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140 21 Prague 4, Czech Republic; kapb@ikem.cz (B.J.K.); laki@ikem.cz (I.L.)

4 Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Vídeňská 1958,
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Abstract: The aim of our study was to analyze mitochondrial and endoplasmic reticulum (ER) gene
expression profiles in subcutaneous (SAT) and epicardial (EAT) adipose tissue, skeletal muscle,
and myocardium in patients with and without CAD undergoing elective cardiac surgery. Thirty-
eight patients, 27 with (CAD group) and 11 without CAD (noCAD group), undergoing coronary
artery bypass grafting and/or valvular surgery were included in the study. EAT, SAT, intercostal
skeletal muscle, and right atrium tissue and blood samples were collected at the start and end
of surgery; mRNA expression of selected mitochondrial and ER stress genes was assessed using
qRT-PCR. The presence of CAD was associated with decreased mRNA expression of most of the
investigated mitochondrial respiratory chain genes in EAT, while no such changes were seen in SAT
or other tissues. In contrast, the expression of ER stress genes did not differ between the CAD and
noCAD groups in almost any tissue. Cardiac surgery further augmented mitochondrial dysfunction
in EAT. In our study, CAD was associated with decreased expression of mitochondrial, but not
endoplasmic reticulum stress genes in EAT. These changes may contribute to the acceleration of
coronary atherosclerosis.

Keywords: coronary artery disease; epicardial fat; mitochondrial dysfunction; endoplasmic reticulum
stress; gene expression; diabetes mellitus; inflammation; cardiac surgery

1. Introduction

Cardiovascular diseases are the most common cause of death worldwide [1]. The
rising prevalence of type 2 diabetes mellitus (T2DM) and obesity worldwide is significantly
contributing to increased cardiovascular risk. Both disorders are closely interconnected
with other diseases, such as arterial hypertension and hyperlipidemia, leading to the
development of atherosclerosis and myocardial ischemia due to coronary artery disease
(CAD).
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A close association between CAD and the quality, volume, and overall layout of
adipose tissue is well-established [2]. Yet, not all adipose tissue compartments play an
equally important role in the development of CAD. It is, in particular, the epicardial adipose
tissue depot, localized in the vicinity of coronary arteries and producing a vast array of
endocrine- and paracrine-acting adipo-, cyto-, and chemokines and other factors, that
seems to be primarily involved in coronary atherosclerosis and the development of not
only CAD, but also other cardiac pathologies [3–6].

Mitochondrial metabolism is an essential component of cellular energetic homeostasis,
and its derangements play an important role in a number of diseases, including obesity,
T2DM, and CAD. The amount of energy in the form of adenosine triphosphate (ATP)
depends on the expression of genes in each of the four main enzymatic complexes [7].
Obese patients with insulin resistance and with T2DM were found to have reduced expres-
sion of mitochondrial complexes [8]. Decreased expression of mitochondrial membrane
proteins was also detected in patients with heart failure, highlighting the importance of
mitochondrial function for myocardial remodeling [9].

Mitochondrial oxidative stress coexists with endoplasmic reticulum (ER) stress [10].
ER stress is an evolutionary conserved mechanism of mammalian cells closely connected
with different pathologies, including inflammation, atherosclerosis, heart failure, obesity,
and T2DM [11,12]. The main functions of ER are protein synthesis and folding, quality
control and secretion of proteins, synthesis of fatty acids and phospholipids, assembly of
lipid barriers, and metabolism of saccharides [12]. A large number of different signaling
pathways from the ER are able to initiate modulations of organism homeostasis. Mutations
of genes important for the correct function of ER or changes in their mRNA expression can
lead to ER stress and subsequent disorders [13,14].

Whether and how ER and mitochondrial stress interact is unknown. Their occurrence
in epicardial adipose tissue and potential contribution to coronary atherosclerosis remain
largely unexplored. Based on the prevalence of both ER and mitochondrial dysfunction
in subcutaneous and visceral adipose tissue in obesity, T2DM, and CAD, as well as the
recently suggested importance of epicardial adipose tissue in coronary atherosclerosis, we
hypothesized that both mitochondrial and ER stress will be present in EAT of patients
with CAD. To this end, we performed a comparison of mRNA expression of selected
mitochondrial and ER genes in subcutaneous and epicardial adipose tissue, skeletal muscle,
and right atrial myocardium in subjects undergoing elective cardiac surgery with and
without established CAD.

