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Deep learning‑based framework 
for slide‑based histopathological 
image analysis
Sai Kosaraju1,4, Jeongyeon Park2,4, Hyun Lee2*, Jung Wook Yang3* & Mingon Kang1*

Digital pathology coupled with advanced machine learning (e.g., deep learning) has been changing 
the paradigm of whole‑slide histopathological images (WSIs) analysis. Major applications in 
digital pathology using machine learning include automatic cancer classification, survival analysis, 
and subtyping from pathological images. While most pathological image analyses are based on 
patch‑wise processing due to the extremely large size of histopathology images, there are several 
applications that predict a single clinical outcome or perform pathological diagnosis per slide (e.g., 
cancer classification, survival analysis). However, current slide‑based analyses are task‑dependent, 
and a general framework of slide‑based analysis in WSI has been seldom investigated. We propose 
a novel slide‑based histopathology analysis framework that creates a WSI representation map, 
called HipoMap, that can be applied to any slide‑based problems, coupled with convolutional 
neural networks. HipoMap converts a WSI of various shapes and sizes to structured image‑type 
representation. Our proposed HipoMap outperformed existing methods in intensive experiments 
with various settings and datasets. HipoMap showed the Area Under the Curve (AUC) of 0.96±0.026 
(5% improved) in the experiments for lung cancer classification, and c‑index of 0.787±0.013 (3.5% 
improved) and coefficient of determination ( R2 ) of 0.978±0.032 (24% improved) in survival analysis 
and survival prediction with TCGA lung cancer data respectively, as a general framework of slide‑based 
analysis with a flexible capability. The results showed significant improvement comparing to the 
current state‑of‑the‑art methods on each task. We further discussed experimental results of HipoMap 
as pathological viewpoints and verified the performance using publicly available TCGA datasets. 
A Python package is available at https:// pypi. org/ proje ct/ hipom ap, and the package can be easily 
installed using Python PIP. The open‑source codes in Python are available at: https:// github. com/ 
datax‑ lab/ HipoM ap.

Whole-Slide histopathological Images (WSIs) have been considered a clinical gold standard tool for the diagnosis 
of complex diseases (i.e., cancers)1,2, since diagnosis is mainly determined by morphological patterns in  WSIs3. 
Recent advances in artificial intelligence techniques in digital pathology have produced significant performances 
for diagnosis and clinical outcome prediction. Deep learning-based segmentation and classification models have 
assisted pathologists on diagnosis of complex  diseases4,5 and identified subtype-related morphologies in  WSI6. 
Deep learning-based survival analysis models have shown potential in estimating survival of patients as well as 
identifying survival-related morphological patterns from  WSI7,8.

Most computational approaches on histopathological images are based on patch-wise processing, due to the 
various shapes of tissues and giga-pixel sizes of  WSIs9,10 (see Fig. 1A). Patch-wise approaches typically consist of 
the three steps: (1) a WSI is divided into smaller patches; (2) each of the patches computes a probability score of 
a diagnosis or a clinical outcome (e.g., a probability that the patch region is cancerous); and (3) the probability 
scores of the patches are combined into an entire probability map of the  WSI11. For instance, Convolutional 
Neural Networks (CNNs) were trained with fixed-size patch images (e.g., 299× 299 pixels), and the patch-wise 
results localized cancerous regions in a  WSI12,13. Patches in annotated Regions of Interest (ROI) were used to train 
a CNN-based model to predict risk scores of  patches14,15. A multi-scale receptive field CNN examined patches of 
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multiple magnification levels simultaneously for cancer  recognition16. Those patch-wise approaches are widely 
applicable for identifying regions of interest on a WSI.

On the other hand, slide-based approaches are designed to predict a single clinical outcome or diagnosis for 
an entire WSI (see Fig. 1B). Typically, slide-based approaches begin with analyzing patches as patch-wise analyses 
do, but combine the analysis results of the patches to make a single prediction. Slide-based approaches are mainly 
bifold: (1) post-hoc aggregation and (2) features aggregation. First, a post-hoc aggregation performs patch-wise 
analyses across a WSI and combines the predictive scores of the patches to compute a slide-based score, where 
its key algorithm is a strategy how to combine the patch-wise outcomes. The highest value of patch-wise prob-
ability scores was considered as a slide-based probability  score17. The average of the probability scores, which 
were generated by multiple pretrained models in a patch, was computed as a confidence probability score on 
each patch. Then, the weighted mean value of the top-K patch confidence probability scores was considered as a 
slide-based probability  score18. Important patches were identified by the expectation-maximization algorithm, 
and the histograms of the patch scores were introduced to a Support Vector Machine (SVM) for computing a 
slide-based  outcome19. Patch-wise probability scores generated a frequency count matrix, and a logistic regres-
sion was trained on the matrix for whole slide-based lung cancer  diagnosis20. Majority voting on the patch-wise 
probability scores classified cancer or normal on radiology and pathology  slides21.

