data of all 230 specimen

were collected into a table and were quantile normalized. For each

probe set identifier represented on the array, we averaged the

individual expression measures group-wise to obtain single probe

set level expression values for the responders and non-responders,

respectively. Using the Affymetrix annotation file, the probe set

identifiers were then mapped to UniGene identifiers. When

several probe set identifiers matched to the same UniGene

identifier, its gene expression value was calculated as the mean

expression of the respective probe sets. The gene expression data

were integrated into the interaction network using UniGene

identifiers for mapping.

Subnetwork detection methods. In this work, we utilized

three subnetwork detection tools, as follows. The O39 gene set

generated by the OptDis tool [7] was compared to the results of

two other subnetwork-detecting tools: our tool ExprEssence [15]

and the tool KeyPathwayMiner (v4.0) [9,16], both available as

plugins for the Cytoscape platform [17]. In contrast to most other

methods for active subnetwork detection, including OptDis and

KeyPathwayMiner, ExprEssence does not focus on retrieving

connected components but on identifying single interactions that

are regulated most differentially among all interactions in the

original network. Nevertheless, the genes in an ExprEssence

subnetwork often aggregate into several connected components

(see the red and green frames in Figure 1), reflecting the biological

relevance of the identified components in the subnetwork.

N OptDis. The gene expression data just described was used by

Dao et al. for the application of their OptDis method, which

generates subnetworks that are most suitable for the distinction

between two conditions (responders and non-responders) [7].

In their study, the 230 cases were split up into a discovery and

a validation group. After applying OptDis on both sets

individually, they intersected the gene sets that made up the

respective top-50 subnetworks for each group (discovery and

validation). The overlap, a set of 39 genes (denoted as O39),

was used for an IngenuityH IPA Functional Enrichment

Analysis.

N ExprEssence. ExprEssence generates a subnetwork by

choosing those interactions of a gene/protein interaction

network that are most differentially regulated between

responders and non-responders. We integrated the gene

expression data (described above) into the interaction network

(also described above; the gene expression data mapped to

9410 genes of the network), and used it as input for

ExprEssence. ExprEssence then determined the link score for

each interaction, which describes the amount and direction of

differential regulation of the interaction. Afterwards, ExprEs-

sence was used to construct a subnetwork of the interaction

network, comprising those interactions with highest amount of

change between responders and non-responders, that is of

those interactions with largest absolute values of the link scores.

For details on the link score calculation, see Warsow et al. [15].

The number of most differentially regulated interactions in the

subnetwork can be altered by the user. To obtain a subnetwork

with a number of genes comparable to the O39 gene set, we

retrieved the 16 most up- and 16 most down-regulated

interactions, resulting in a subnetwork with 40 genes (denoted

as E40), see Figure 1.

N KeyPathwayMiner. For subnetwork generation with Key-

PathwayMiner, an indicator matrix had to be supplied that

defines which genes are "active", e.g. differentially regulated, in

which of the responder samples. In order to generate this

indicator matrix, we followed procedures as recommended by

the authors, as follows. The mean expression and its variance

were calculated gene-wise for all non-responders after

normalization (to a gene expression of mean 0 and variance

1 for each sample). The single expression values of each

responder were then tested against the respective mean and

variance from the non-responders to obtain the significantly

differentially expressed genes (on a significance level of 5%).

The resulting matrix of zeros and ones described which genes

were differentially expressed in which responder (value 1), and

which ones were not (value 0).

In contrast to ExprEssence, which does not enforce the

interactions of the subnetwork to be connected, KeyPathwayMi-

ner aims for finding maximal connected subgraphs (maximal with

respect to the number of genes). Furthermore, each gene of the

subgraph has to be active (e.g. differentially expressed) in all but at

most L cases, and each subgraph must contain at most K non-

active genes. In this study, the cases were the responders, whose

gene expression is put into relation with the gene expression of all

non-responders. Using the network and the indicator matrix, the

Differential Network Analysis of TFAC Response
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KeyPathwayMiner subnetworks were then calculated using the

Ant Colony Optimization (ACO) search algorithm and the

individual node exceptions (INES; genes are represented by nodes

in the network) search strategy. The default ACO advanced

parameters were not changed. The node exceptions parameter K

was set to the default value of 8, and the case exceptions parameter

L was set to 38 based on initial analysis results (see Results and

Discussion).

IPA Analyses. The genes comprising the ExprEssence and

KeyPathwayMiner subnetworks, respectively, were then used for

an IPA Functional Enrichment Analysis (using the Ingenuity

database as of 09/01/2013) to compare the results with the IPA

analysis of the O39 gene set. Due to updates in the database

underlying IPA, the IPA analysis for the O39 gene set was redone

to allow for a fair direct comparison of the IPA results of all three

methods (OptDis, ExprEssence and KeyPathwayMiner).