2. Results
2.1. Antropometric and Biochemical Characteristics

At baseline, no differences between the CAD and noCAD groups in any of anthro-
pometric characteristics were present, including age, weight, height, BMI, and waist and
hip circumference, except for greater epicardial adipose tissue thickness in patients with
CAD (Table 1). Additionally, patients with CAD had a higher prevalence of T2DM, arterial
hypertension, and dyslipidemia, as well as increased fasting blood glucose and HbA1c
compared to the noCAD group, while showing no difference in serum insulin, C-peptide,
or lipid parameters (Table 1).



Int. J. Mol. Sci. 2021, 22, 4538 3 of 10

Table 1. Baseline characteristics of study subjects. Normally distributed data are shown as the mean
± SEM. Non-parametric data are shown as the median (interquartile range). Statistical significance is
from an unpaired t-test; p < 0.05 vs. no CAD, statistically significant comparisons are highlighted
in bold.

Group noCAD CAD P

No. of subjects (f/m) 11 (3/8) 27 (5/22) x

Age (year) 59.8 ± 4.8 67.6 ± 1.65 0.421
Weight (kg) 80.5 ± 3.98 87.7 ± 3.07 0.193
Height (cm) 172 ± 3.09 175 ± 1.55 0.348

Body mass index (kg/m2) 27.1 ± 0.96 28.6 ± 0.91 0.339
Waist circumference (cm) 99.2 ± 3.53 104 ± 2.42 0.332
Hip circumference (cm) 102 ± 3.08 107 ± 1.51 0.149

Waist/hip ratio 0.96 ± 0.01 0.96 ± 0.02 0.872
Epicardial adipose tissue (mm) 3.00 (2.00–3.00) 4.00 (3.00–4.00) 0.014

Total cholesterol (mmol/L) 4.12 ± 0.29 3.76 ± 0.18 0.237
Triglycerides (mmol/L) 1.33 ± 0.16 1.45 ± 0.18 1

LDL cholesterol (mmol/L) 2.36 ± 0.24 1.99 ± 0.14 0.163
HDL cholesterol (mmol/L) 1.25 ± 0.12 1.15 ± 0.09 0.126
Fasting glucose (mmol/L) 5.4 ± 0.17 6.76 ± 0.33 0.011

HbA1c (mmol/mol) 35.4 ± 1.18 43.6 ± 1.98 0.012
Insulin (µIU/mL) 18.4 (14.4–20.2) 24.2 (16.7–37.5) 0.095

C-peptide (ng/mL) 2.76 ± 0.32 3.05 ± 0.22 0.497
T2DM (n, %) 0 (0%) 10 (37.0%) 0.021

Arterial hypertension (n, %) 7 (63.6%) 26 (96.3%) 0.008
Dyslipidemia (n, %) 6 (54.5%) 26 (96.3%) 0.002

CAD, coronary artery disease; T2DM, type 2 diabetes mellitus; f, female; m, male.

2.2. Mitochondrial and Endoplasmic Reticulum Stress Gene mRNA Expression in Adipose Tissue,
Myocardium, and Intercostal Muscle
2.2.1. Mitochondrial Gene mRNA Expression in SAT and EAT

Basal mRNA expression of almost all assessed mitochondrial genes (NDUFA12, CS,
SDHA, CYC1, COX4/1) in EAT was significantly lower in the CAD compared to the no-
CAD group (Figure 1). At the same time, MT-ND5 mRNA expression showed a similar
tendency, but the difference did not reach statistical significance. In contrast, in SAT of
CAD patients, decreased baseline mRNA expression was found only for SDHA (Figure 1),
while the expression of other mitochondrial genes did not differ between the groups. When
comparing both adipose tissue depots, only NDUFA12 showed differences between EAT
and SAT, with higher expression in EAT in the noCAD group (p = 0.004). Surgery tended to
decrease the mRNA expression of all mitochondrial genes in EAT, regardless of CAD, with
CS, NDUFA12, and MT-ND5 showing significant differences. In contrast, no such pattern
was present in SAT, with only MT-ND5 expression in CAD subjects being significantly
reduced post-operatively (Figure 1). None of these changes could be seen when comparing
diabetic and nondiabetic subjects (data not shown).