Second, the feature aggregation approach identifies clinically associated morphological features from patches 
using a pretrained model, and then aggregates the features to make a slide-based prediction. Feature extraction 
from patches and aggregation play an important role in the feature aggregation approach. For instance, predes-
ignated phenotype features, such as cell count, size, and density, aggregated as slide-level features using simple 
aggregation for cancer  classification17, DNA repair  deficiency22, and HER2 protein fusion  analysis23. Statistical 
features, such as mean, median, and variance of patch-wise predictive scores, were introduced to random for-
est for lung cancer sub-type  classification24. Intermediate outcomes of patches were obtained as patch features, 
and they were combined to predict slide-based outcomes of a  patient25–27. A grid-based feature extraction was 
performed on entire WSI, where attention maps were generated by aggregating grid features as slide-based 
 features28. The activation values in the penultimate layer of ResNet50 were considered as a low-dimensional 
topology of patch images, and k-nearest neighbors was applied to generate adjacency graphs couple with graph 
 CNNs29. Multi-instance learning as feature extraction coupled with Recurrent Neural Networks (RNN)30 and 
transformer-based multi-layer  perceptron31 as feature aggregation were used for slide-based analysis, in which 
they considered only top-k probability patches for slide-based classification. However, feature extraction in both 
post-hoc and feature aggregation approaches often requires prior domain knowledge to define features (e.g. cell 
shape), which are task-specific, rather than generalized frameworks for whole-slide image analysis.

Whole slide histopathology image analysis has often leveraged weakly supervised learning, due to the lim-
ited availability or high cost of strongly supervised data with pixel-wise ROI annotation. In weakly supervised 
learning, image-level labels indicate only clinical categories or status of a pathological image without the loca-
tion information associated with the image-level labels. Thus, all patches are typically assigned the same label 
of the slide in weakly supervised learning, which creates false positive samples (e.g., non-cancerous regions in a 
cancer patient’s sample)32. Then, weakly supervised learning localizes regions of interest by excluding the false 
positive patches. Most weakly supervised learning studies often rank patches with class-specific morphological 
features to reduce the impacts from the false positive  patches33. For instance, whole slide-image segmentation 
was performed to recognize the false positive regions by iteratively penalizing patches of low  scores34. Patches 
with high loss scores were excluded from training data for the cancer  localization35. Patches coarsely annotated 
by pathologists were weighted to improve the learning  performance17. Regions with uncertain prediction were 
identified using min-max uncertainty regularization and constrained to reduce the impact of false positive 
regions in weakly supervised  learning36.

In the weakly supervised learning, Class Activation Maps (CAM) have been widely used for automatic class-
specific feature extraction and visualization to identify regions of  interest37–39. In general, CAM are generated 
from CNN activation to localize class-specific regions from original  image40. Thus, CAM are used to generate 
pseudo pixel-wise annotations in weakly supervised  learning41. The advanced version of CAM, Gradient-CAM 

Figure 1.  (A) Patch-wise and (B) slide-based histopathological analyses. Patch-wise analysis produces a 
probability map, whereas slide-based analysis predict a single clinical outcome or diagnosis.
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(Grad-CAM), localized high risk Melanoma regions to classify  Melanoma42. CAM at a lower magnification (e.g., 
5 × ) in a WSI were used to identify class-specific regions in a higher magnification (e.g., 20× ). Furthermore, the 
class-specific regions were considered for model training to reduce false  positives43. CAM in autoencoder identi-
fied foreground objects in histopathology  images44.