Cell culture and treatment conditions
Breast cancer cell lines MCF-7, BT-20 and SKBR3 and MCF-

10A cells were obtained from American Type Culture Collection

(ATCC, USA). MCF-7 and BT-20 were maintained in Dulbecco’s

modified Eagle’s medium (Invitrogen, Germany) with 10% fetal

bovine serum (PAN Biotech GmbH, Germany) and 1%

gentamycin (Ratiopharm, Germany). SKBR3 cell line was

cultured in McCoy’s 5a Medium (ATCC, USA) supplemented

with 10% fetal bovine serum (PAN Biotech GmbH, Germany) and

1% gentamycin (Ratiopharm, Germany). The non-tumorigenic

control cell line MCF-10A was grown in Dulbecco’s modified

Eagle’s medium Ham’s F12 without phenol red (Invitrogen,

Germany) containing 10% horse serum (PAA Laboratories

GmbH, Germany), the Mammary Epithelial Cell Growth

Medium Supplement Pack (Promo Cell, Germany) including

Bovine Pituitary Extract (0.004 ml/ml), Epidermal Growth Factor

(recombinant human) 10 ng/ml, Insulin (recombinant human)

Figure 1. ExprEssence-condensed network describing the 16 most and 16 least active interactions between the E40 genes/proteins.
For each gene, its mean expression level is visualized for non-responders (left) and responders (right) by color (green for low, white for intermediate,
red for high expression). Interactions between the genes/proteins are represented by a line. Stimulations are indicated by an arrow on the target,
inhibitions by a t-bar. The up- (red) and down-regulation (green) of interactions are also colorcoded. Full gene names can be found in Table S1.
doi:10.1371/journal.pone.0081784.g001
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5 mg/ml, Hydrocortisone 0.5 mmg/ml and 1% gentamycin

(Ratiopharm, Germany). All cell lines were authenticated by

morphology and growth rate and were mycoplasma free. Prior

treatment, all cell lines were seeded in 6-well plates and adapted to

phenol-red-free Dulbecco’s modified Eagle’s medium (PAA

Laboratories GmbH, Germany) with 10% charcoal stripped fetal

bovine serum (PAN Biotech GmbH, Germany) for 48 h (assay

medium). Paclitaxel (T, Taxol; Ratiopharm, Germany) at a final

concentration of 0.1 nM or 0.1 mM, doxorubicin hydrochloride

(A, Adriamycin; Sigma, Germany) at a final concentration of

1 nM or 1 mM, or both were added to the cells for 24 or 48 h in

fresh assay medium. As negative control the diluent EtOH (0.1%)

was used in the same manner.

Western blot
After treatment with T or/and A or rather with the control

substance EtOH for at least 48 h, the cells were trypsinized,

washed with PBS and lysed in ice-cold lysis buffer (Bio-Plex Cell

Lysis Kit, Bio-Rad, USA). Cells were homogenized by brief

sonification at 4uC and centrifuged at 8,000 g for 1 min at 4uC.

Protein concentrations of supernatants were estimated by

Bradford protein assay [18] so that equal amounts (10–20 mg) of

total soluble protein could be separated by Criterion TGX Stain-

Free precast gels (Bio-Rad, Germany) and blotted on PVDF

membranes. After SDS-PAGE, protein content per lane as well

separation quality was additionally controlled with the Criterion

Stain FreeTM gel imaging system (Bio-Rad, Germany). Protein

transfer was carried out with a tank blotting system (Bio-Rad,

Germany) and then, membranes were blocked with 5% skim milk

in Tris-buffered saline (TBS) and washed five times in TBS. For

protein detection, primary antibodies (anti-rabbit anti-MYBL2,

AP20207PU-N, Acris, USA; anti-rabbit anti-Melk, 2274, Cell

signaling, USA; anti-mouse anti-PCNA, sc-56, Santa Cruz, USA;

anti-mouse anti-Actin, sc-47778, Santa Cruz, USA) were incubat-

ed overnight at 4uC followed by a labeling with a horseradish

peroxidase (HPR)-conjugated secondary antibody (Dako,

Glostrup, Denmark) for 1 h at room temperature. Protein signals

were visualized by using SuperSignal West Femto Chemilumines-

cent Substrate (Pierce Biotechnology, Rockford, USA) for

detection of peroxidase activity. Band intensity was analyzed

densitometrically with the Molecular Imager ChemiDoc XRS and

Image Lab 3.0.1 software (Bio-Rad, USA). Protein detection was

repeated at a minimum of three times with individually prepared

cell lysates from independent passaged cells.

MTS assay
Cells seeded in 96-well-plates in 100 mL medium were treated

with indicated compounds. After 48 h incubation at 37uC in a 5%

CO2 atmosphere, cells were assayed with 10 mL MTS [3-(4,5

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-

nyl)-2H-tetrazolium] solution (Promega Corp., Madison, WI) for

1 h at 37uC. The vehicle EtOH (0.1%) was used in the same

manner to serve as control. Colorimetric changes were measured

at 492 nm and correction for background absorbance was done by

measuring the absorbance of the compounds and MTS solution

without the cells. Raw data were transferred to Microsoft Excel for

analysis.