2.2.2. Mitochondrial Gene mRNA Expression in the Myocardium and Intercostal Muscle

In the right atrial myocardium, mRNA expression of CS was significantly lower in the
CAD compared to the noCAD group (p = 0.036), while no other significant differences in
the myocardium or ICM could be observed before or after the surgical procedure between
the groups in any of the other examined mitochondrial genes (data not shown).



Int. J. Mol. Sci. 2021, 22, 4538 4 of 10
Int. J. Mol. Sci. 2021, 22, 4538 4 of 11 
 

 

 

Figure 1. Mitochondrial gene mRNA expression in epicardial (EAT, A) and subcutaneous (SAT, B) adipose tissue. Values 
are shown as the mean ± SEM. Statistical significance is from an unpaired t-test and paired t-test (T1 vs. T2); * p < 0.05 vs. 
T1.; p < 0.05 vs. no CAD T1. Values were adjusted for the presence of type 2 diabetes mellitus. Relative mRNA expression 
= changes in gene expression in a given sample relative to the reference sample (beta2-microglobulin). CAD, coronary 
artery disease; T1, beginning of the surgery; T2, end of the surgery; CS, citrate synthase; NDUFA12, NADH dehydrogenase 
subunit; SDHA, succinate dehydrogenase complex flavoprotein subunit A; COX4/1, cytochrome c oxidase subunit 4/1; 
CYC1, cytochrom c 1; MT-ND5, NADH-ubiquinone oxidoreductase chain 5. 

Figure 1. Mitochondrial gene mRNA expression in epicardial (EAT, A) and subcutaneous (SAT, B) adipose tissue. Values
are shown as the mean ± SEM. Statistical significance is from an unpaired t-test and paired t-test (T1 vs. T2); * p < 0.05 vs.
T1.; p < 0.05 vs. no CAD T1. Values were adjusted for the presence of type 2 diabetes mellitus. Relative mRNA expression
= changes in gene expression in a given sample relative to the reference sample (beta2-microglobulin). CAD, coronary
artery disease; T1, beginning of the surgery; T2, end of the surgery; CS, citrate synthase; NDUFA12, NADH dehydrogenase
subunit; SDHA, succinate dehydrogenase complex flavoprotein subunit A; COX4/1, cytochrome c oxidase subunit 4/1;
CYC1, cytochrom c 1; MT-ND5, NADH-ubiquinone oxidoreductase chain 5.
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2.2.3. Endoplasmic Reticulum Stress Gene mRNA Expression

At baseline, the expression of all assessed ER stress genes did not show any differences
between the groups in any tissue, except for significantly higher mRNA expression of
DDIT3 in SAT compared to EAT in noCAD subjects (p = 0.023). Surgery affected only EAT,
with increased expression of HSPA5 and ATF6 in CAD and ATF4 in both CAD and no CAD
groups (Figure 2–data for SAT and EAT and data for ICM and RA are not shown).
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Figure 2. ER stress gene mRNA expression in epicardial (EAT, A) and subcutaneous (SAT, B) adipose tissue. Values are
shown as the mean ± SEM. Statistical significance is from an unpaired t-test and paired t-test (T1 vs. T2); * p < 0.05 vs. T1;
p < 0.05 vs. no CAD T1. Relative mRNA expression = changes in gene expression in a given sample relative to the reference
sample (beta2-microglobulin). CAD, coronary artery disease; T1, beginning of the surgery; T2, end of the surgery; HSPA5,
heat shock protein family A (Hsp70) member 5; DDIT3, DNA damage inducible transcript 3; ATF4, activating transcription
factor 4; ATF6, activating transcription factor 6.

3. Discussion

Adipose tissue surrounds the heart on 80% of its surface and forms up to 20% of total
heart weight [2,15]. This adipose tissue around the myocardium is divided into epicardial
and pericardial adipose tissue [2]. Our study focused primarily on epicardial adipose
tissue. The presented data demonstrate that mitochondrial mRNA expression in EAT is
substantially and consistently lower in patients with CAD compared to subjects without
CAD, while SAT and other examined tissues do not show the same results. In contrast, no
change in mRNA expression of ER stress genes was observed throughout the study.