A generalized task-independent framework for slide-based analysis is essential, since most state-of-the-art 
slide-based analysis methods are task-dependent, which require to develop new strategies or fine-tuning for 
new applications (e.g., rare disease classification). We propose a novel slide representation of whole slide images, 
named HipoMap, which is a flexible solution to apply for any slide-based problems (see “Methods”). HipoMap 
converts a WSI of various shapes and sizes into an image-formatted representation of fixed-size, so that the struc-
tured representation can be further analyzed coupled with a deep learning model for slide-based analyses (see 
Fig. 2). Main contributions of our proposed model HipoMap include: creating a histopathology representation 
map for various slide-based WSI problems (e.g., survival analysis and subtype classification); efficient training 
of the model without pixel-wise ROI annotations; and outperforming the current state-of-the-art methods in 
slide-based pathological image analysis. Specifically, HipoMap consists of the following steps, (1) top-k patches 
selection, (2) patch representation, and (3) patch aggregation (see Fig. 3). First, top-K patches are identified by 
patch probability to be robust to noises and outlier patches. Second, Grad-CAM produces a one-dimensional 
class representation vector from each patch. Finally, the one-dimensional class representations are aggregated 
to generate an image-formatted matrix (HipoMap), which provides a flexible solution to apply any advanced 
machine learning methods, such as CNN, for slide-based analysis in various applications .

Figure 2.  Applications of slide-based analysis using HipoMap but not limited to: (A) cancer classification and 
(B) survival analysis.

Figure 3.  Overview of HipoMap. The proposed method produces a HipoMap that represents a whole slide 
image through (1) top-K patch selection, (2) patch-wise representation, and (3) patch aggregation.
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Results
We assessed HipoMap with various settings and datasets for cancer classification, subtype classification, survival 
analysis, and survival prediction, which are representative applications of slide-based analysis, so that we verify 
the performance of HipoMap in various applications and prove that HipoMap is task-independent. We, first, 
conducted experiments for the slide-based cancer classification and subtype classification using lung cancer 
biopsies obtained from Gyeongsang National University Hospital (GNUH). Then, we compared the performance 
of survival analysis and survival prediction with state-of-the-art methods using Lung Cancer Adenocarcinoma 
(TCGA-LUAD) at The Cancer Genome Atlas (TCGA) repository. We further analyzed HipoMap with Stomach 
Adenocarcinoma (TCGA-STAD) and Colon Adenocarcinoma (TCGA-COAD) datasets. The datasets used in 
this study are described in Table 1.

Cancer classification using the GNUH lung cancer dataset. We conducted experiments with Hema-
toxylin and Eosin (H &E) stained pathology slides, obtained from 102 cases with lung or bronchus biopsies in 
2012 and an additional 11 patients diagnosed with large cell neuroendocrine carcinoma (LCNEC) in the biopsy 
in between 2012 to 2018 at Gyeongsang National University Hospital in Korea. Among the pathology slides, 
19, 18, and 18 cases were diagnosed as squamous cell carcinoma (SCC), adenocarcinoma (ADC), and small 
cell lung carcinoma (SCLC), respectively, and the others (n=47) were non-tumor cases. The diagnoses were 
histopathologically confirmed by two experienced pathologists. Then, the 113 digital WSIs were acquired from 
the pathology slides with the Aperio AT2 slide scanner (Leica Biosystems Division of Leica Microsystems Inc., 
IL, USA) at 40x magnification levels. This study was approved by the Institutional Review Board of Gyeongsang 
National University Hospital with a waiver for informed consent (2021-04-016). The preprocessing and patch 
extraction were performed with the open-source python package, PyHistopathology (http:// datax lab. org/ pyhis 
topat hology). We applied a naive color normalization with a reference WSI of high-quality45 to focus on assess-
ment of our general framework for slide-based analysis. Note that there are a number of advanced techniques 
of color normalization for pathological image  analysis46, such as wavelet  decomposition47, clusters  centroid48, 
sparse  autoencoders49, and generative adversarial  network50. Noises and artifacts, including tissue tears, folding, 
and over-staining, in the WSIs were removed by Gaussian blur smoothing, and the background was filtered out 
by thresholding. Patches containing at least 20% tissues were considered for this study.

The entire WSIs were randomly split into training (75%) and test data (25%) using stratified sampling, due 
to the small number of test samples for LCNEC. Then, the training data was further proportionally split into 
training (80%) and validation (20%). On each experiment, 28, 7, and 12 slides of normal and 38, 10, and 16 
of cancer slides were considered for training, validation, and test, respectively. We extracted non-overlapping 
patches of 299 × 299 pixels at the 20× magnification level. Finally, we obtained approximately 160,000 patches 
from the cancer slides and 140,000 patches from the non-tumor slides. We repeated the experiments ten times 
for reproducibility, where we trained the pretrained models using the training data for each experiment.