Live-Dead Assay
Live-Dead Assay was carried out following manufacturer’s

instructions (PromoCell GmbH, Heidelberg, Germany). After

treatment with the indicated compounds cells were washed with

phosphate buffered saline to remove serum esterase activity and

then treated with 200 mL of Calcein AM/Ethidium homodimer-lll

(EthD-lll) standard working solution. Cells were incubated at 37uC
for 1 h (Promo cell GmbH, Heidelberg, Germany). The percent-

age of stained live and dead cells was measured by a fluorescence

multiplate reader (Tecan M200, GmbH, Austria) at appropriate

wavelengths; Calcein AM (Ex/Em ,495/,515 nm), EthD-lll

(Ex/Em ,530/,635 nm). The relative reference to the cell

number was ensured by a simultaneous Hoechst staining. All

obtained values were normalized with respect to the cell number.

Cell cycle measurement for proliferation analysis
To determine proliferation, cell cycle analysis was performed by

flow cytometry [9]. The software FlowJo version 10.0.5 (Tree Star

Inc., USA) was used to acquire data. A minimum of 15,000

ungated events were recorded. Double and clumps were excluded

by gating on the DNA pulse width versus pulse area displays. For

statistical analysis, the S-phase and G2/M-phase cells were defined

as proliferative cells.

Results and Discussion

Generation of active subnetworks by three methods
In this study, we applied our active interaction/subnetwork

detection method ExprEssence to the investigation of response

status to breast cancer chemotherapy with TFAC, and we

compared the results to two similar methods, OptDis and

KeyPathwayMiner.

In the OptDis study by Dao et al., a set of 39 genes was deemed

to be of high importance for differences between responders and

non-responders to TFAC therapy (see Materials and Methods

section). An IPA Functional Enrichment Analysis was performed

for the O39 gene set. We performed the same analysis on the

subnetworks extracted through application of ExprEssence and

KeyPathwayMiner on the same network using the same gene

expression data. KeyPathwayMiner was chosen for comparison

with ExprEssence, as it is a recently published method that has

been shown to outperform other active subnetwork detection

methods (GiGA [2], CUSP [5] and jActiveModules [1]). Like an

ExprEssence subnetwork, a KeyPathwayMiner network is easily

interpretable.

The ExprEssence subnetwork was generated such that it

contains approximately the same number of genes as the O39

gene set. Hence, this network contains the 16 most up- and 16

most downregulated interactions, encompassing 40 genes (E40 ;

the gene names are listed in Table S1). Further parameters were

not required for the ExprEssence analysis.

For KeyPathwayMiner, we used the parameter settings as

described in Materials and Methods. We first set the case

exceptions parameter L to 10 (i.e., the recommended one fifth of

the number of cases (48)) but we obtained an empty network. This

is most likely due to the inhomogeneity of gene expression among

the responders; no single gene is differentially expressed (active)

with respect to the non-responders in 15 or more responders. We

found that the parameter L had to be set to at least 34 in order to

allow 5 genes to be included into a subnetwork. Using higher

values for L leads to the incorporation of more genes (which are

then active in fewer cases), and we settled for a value of L = 38 to

obtain 20 subnetworks, each containing 28 genes. Using an even

higher case exception parameter setting gave us limited returns in

terms of increases in subnetwork size, while moving us away from

an adequate use of KeyPathwayMiner. For each of the top 5

KeyPathwayMiner subnetworks (Figures S1, S2, S3, S4 and S5),

an IPA analysis was performed. The 5 subnetworks strongly

overlap (see Table S2), as do their IPA analysis results (see Table

S3). Therefore, in Table 1, the top 25 functional terms resulting

Differential Network Analysis of TFAC Response
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from the IPA analysis are shown only for the genes of the first

KeyPathwayMiner subnetwork (KPM1) together with the results

for the E40 and O39 gene sets.

Comparison of the subnetworks based on functional
enrichment

According to the IPA Functional Enrichment Analysis results

(Table 1) of the gene sets derived from the three subnetworks, the

gene set being most associated with breast cancer chemotherapy is

the ExprEssence E40 gene set, followed by the OptDis O39 gene

set and the one derived from the top KeyPathwayMiner network

(KPM1). In fact, the E40 gene set does not just feature more

TFAC therapy related terms such as Chromosomal congression of

chromosomes, M phase or Mitosis among the top 25 enriched terms,

but also more breast cancer terms, among them breast cancer itself,

Carcinoma in breast, Proliferation of breast cancer cell lines and Triple-

negative breast cancer (Table 1). Therefore, compared to the gene set

based on KeyPathwayMiner and the O39 gene set, the E40 gene

set is more specific with respect to the biological mechanisms that

distinguish responders from non-responders with respect to breast

cancer treatment with TFAC. ExprEssence directly determines a

score for each interaction, describing the direction and amount of

change in interaction strength between the groups of responders

and non-responders. KeyPathwayMiner, however, uses the

interaction network to connect as many active genes as possible

to obtain a maximal connected subgraph. Consequently, using

ExprEssence, a link may be deemed important, even if the genes

connected by the link are not significantly differentially expressed.