For our study, we have chosen six main mitochondrial genes (CS, NDUFA12, MT-ND5,
CYC1, COX 4/1, and SDHA), which have a primary role in mitochondrial respiratory chain
complexes, and thus in mitochondrial function. Lower expression in EAT in patients
with compared to without CAD was demonstrated in all selected mitochondrial genes
except MT-ND5. These findings are in line with previous data published by Nakajima
et al., who showed lower mitochondrial respiratory capacity in EAT in CAD patients [16].
Here, we confirm and complement these data based on mitochondrial activity with the
results from gene expression. Correct mitochondrial gene expression and function has been
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linked to the retention of healthy anti-inflammatory and anti-atherosclerotic phenotype
of epicardial adipose tissue [17,18]. Our data thus further strengthen the suggested close
relationship between EAT dysfunction and coronary atherosclerosis [2]. Interestingly, no
such changes could be seen in SAT, expanding the previously reported difference in pro-
inflammatory status between EAT and SAT, also to mitochondrial gene expression, and
again underscoring the relevance of EAT in the development of CAD. To these results, we
can also add the observed decreased mRNA expression of citrate synthase in the right
atrial myocardium in the CAD group, which suggests a reduction in allover mitochondrial
content. These findings might contribute to a better understanding of the interconnection
between CAD and other cardiac pathologies, as mitochondrial dysfunction was shown to
be associated with diseases, such as atrial fibrillation and heart failure [19,20].

Our study primarily compared subjects with and without CAD, regardless of T2DM,
as diabetes was present only in 37% of CAD subjects and in none of the subjects without
CAD. However, after adjusting for its presence, our data show that T2DM did not influence
mRNA expression of investigated mitochondrial genes. Although data on mitochondrial
function of EAT, specifically in T2DM, are virtually non-existent, this seems to be in contrast
with the results of Dahlman et al., who observed a downregulation of electron transport
chain genes in visceral adipose tissue of obese T2DM subjects relative to non-obese healthy
subjects [21]. However, as their and our cohort differ significantly with respect to BMI,
comorbidities, and other factors, no clear conclusions can be drawn from this discrepancy,
and further research on larger T2DM cohorts is needed to gather more information about
the relationship between mitochondrial dysfunction in EAT and T2DM.

Surprisingly, we did not detect any relevant mRNA changes in ER stress genes, either
in EAT or in any other investigated tissue, regardless of the presence of CAD. It is well-
known that cardiovascular disorders are associated with disturbances in ER and abnormal
accumulation of misfolded proteins in cardiomyocytes [22], although the available results
on the relationship of ER stress with CAD are conflicting [23]. In contrast to previous
studies on mice, we did not find any upregulation of ER stress genes, which might be at
least partially explained by the fact that the available murine data show the association of
ER stress primarily with degenerating cardiomyocytes [24]. This together with our other
data suggests that EAT-associated ER stress might not play as important of a role in the
development of CAD as mitochondrial dysfunction. At this stage, we were not able to
confirm the mRNA findings with data on proteins, which nevertheless remains a plan for
the near future.

Cardiac surgery, usually coupled with extracorporeal circulation, comprises an intense
stressor for the organism, and is associated with increased systemic and local inflammatory
and metabolic responses [25]. Here, we show that, in EAT, mRNA expression of half of
the six mitochondrial genes decreased substantially after cardiac surgery, regardless of
the presence of CAD, while this was the case for only one gene in SAT of the CAD group.
This finding further strengthens the differences between SAT and EAT with regards to
mitochondrial dysfunction. Interestingly, in spite of a comparable baseline expression of ER
stress genes, cardiac surgery increased the expression of three out of four genes assessed in
EAT of CAD subjects, and only one gene in EAT of noCAD subjects (while having no effect
in SAT of both groups), suggesting that CAD-derived EAT might still be more susceptible
to ER stress than the one not associated with coronary atherosclerosis.