We compared the performance of our proposed method with six state-of-art methods designed for WSI 
classification. The benchmark methods included: (1) Logistic regression coupled with CNNs (a.k.a. Logistic)20, 
(2) Mean of patch scores (a.k.a. Mean)18, (3) a Heat Map-based Random-Forest Classifier (a.k.a. HMRF)24, 
(4) Histogram-based iterative SVM (Histo-SVM)19, (5) Attention pooling-based slide analysis (ATSA)31, and 
(6) RNN-based slide analysis (a.k.a RNNSA)30. Logistic, HMRF, ATSA, and RNNSA are feature aggregation 
approaches, whereas Mean and Histo-SVM are post-hoc aggregation approaches. Note that we used the same 
patch-wise pretrained model on the all benchmark models in the experiments to compare the performance.

For the implementation of Logistic, confusion matrices were generated from patches, and logistic regression 
was applied to the confusion matrices for classifying a WSI using the scikit-learn library in Python. For Mean, 
a mean value of patch probability scores was considered as a score of a slide. The original paper introduced a 
confidence-based voting strategy for a multi-class classification problem, whereas we modified the method to a 
binary classifier to compare with  HipoMap18. For HMRF, probability maps were constructed from patch prob-
ability scores using pre-train models. Fifty statistical and morphological features were extracted from probability 
maps, and the extracted features were introduced to a random forest classifier for the slide-based analysis. We 
used OpenCV and scikit-learn libraries for the feature extraction and random forest classifier respectively. For 
Histo-SVM, a histogram of patch probability was extracted and introduced to SVM for slide-based scores. For 
ATSA and RNNSA, the original papers used Multi instance learning (MIL) for patch-wise training, whereas we 
considered pretrained models of CAT-Net and GB. For all methods, the hyper-parameters of the learning rate 
and L2-norm regularization were obtained to optimize the validation data using a grid  search51. HipoMap was 
implemented in Keras with TensorFlow as back-end. The performances of HipoMap with various top-patch size 
K were evaluated (Table 2). A lower value of the hyperparameter K may cause missing some important patches 
to conduct the slide-based analysis, whereas a higher value of K may include more false positive patches in the 

Table 1.  Dataset description for experiments on several applications of slide-based analysis.

Experiments Dataset Description

Cancer classification GNUH tumor (N=66) vs non-tumor (N=47)

Subtype classification GNUH SCC (N=19), ADC (N=18), SCLC (N=18), LCNEC (N=11)

Survival analysis and prediction TCGA-LUAD Censored (N=357), uncensored (N=150)

Survival prediction TCGA-LUAD Uncensored (N=150)

http://dataxlab.org/pyhistopathology
http://dataxlab.org/pyhistopathology
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representation map. We used K=50, which showed the best performance on the validation, for all experiments 
in this paper.

For the comparison, we considered two pretrained CNN models with patches of size 299×299 as a backbone 
model: (1) Cancer-Texture Network (CAT-Net)13 and (2) Google Brain (GB)12. CAT-Net and GB were trained 
with the training data to classify cancer and normal slides with patches of size 299×299. For the pretrained CNN 
models, ROI annotations were not available. The optimal hyper-parameters, such as learning rate, dropout, 
weight-decay, and optimizer (e.g., SGD, ADAM), were obtained using a grid search on the validation data with 
minimum validation loss.

We measured the Area Under the Curve (AUC) on the test data. The experiments showed that HipoMap 
outperformed the other six benchmark methods (Table 3 and Fig. 4). HipoMap produced the best AUC of 
0.966± 0.026 and 0.945± 0.034 with the pretrained models of CAT-Net and GB respectively, whereas the second 
highest AUCs were 0.915± 0.014 and 0.891± 0.017 with RNNSA. HipoMap showed at least 5% more improve-
ments on AUC than the others.