In fact, only 85% of the genes in the E40 gene set are significantly

differentially expressed. However, all interactions except one

(KRT16-KRT7) are differentially regulated in a statistically

significant way with Benjamini-Hochberg adjusted P-values below

0.05 for the two-tailed t-test. ExprEssence thus picks up relevant

genes due to interactions between their respective proteins,

without taking into account whether the differential regulation of

the individual genes is significant. In the next section, we will

discuss the subnetwork identified by ExprEssence in more detail to

investigate our work hypothesis, i.e. to further demonstrate that

this subnetwork includes some of the most important mechanisms

Table 1. The top 25 terms of Ingenuity Functional Enrichment Analysis for the genes found by ExprEssence (E40), the genes found
by OptDis (O39) and the genes found by KeyPathwayMiner (KPM1 network).

Enriched Functional Terms

E40 Genes O39 Genes KPM1 Network Genes

Cell cycle progression Transactivation of RNA Differentiation of cells

Breast cancer Development of tumor Proliferation of neuronal cells

Carcinoma in breast Cell cycle progression Migration of neural crest cells

Chromosomal congression of chromosomes Cell movement Cell movement

Amenorrhea Proliferation of tumor cell lines Development of central nervous system

Digestive organ tumor Necrosis Migration of cells

Proliferation of cells Transcription Transactivation of RNA

Metrorrhagia Proliferation of connective tissue cells Expression of RNA

Plaque psoriasis Migration of cells Transcription of RNA

Proliferation of tumor cells Apoptosis of tumor cell lines Proliferation of cells

Cell movement Transcription of RNA Development of autonomic nervous
system

Uterine hemorrhaging Proliferation of cells Transcription of DNA

Proliferation of breast cancer cell lines Cell survival Apoptosis

M phase Cell death Abnormal morphology of embryonic
tissue

Invasion of tumor cell lines Cell death of tumor cell lines Development of brain

Triple-negative breast cancer Proliferation of epithelial cells Differentiation of muscle cells

Cancer Differentiation of cells Development of lymphatic system
component

Cell cycle progression of tumor cell lines Hypoplasia Morphology of head

Mitosis Cell viability Morphology of nervous system

Organization of cytoskeleton Apoptosis Activation of DNA endogenous promoter

Invasion of cells Synthesis of DNA Development of cerebellum

Skin development Proliferation of fibroblasts Development of body axis

Development of epidermis Binding of DNA Abnormal morphology of endolymphatic
duct

Epithelial neoplasia Quantity of cells Proliferation of epithelial cells

Gastrointestinal Tract Cancer and Tumors Abnormal morphology of embryonic tissue Cell death

Table S4 and Table S5 contain also p -values and the lists of the genes associated with the terms.
doi:10.1371/journal.pone.0081784.t001
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related to the differences between responders and non-responders

to TFAC therapy.

The ExprEssence-condensed network
In this section, the most relevant findings by ExprEssence

(Figure 1) will be discussed, consisting of interactions that are

regulated most differentially between responders and non-

responders to TFAC chemotherapy. Liedtke et al. [20] reported

that triple-negative breast cancer is responding better to

neoadjuvant chemotherapy compared to other types, especially

compared to ER-positive breast cancer. In turn, one may expect a

large proportion of TFAC responders to feature low expression of

the ER receptor. This indeed is reflected in our subnetwork (green

frame), showing lower ESR1 (as well as AR and PGR) expression

in the group of responders compared to non-responders.

More generally, in our analysis, interactions involving these

receptors describe some of the major differences between

responders and non-responders. They build up parts of the cluster

boxed in green, which contains interactions that are downregu-

lated most strongly in responders compared to non-responders. In

particular, this cluster includes the mutual stimulation between

GATA3 and ESR1. This interaction has been hypothesized by

Eeckhoute et al. [21] to promote breast cancer progression via a

positive cross-regulatory loop. Despite its cancer promoting role,

expression of GATA3 is indicative for good general prognosis [22],

as it is strongly correlated with ESR1 expression [23] and such

cancer cells can be treated with high rates of success with hormone

therapy, but not TFAC therapy [20]. In summary, we successfully

identified the downregulated interaction between GATA3 and

ESR1 to be beneficial for good TFAC response, even though

prognosis is worse in general for triple-negative breast cancer (low

ESR1 expression) compared to hormone therapy-treatable recep-

tor positive breast cancers (higher ESR1 expression).

The interactions within the red frame in Figure 1 are

upregulated in responders compared to non-responders. These

interactions occur exclusively between genes/proteins associated

with cell cycle and mitosis. Cells of responders are thus mitotically

more active than non-responder cells, allowing the mitotic spindle

poison paclitaxel to have a stronger therapeutical effect [24]. A

detailed discussion of other interactions in Figure 1 can be found

in the Text S1, and in the next section, we will describe the general

pattern we find in the role of upregulated and downregulated

interactions.