In summary, in our study, CAD was associated with mitochondrial dysfunction in
EAT, as assessed by decreased expression of mitochondrial genes, but not with ER stress.
Further studies are needed to confirm these findings in larger cohorts and to define the
exact mechanisms of interaction between EAT mitochondrial dysfunction and CAD, which
may lead to the identification of novel therapeutic targets and strategies in the treatment
of CAD.
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4. Materials and Methods
4.1. Study Subjects

This study included 38 patients undergoing elective cardiac surgery with cardiopul-
monary bypass (coronary artery bypass grafting (CABG) in 13 subjects, valve replacement
in 17 subjects, and combination of CABG and valve replacement in eight subjects). Patients
were divided into two groups according to the presence of CAD, assessed by previous
selective coronarography—11 subjects without CAD (noCAD group: three females and
eight males) and 27 subjects with CAD (CAD group: five females and 22 males). Ten of
the participating patients had T2DM, 33 had arterial hypertension treated with antihy-
pertensives, and 32 had dyslipidemia treated with statins. None of the patients suffered
from acute or chronic kidney disease, malignancy, thyroid disease, or acute infection.
All participants signed written informed consent prior to enrollment into the study. The
study was approved by the Human Ethics Review Board, Institute for Clinical and Experi-
mental Medicine and Thomayer Hospital, Prague, Czech Republic, and was performed
in accordance with the guidelines proposed in the Declaration of Helsinki (2000) of the
World Medical Association. Elective cardiac surgery was performed after overnight fasting
and was started between 7–8 AM in all subjects. Ten patients received infusion of dobu-
tamine and norepinephrine perioperatively, with a maximum dose of 7 µg/kg/min and
0.2 µg/kg/min, respectively, with the treatment duration from 8 to 33 h.

4.2. Anthropometric Examination and Blood and Tissue Sampling

All subjects included in the study were measured and weighted, and their body mass
index (BMI) was calculated one day prior to surgery. Waist and hip circumferences were
measured, and their ratio was calculated. Blood samples for biochemical and hormonal
measurements were taken after overnight fasting prior to initiation of anesthesia (beginning
of surgery) and at the end of surgery. Blood samples were centrifuged for 10 min at 3000×
g within 30 min after withdrawal. Serum samples were subsequently stored in aliquots at
−80 ◦C until further analysis. The thickness of EAT was measured by transthoracic echocar-
diography in front of the right ventricular wall from the parasternal long axis (PLAX) view.
Samples of subcutaneous (thoracic region, sternotomy site) (SAT) and epicardial (anterior
interventricular sulcus or right margin of the heart) adipose tissue (EAT), intercostal muscle
(ICM), and the myocardial right atrium (RA) for mRNA expression analysis were taken
at the start and end of the surgery from approximately the same location in all patients.
Tissue samples (50–100 mg) were collected with 1 mL of RNAlater® reagent (Ambion®

Invitrogen, Carlsbad, CA, USA) and stored at −80 ◦C until further analysis.

4.3. Hormonal and Biochemical Assays

Serum levels of cytokines were measured by a multiplex assay MILLIPLEX MAP
Human High Sensitivity T Cell Panel and Cytokine/Chemokine Magnetic Bead Panel
(HSTCMAG-28SK-05, HCYTOMAG-60K-06, Merck KGaA, Darmstadt, Germany). Sensi-
tivity for IFN-γ was 0.8 pg/mL, for IL-10 0.56 pg/mL, for IL23 3.25 pg/mL, for MIP-1α
0.94 pg/mL, for MIP-1β 0.67 pg/mL, for IL-6 0.9 pg/mL, for IL-8 0.4 pg/mL, for MCP1
1.9 pg/mL, and for TNF-α 0.7 pg/mL. The intra- and inter-assay variabilities for all assays
were between 5.0 and 15.0%. C-reactive protein (CRP) levels were measured by a high sensi-
tivity assay (Bender Med Systems, Vienna, Austria), with a sensitivity of 3 pg/mL. Routine
biochemical parameters were measured at the Department of Biochemistry, Institute for
Clinical and Experimental Medicine, Prague, Czech Republic by standard laboratory meth-
ods. LDL cholesterol was calculated using the Friedewald equation. Insulin levels were
measured by an RIA kit (Cis Bio International, Gif-sur-Yvette, France). Sensitivity was
2.0 µIU/mL.
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5. Quantitative Real-Time PCR
5.1. Determination of mRNA Expression