General patterns in the ExprEssence subnetwork
Motivated by the parts of the subnetwork that are highlighted

by the green and red frames, we can interpret up- and down-

regulated interactions in the ExprEssence subnetwork in the

context of TFAC therapy, as follows. We observe that links that

are upregulated in responders (interactions represented by red lines

in Figure 1) can be divided into two classes: The first class supports

tumorsuppressive mechanisms (indicating good prognosis irrespective

of treatment). The other class supports pro-oncogenic mechanisms

(e.g. cell cycle/mitosis related links). Here, each such interaction

itself or at least one of the proteins involved in it is known as a

target of TFAC. In turn, non-responders do not feature these

specific pro-oncogenic targets for chemotherapy and therefore

cannot benefit from the therapy as much. Therefore, we suppose

that upregulated pro-oncogenic processes are targets for therapy

and hence a basis for TFAC response.

Downregulated links, on the other hand, cannot be associated

closely to response to TFAC. Instead, if the downregulated links

were upregulated, they would generally indicate worse response.

However, we do observe that some of the downregulated

interactions in the subnetwork render a collection of targets for

other kinds of therapies. In particular, targets of anti-hormone

therapy (e.g. ESR1 and AR) are part of the subnetwork boxed in

green.

Summing up, our work hypothesis is supported, as follows. By

using ExprEssence, some of the most important known mecha-

nisms related to the differences between responders and non-

responders could be extracted. In addition, this subnetwork gives

rise to new hypotheses with regard to the mechanistic workings of

TFAC. One of these mechanisms will be investigated further in the

following section. The interactions that are not featured in the

main text are discussed in the Supplement (Supplementary Text).

The role of MELK and MYBL2 as targets for TFAC therapy
In Figure 1 (bottom right), we identified the stimulation of

MYBL2 (also known as B-MYB) by MELK to be upregulated in

responders. At first glance, this finding is contradictory to the

general association of high MYBL2 and MELK expression levels

with aggressive tumor growth and poor outcome in breast cancer

and other tumors [25-27]. However, similar to the cell cycle

proteins boxed in red in Figure 1, MELK, MYBL2 and their

interaction may be a target for TFAC therapy.

More specifically, MELK is expressed in several developing

tissues, but it is also found in breast tumor-initiating cells, and is

required for mammary tumor growth in vivo [28]. Moreover, the

proto-oncogene MYBL2 is known to allow cells to override growth

inhibitory signals and is essential for S-phase entry [29–31]. The

BioGraph Database [32] and the Comparative Toxicogenomics

Database (CTD, [33]) suggest that MELK is related to suscepti-

bility to TFAC therapy. Both databases refer to analyses

performed by Hess et al., where MELK has been observed to

be significantly upregulated in responders to TFAC therapy [34],

although no direct effects of paclitaxel on MELK were reported

there. MELK is known to stimulate MYBL2 based on observa-

tions by Nakano et al., who found a downregulation of MYBL2 to

be induced by MELK knockdown [35]. Thus, we decided to

investigate the underlying stimulation, and its possible inhibition

by paclitaxel, in more depth. In the literature we found indications

that paclitaxel inhibits MELK via E2F transcription factors, and

that MELK stimulates MYBL2 via ZPR9, implying that paclitaxel

inhibits MYBL2 indirectly via MELK.

More specifically, paclitaxel has been shown to induce the cyclin

inhibitor p21WAF1 in MCF-7 breast cancer cells [36], which leads

to lower Cdk2 activity [37], resulting in less phosphorylation of the

pocket proteins p107/p130 and persistent association of E2F

transcription factors with p107/p130 [38]. Verlinden et al. found

the MELK gene to carry E2F responsive elements in its promoter

region [39]. Hence, paclitaxel-induced complexation of E2F

transcription factors could lead to a downregulation of MELK

gene expression. This could trigger less MYBL2 expression, since

MELK has been shown to phosphorylate the zinc-finger-like

protein ZPR9 [40], which in turn enhances transcriptional activity

of MYBL2 [35,41]. Moreover, Nakano et al. suggested that both

ZPR9 and MYBL2 are transcriptionally regulated by MELK [35].

(Since ZPR9 is not represented in the data we used, it could not

become a member of our E40 network.)

According to Calvisi et al. [42], low expression of MYBL2 is

beneficial for chemotherapy response. More specifically, Calvisi et

al. investigated hepatocellular carcinoma (HCC) cell lines with

wildtype and mutated p53 and found MYBL2-inhibited HCC cells

to be associated with reduced proliferation, increased DNA

damage, and induction of apoptosis irrespective of p53 status. A

p53 mutant status was correlated with higher levels of MYBL2 and

advanced tumor stage of human breast cancer [43]. However,
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especially HCC cells with mutated p53, which are not able to

arrest in the G1 phase and therefore enter into mitosis with DNA

heavily damaged by doxorubicin, show higher rates of apoptosis

than p53 wildtype HCC cells. Therefore, Calvisi et al. concluded

that MYBL2 inhibition could represent a valuable adjuvant for

doxorubicin treatment against human hepatocellular carcinoma

especially with mutated p53.

Taken together, a hypothesis resulting from our ExprEssence

analysis is that paclitaxel plays an important role as a co-player of

doxorubicin by repressing MELK expression, which in turn

attenuates MYBL2 expression and hence allows for more efficient

effects of doxorubicin. We investigated this hypothesis experimen-

tally using several breast cancer cell lines as described below.

Experimental investigation of chemotherapy effects on
MELK and MYBL2

Four different epithelial breast cell lines were chosen to compare

effects imputed to breast cancer subtype (Table 2). As a non-

tumorigenic/normal breast-like control the cell line MCF-10A was

selected. The cell line MCF-7 represents the most prevalent and

most common breast cancer subtype (luminal, estrogen receptor

(ER) and progesterone receptor (PR) positive). The highly invasive

cell line BT-20 was used as a model for the triple negative type

because neither ER, PR nor human epidermal growth factor

receptor 2 (HER2) expression is observed in BT-20. As HER2

positive cell type the cell line SKBR3 was used. Prior treatment

with chemotherapeutic agents, all cells were adapted to phenol red

free medium with charcoal treated serum to avoid cross

stimulation with endogenous hormones like 17b-estradiol. Final

concentrations of paclitaxel and doxorubicin were selected on the

basis of published IC50 values for both substances [44].

For our experimental setup, we tested paclitaxel alone for 48 h

(T), doxorubicin alone for 48 h (A), a combination (T + A) (48 h)

and successive treatment so that paclitaxel was first given for 24 h

and thereafter doxorubicin was added (T (24 h), A (24 h)).

Probably due to very low levels of MELK protein in the breast

cancer cell lines used in this study, we were not able to detect

MELK using immunofluorescence and western blotting (Figure 2).

This reflects that primarily tumor-initiating cells or stroma cells,

which are not represented by the used cell cultures, express MELK

[28]. Accordingly, MELK gene expression of the specimens

investigated in this study indicates that they originate from freshly

diagnosed breast cancer tissue which may, besides breast cancer

cells, contain also tumor-initiating and stroma cells. In contrast, we

observed high levels of MYBL2 especially in the breast cancer cell

lines (Figures 2, 3) and a decrease of MYBL2 protein levels after

application of T and A both individually and in combination could

be verified by western blotting, see below.

The various treatment combinations showed the direct influ-

ence of the single agents and also the combined effects on the

protein expression level of MYBL2. In the left panel of Figure 3,

Table 2. Selected breast cancer subtypes with their most common marker profile, their overall prevalence and a representative
human cell line with these molecular features.

Subtype Markers Prevalence Cell line

Luminal ER+ and/or PR+, HER22, low Ki67 42–59% MCF-7

Triple negative ER2, PR2, HER22, cytokeratin 5/6+ 14–20% BT-20

HER2+ ER2, PR2, HER22 7–12% SKBR3

Non-tumorigenic/basal-like/ normal breast-like ER+/2 and/or PR+/2, HER22 – MCF-10A

This table was compiled from different sources [45–48]. ER: Estrogen receptor; PR: Progesterone receptor; HER2: human epidermal growth factor receptor 2; +: positive;
2: negative.
doi:10.1371/journal.pone.0081784.t002

Figure 2. Expression levels of MELK and MYBL2 protein in the non-tumorigenic cell line MCF-10A in contrast to the breast cancer
cell lines MCF-7, BT-20 and SKBR3 detected by immunofluorescence. Note that MELK protein levels were below detection threshold while
MYBL2 protein was abundant in all cell lines. The strongest MYBL2 signal was reached in the cell line SKBR3. MELK and MYBL2 protein: green; cell
nuclei: blue.
doi:10.1371/journal.pone.0081784.g002
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the protein expression level of MYBL2 in the non-tumorigenic cell

line MCF-10A after treatment with chemotherapeutic agents in

comparison with vehicle control is given. The representative blot

as well as the densitometric statistics of the three individual

replicates shows that MYBL2 is expressed with no significant

alterations in the non-tumorigenic cell line MCF-10A after

treatment with the chemotherapeutics. As a marker for prolifer-

ative behavior, the Proliferating Cell Nuclear Antigen, commonly

known as PCNA, was detected on the same blots. PCNA

expression was significantly reduced after treatment with T and

A alone as well as with the combined treatments. Only the lowest

concentrations (0.1 nM T+1 nM A) caused no proliferative

alterations in comparison with control. This result reflects the

strong inhibitory effect of T and A on proliferation of dividing cell

populations by either stabilizing microtubules or by intercalating

DNA. As loading control, the counter labeling with b-actin as a

housekeeping protein and also the stain-free imaging of the SDS-

PAGE separations for visual monitoring of the loaded total protein

contents were utilized.

Further, the western blotting experiments of the breast cancer

cell lines (MCF-7, BT-20, SKBR3) demonstrated that these

displayed significantly stronger expression levels of MYBL2 in the

untreated state compared to the non-tumorigenic control (MCF-

10A). On each blot, 10 mg total protein was transferred, making

the expression levels of the cell lines comparable. The high

expression levels of MYBL2 in the cancer cell lines render them as

potential targets for treatment with the chemotherapeutic agents.