Samples of SAT, EAT, ICM, and RA were homogenized on a MagNA Lyser instrument
with MagNA Lyser Green beads (Roche Diagnostics GmbH, Mannheim, Germany). Total
RNA from homogenized tissue was extracted on a MagNA Pure instrument using a Magna
Pure Compact RNA Isolation kit (tissue) (Roche Diagnostics GmbH, Mannheim, Germany).
The RNA concentration was determined from absorbance at 260 nm on a NanoPhotometer
(Implen, Munchen, Germany). Reverse transcription was performed using 0.25 µg of total
RNA to synthesize the first strand cDNA using random primers per the instructions of
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA,
USA). Gene expression of inflammatory, mitochondrial, and endoplasmic reticulum stress
genes was performed on a ViiA7 Instrument (Applied Biosystems, Foster City, CA, USA)
using TaqMan® gene expression assays (Applied Biosystems, Foster City, CA, USA). A mix
of TaqMan® Universal PCR Master Mix II, NO AmpErase® UNG (Applied Biosystems,
Foster City, CA, USA), nuclease-free water (Fermentas Life Science, Lithuania), and specific
TaqManGene expression assays (Applied Biosystems, Foster City, CA, USA) was used
for the reaction. Beta-2 microglobulin (B2M) was used as the endogenous reference. The
formula 2−ddCt was used to calculate relative gene expression. The complete determination
process is described in detail elsewhere [26].

5.2. Mitochondrial and Endoplasmic Reticulum Stress Genes

For our study, we have chosen the most abundant genes of the mitochondrial respira-
tory chain (Supplementary Table S1). Citrate synthase (CS), which is considered a marker of
total mitochondria, is a tricarboxylic acid cycle enzyme that catalyzes the synthesis of citrate
from oxaloacetate and acetyl coenzyme A (acetyl-CoA), and is located in the mitochon-
drial matrix [27,28]. Other study genes are located in the inner mitochondrial membrane,
including nicotinamide adenine dinucleotide hydrogen (NADH) dehydrogenase subunit
(NDUFA12) and mitochondrially encoded NADH dehydrogenase 5 (MT-ND5), which are
both part of an enzymatic complex NADH-coenzymeQ10 reductase (Complex I), succinate
dehydrogenase complex flavoprotein subunit A (SDHA), which encodes a major subunit
of succinate-ubiquinone oxidoreductase (complex II), cytochrome c oxidase subunit 4/1
(COX4/1), which is part of cytochrome c oxidase (complex IV) [29], and cytochrom c 1
(CYC1), which is a respiratory subunit of ubiquinol cytochrome c reductase (complex
III) [30] [31].

Assessed genes of ER stress include HSPA5, DDIT3, ATF4, and ATF6 (Supplementary
Table S2). ATF4 is a stress-induced transcription factor and one of the master regulators
of the cellular stress response that promotes adaptation of cells to a limited availability of
nutrients [32]. ATF6 is a transcription factor located in the ER membrane and sensing ER
stress. Without stress conditions, ATF6 occurs as a 90 kDA trans-membrane glycoprotein
(p90ATF6). Under stress conditions, the protein is cleaved to give a 50 kDA protein
(p50ATF6), which will get into the cell nucleus, where it directly affects the expression of
the uncoupling protein response target genes [33]. The protein encoded by the HSPA5 gene
is a member of the heat shock protein 70 (HSP70) family. It is localized in the lumen of the
endoplasmic reticulum (ER) and is involved in the folding and assembly of proteins in the
ER [34]. The DDIT3-encoded protein is implicated in adipogenesis and erythropoiesis, is
activated by endoplasmic reticulum stress, and promotes apoptosis [35].

6. Statistical Analysis

Statistical analysis was performed, and graphs were drawn using SigmaPlot 13.0
(Systat Software Inc., San Jose, CA, USA). Results are expressed as means ± standard
errors of the mean (SEM) or median (interquartile range), according to the normality of
the data. Normality of all data was assessed by the Shapiro–Wilk test. An unpaired t-test,
Mann–Whitney rank sum test, paired test, or Wilcoxon signed rank test were used for
the assessment of intra- and intergroup differences, as appropriate. Correlations were
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analyzed using Spearman’s or Pearson’s correlation test, according to the normality of
the data. Multiple linear regression analysis using a backward stepwise variable selection
method was performed in the combined group of all study subjects, using parameters with
significant results from Spearman or Pearson correlation tests. Values were adjusted for
the presence of T2DM. In all statistical tests, p-values < 0.05 were considered significant.
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31. Urbanová, M.; Mráz, M.; Ďurovcová, V.; Trachta, P.; Kloučková, J.; Kaválková, P.; Haluzíková, D.; Lacinová, Z.; Hansíková, H.;
Wenchich, L.; et al. The Effect of Very-Low-Calorie Diet on Mitochondrial Dysfunction in Subcutaneous Adipose Tissue and
Peripheral Monocytes of Obese Subjects with Type 2 Diabetes Mellitus. Physiol. Res. 2017, 66, 811–822. [CrossRef]