In contrast to the non-tumorigenic cell line, MYBL2 expression

levels of the breast cancer cell lines showed a distinct response to

treatment with the chemotherapeutic agents (Figure 3). For MCF-

7, a significant reduction of MYBL2 expression (by ,80%) after

treatment with the simultaneously given agents (T + A (48 h)) was

observed. Furthermore, the exposure to 1 mM A alone revealed a

significant reduction of MYBL2 expression. The triple negative

breast cancer cell line, BT-20, and the HER2 positive one,

SKBR3, displayed a strong response after the simultaneous

treatment with both chemotherapeutics (Figure 3). The expression

levels of MYBL2 in BT-20 cells decreased up to approximately

80%. For SKBR3 cells, a reduction of 95% for MYBL2 protein

was reached. But in contrast to MCF-7, the single agents also

influenced the protein contents of BT-20 and SKBR3. BT-20 cells

showed a strong downregulation of MYBL2 protein after 0.1 mM

T or 1 mM A exposure, similar to their combined application. The

successive exposure with chemotherapeutic agents did not further

enhance the protein repression in BT-20 cells. The influence on

SKBR3 cells turned out to be somewhat different. Although the

single chemotherapeutics paclitaxel and doxorubicin decreased

MYBL2 expression significantly, the highest downregulation was

reached after combined or successive treatment.

In conclusion, the combined exposure of paclitaxel and

doxorubicin (T + A (48 h)) revealed the strongest response on

MYBL2 repression in the breast cancer cell lines (MCF-7, BT-20,

SKBR3) while non-tumorigenic control cells (MCF-10A) were not

affected. All three tested breast cancer cell lines were sensitive for

Figure 3. Expression analysis of MYBL2 protein after treatment with paclitaxel (Taxol, T) and doxorubicin (Adriamycin, A) in several
cell lines by Western blotting (non-tumorigenic cell line MCF-10A and breast cancer cell lines MCF-7, BT-20 and SKBR3). Single
treatment with T or A for 48 h (T (48 h); A (48 h)), combined treatment for 48 h (T + A (48 h)) or successive treatment for each for 24 h (T (24 h), A
(24 h) was applied. Quantification of western blotting results was carried out with individual passaged cells for at least three times. Representative
western blots were displayed on top of the graphs. Proliferative alterations were detected against Proliferating Cell Nuclear Antigen (PCNA). Loading
controls were labeling of the house keeping protein b-actin and stain-free imaging of the SDS-PAGEs prior blotting procedure. Mean 6 SD values
(n = 3). * : p,0.05; ** : p,0.01; * * * : p,0.001 as compared to control treatment (unpaired t test).
doi:10.1371/journal.pone.0081784.g003
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the combined treatment of both chemotherapeutic adjuvants, as

reflected by decreased PCNA expression, except for the lowest

treatment conditions in MCF-7 cells. However, SKBR3 and not

BT-20 cells showed the most sensitive response to the combined

chemotherapeutic treatment with paclitaxel and doxorubicin in

concordance with repression of MYBL2 contents. Therefore,

further investigations should be performed on MYBL2 as a marker

for TFAC chemotherapy response in breast cancer cells, in

particular in HER2-positive cells.

Currently, TFAC therapy is preferably used for triple-negative

breast tumors [20]. Therefore, we also analyzed the cytotoxic

potential of the combined treatment of paclitaxel and doxorubicin

in the triple-negative cell line BT-20 in comparison to the non-

tumorigenic control (MCF-10A) (Figure S6). Towards this end, we

decided to use three independent cytotoxic measurement methods

(MTS assay, Live-Dead-assay and cell cycle measurements for

proliferation and apoptosis determination). The MTS assay

reflects the influence on the metabolic viability of the cells, while

the live-dead-test directly provides information about the induc-

tion of apoptosis. Viability was significantly lowered after

treatment with A alone and in combination with T in both cell

lines (Figure 3). In contrast, the live-dead staining revealed a

significant higher level of apoptotic BT-20 cells after exposure to

1 mM A and the combined treatment with T (Figure S6 (B), (D)).

Finally, we analyzed the cell cycle phases by flow cytometry

since paclitaxel stabilizes microtubules and induces a G2-phase

arrest. As expected, T alone induced an arrest in the G2-phase,

leading to higher proliferation rates (G2/M + S phase) in both cell

lines. Though the increase in proliferation rate was significant for

both MCF-10A and BT-20 cells, the absolute change was only

marginal for BT-20 cells (Figure S6 (C)). Treatment with A or the

combined exposure of both agents showed a significant decrease of

the proliferative phases in BT-20 cells, while MCF-10A prolifer-

ation was stimulated. This effect on MCF-10A cells is not unusual,

since, in an epithelial tissue, apoptosis is often compensated for by

increased proliferation rates to maintain the tissue structure. These

three cytotoxic assays confirm the postulated effects of T and A on

the BT-20 cell line, a representative of the triple-negative breast

cancer subtype. Furthermore, these results validate the MYBL2

western blotting experiments, demonstrating that the combined

exposure to T and A leads to the strongest effects.

We can summarize that high expression levels of MYBL2 are

associated with response to TFAC treatment, which should be

verified in further experiments by the investigation of human tissue

material. The results of the bioinformatics analysis are consistent

with cell biological results concerning the downregulation of

MYBL2 protein induced by TFAC treatment, rendering MYBL2

as a potential breast cancer marker for a successful TFAC therapy,

with a putative mechanistic connection to MELK.

Conclusions

We applied ExprEssence, a software tool for the extraction of

differentially regulated interactions from an interaction network,

to preoperative breast cancer chemotherapy response and

compared the resulting subnetwork to the results of two other

subnetwork-identifying methods, OptDis and KeyPathwayMiner.

Performing an IPA Functional Enrichment Analysis, we demon-

strated that the genes exhhibited by ExprEssence are more closely

related to the mode of functioning of TFAC therapy, compared to

the other methods.

Just like the other methods OptDis and KeyPathwayMiner, our

method relies on a network of gene/protein interactions onto

which gene expression data is mapped. A disadvantage of starting

with a known network is that we are not able to discover novel

interactions and hence false negatives may arise. Also, gene

expression data may not reflect post-translational modifications

such as phosphorylations. Furthermore, using gene expression

data being collected over a period of many years most likely

involves specimen retrieval by several people and may also

comprise changes of technical protocols, both possibly leading to

biased data which cannot be compensated for. Nevertheless, we

can generate valuable hypotheses based on highlighting some

interactions as particularly relevant. These may be false positives,

since network interactions are context-dependent events, and gene

expression data may give false evidence in cases where changes of

gene expression are irrelevant. Thus, the highlighted interactions

we found may not give a complete picture, and they need to be

validated experimentally.

In the case study presented here, besides identifying interactions

already known to be related to TFAC therapy response, we

proposed a putative response-related mechanism via MELK and

MYBL2, which has not been taken into account yet for assessment

of response. We performed experiments with cell lines represent-

ing various breast cancer subtypes to test our hypothesis that

paclitaxel acts synergistically with doxorubicin via suppression of

MELK, which in turn attenuates MYBL2 gene expression, known

to be advantageous for chemotherapy response. Though, probably

due to low amounts, we were not able to detect MELK protein, we

could demonstrate attenuated MYBL2 protein levels in chemo-

therapy treated cells and a synergism of paclitaxel and doxoru-

bicin. Concludingly, with the stimulation of MYBL2 by MELK,

we identified an interaction of potential relevance for decision-

making on TFAC therapy.

Supporting Information

Figure S1 KeyPathwayMiner subnetwork 1. The green

nodes represent genes that are active (i.e. genes that are

differentially expressed between responders and non-responders),

exception nodes (genes not being differentially expressed) are

drawn red. The number of exception nodes is one parameter of

KeyPathwayMiner - here it was set to 8.

(EPS)

Figure S2 KeyPathwayMiner subnetwork 2. The mean-
ing of red and green colors is explained in Figure S1.

(EPS)

Figure S3 KeyPathwayMiner subnetwork 3. The mean-
ing of red and green colors is explained in Figure S1.

(EPS)

Figure S4 KeyPathwayMiner subnetwork 4. The mean-
ing of red and green colors is explained in Figure S1.

(EPS)

Figure S5 KeyPathwayMiner subnetwork 5. The mean-
ing of red and green colors is explained in Figure S1.

(EPS)

Figure S6 Cytotoxic activity on non-tumorigenic control
cell line MCF-10A (black bar) and triple negative breast
cancer cell line BT-20 (grey bar) after treatment with
paclitaxel (T) and doxorubicin (A) was calculated by
three individual assays: MTS (A), Live-Dead (B, D) and
Cell cycle analysis (C). In each measurement the control
treatment with 0.1% EtOH was set to 100% to validate
the results after exposure to the compounds. All

measurements were repeated at a minimum of three replicates.

Fluorescence pictures of live (green) and dead (red) stained cells
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were taken with a fluorescence microscope (Axio Scope. A1, Carl

Zeiss, Germany). Mean 6 SD values (n = 3). *:p,0.05; **:p,0.01;

***:p,0.001 as compared to control treatment (unpaired t test).

(TIF)

Table S1 Full gene names for the gene symbols in
Figure 1.
(PDF)

Table S2 Genes of the top 5 KeyPathwayMiner subnetworks.
(PDF)

Table S3 Top 25 Biological Functions terms of the IPA
analysis for the top 5 KeyPathwayMiner subnetworks.
(PDF)

Table S4 Top 25 terms of Ingenuity Functional Enrich-
ment Analysis for E40 gene set including associated
genes and p-values (corrected for multiple testing using
BenjaminiHochberg correction).
(PDF)

Table S5 Top 25 terms of Ingenuity Functional Enrich-
ment Analysis for O39 gene set including associated
genes and p-values (corrected for multiple testing using
BenjaminiHochberg correction).
(PDF)

Text S1.

(PDF)
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