32. Wortel, I.M.; van der Meer, L.T.; Kilberg, M.S.; van Leeuwen, F.N. Surviving Stress: Modulation of ATF4-Mediated Stress
Responses in Normal and Malignant Cells. Trends Endocrinol. Metab. 2017, 28, 794–806. [CrossRef]

33. Chen, X.; Shen, J.; Prywes, R. The Luminal Domain of ATF6 Senses Endoplasmic Reticulum (ER) Stress and Causes Translocation
of ATF6 from the ER to the Golgi. J. Biol. Chem. 2002, 277, 13045–13052. [CrossRef] [PubMed]

34. Wang, J.; Lee, J.; Liem, D.; Ping, P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017, 618,
14–23. [CrossRef] [PubMed]

35. Ramji, D.P.; Foka, P. CCAAT/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 2002, 365, 561–575.
[CrossRef] [PubMed]

http://doi.org/10.1038/s41467-017-00171-w
http://www.ncbi.nlm.nih.gov/pubmed/28743963
http://doi.org/10.6064/2012/857516
http://www.ncbi.nlm.nih.gov/pubmed/24278747
http://doi.org/10.2337/diabetes.54.4.1074
http://doi.org/10.1212/01.wnl.0000192306.98198.ec
http://www.ncbi.nlm.nih.gov/pubmed/16432136
http://doi.org/10.1016/j.carpath.2004.08.005
http://doi.org/10.1038/s41598-019-40419-7
http://doi.org/10.1038/s41598-017-15501-7
http://doi.org/10.1016/j.ijcard.2016.11.074
http://doi.org/10.1016/j.jacc.2013.03.061
http://doi.org/10.1016/j.cardfail.2019.08.005
http://doi.org/10.2337/db05-1421
http://www.ncbi.nlm.nih.gov/pubmed/16731844
http://doi.org/10.1016/j.freeradbiomed.2015.05.027
http://doi.org/10.1038/aps.2015.145
http://doi.org/10.1152/ajpheart.01378.2005
http://www.ncbi.nlm.nih.gov/pubmed/16617122
http://doi.org/10.1210/jc.2006-1044
http://www.ncbi.nlm.nih.gov/pubmed/16895955
http://doi.org/10.33549/physiolres.932792
http://doi.org/10.1002/jcb.22200
http://doi.org/10.1155/2013/826027
http://doi.org/10.1016/j.mito.2015.07.002
http://doi.org/10.1016/j.ajhg.2013.06.015
http://doi.org/10.33549/physiolres.933469
http://doi.org/10.1016/j.tem.2017.07.003
http://doi.org/10.1074/jbc.M110636200
http://www.ncbi.nlm.nih.gov/pubmed/11821395
http://doi.org/10.1016/j.gene.2017.03.005
http://www.ncbi.nlm.nih.gov/pubmed/28286085
http://doi.org/10.1042/bj20020508
http://www.ncbi.nlm.nih.gov/pubmed/12006103

	Introduction 
	Results 
	Antropometric and Biochemical Characteristics 
	Mitochondrial and Endoplasmic Reticulum Stress Gene mRNA Expression in Adipose Tissue, Myocardium, and Intercostal Muscle 
	Mitochondrial Gene mRNA Expression in SAT and EAT 
	Mitochondrial Gene mRNA Expression in the Myocardium and Intercostal Muscle 
	Endoplasmic Reticulum Stress Gene mRNA Expression 


	Discussion 
	Materials and Methods 
	Study Subjects 
	Anthropometric Examination and Blood and Tissue Sampling 
	Hormonal and Biochemical Assays 

	Quantitative Real-Time PCR 
	Determination of mRNA Expression 
	Mitochondrial and Endoplasmic Reticulum Stress Genes 

	Statistical Analysis 
	References