We further investigated pathological characteristics of the top-K patches. It is critical that the top-ranked 
patches include discriminative patterns to perform a slide-based task, since HipoMap examines only the top-K 
patches. In the slide-based cancer classification experiments using the GNUH data, the top-ranked patches with 
high cancer probabilities included the most cancerous regions, such as cancer cells and peri- and intratumoral 
stromal tissues, in most slides. On the other hand, the regions of inflammation and fibrosis on non-tumor slides 
showed low or intermediate values in the probability maps, which were ranked low. Interestingly, we found differ-
ent patterns of the top-ranked patches between the SCC/ADC and SCLC/LCNEC slides. The top-50 patch images 
in SCC and ADC slides were mainly distributed in the peri- and intratumoral stromal tissues (see SCC and ADC 
in Fig. 5). On the other hands, the top-50 patch images of SCLC and LCNEC were distributed in the cancer 
cells (see SCLC and LCNEC in Fig. 5). Although it is not pathologically clear why the peri- and intratumoral 
stromal tissues showed a higher cancer probability in SCC and ADC, one possible explanation is that the peri- 
and intratumoral stromal tissues may distinguish from non-cancer-related stromal tissues in the given slides.

We also examined slides, whose HipoMap scores are on the border of classification (Figs. 6 and 7). One ADC 
case (sample ID: ADC-951-8686) and two non-tumor slides (sample ID: N-681-1513 and N-237-3069) showed 
indeterminate HipoMaps scores between 30% and 80%. ADC-951-8686 is well-differentiated, and the proportion 
of cancer tissue is relatively less than other ADC samples. N-681-1513 contains severe chronic inflammation with 
fibrosis, which showed high cancer probability. However, another similar slide, N-237-3069, containing severe 
chronic inflammation with fibrosis showed relatively lower HipoMaps scores and intermediate cancer probability 
as shown in Fig. 6. Pathologists noted that the two slides of non-tumor patients (N-681-1513 and N-237-3069) 
have no substantial morphological difference, whereas HipoMap showed the disparity of around 20% on the can-
cer probability. Fig. 7 showed that both the probability map and HipoMap of N-681-1513 overall includes higher 
scores than N-237-3069. The supplementary document includes original slide, patch-wise probability map, and 
HipoMaps of selected GNUH dataset, including N-681-1513, N-237-3069, and ADC-951-8686 (Figs. S1–S11).

Subtype classification. We compared the HipoMaps of the four subtypes of lung cancers (i.e., SCC, ADC, 
SCLC, and LCNEC) to verify that patterns of HipoMap are aligned with well-known pathological knowledge of 
subtypes. The subtypes are determined by pathological morphologies in WSIs, so their HipoMap representation 

Table 2.  Slide-based AUCs of the HipoMap with various top-K values on the validation data with the 
pretrained models of CAT-Net (left) and GB (right). The highest AUCs are highlighted in bold.

Model Top K AUC Model Top K AUC 

HipoMap with CAT-Net

K=25 0.948±0.023

HipoMap with GB

K=25 0.932±0.027

K=50 0.973±0.014 K=50 0.954±0.013

K=100 0.971±0.016 K=100 0.952±0.018

K=150 0.959±0.026 K=150 0.942±0.028

Table 3.  Comparison of AUC between the benchmark methods and our proposed HipoMap. The highest 
AUCs are highlighted in bold.

Pretrained model Method AUC Pretrained model Method AUC 

CAT-Net

Logistic 0.778±0.082

GB

Logistic 0.752±0.093

Mean 0.745±0.091 Mean 0.734±0.089

HMRF 0.763±0.063 HMRF 0.716±0.057

Histo-SVM 0.811±0.037 Histo-SVM 0.805±0.029

ATSA 0.885±0.017 ATSA 0.855±0.023

RNNSA 0.915±0.014 RNNSA 0.891±0.017

HipoMap 0.966±0.028 HipoMap 0.944±0.035
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should reflect the differences. First, we generated HipoMaps for all WSIs, each of which produced a HipoMap 
using a pretrained model trained by the training data that does not belong to the WSI. Then, the HipoMaps were 
averaged on each subtype group and the non-tumor patient group. Figure 8 depicts histograms of pixel values 
on the HipoMaps along with the averaged HipoMap (top right corner) on each group, while Fig. 9 illustrates 
the distribution of the pixel values as a boxplot. In the experiment, we considered only HipoMap with CAT-
Net, which showed the best performance. The overall values on the averaged HipoMaps of SCC and ADC show 

Figure 4.  Overall slide-based performance of the benchmark methods and our proposed HipoMap: (A) ROC 
with CAT-Net, (B) ROC with GB, (C) AUCs with CAT-Net, and (D) AUCs with GB.

Figure 5.  Top K-patches in WSI. Top-50 patches are annotated.
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Figure 6.  Slide-based cancer probabilities of the three samples, N-S12-13682, N-S12-15479, and ADC-S12-
13080, among the distribution of the entire GNUH lung cancer dataset by HipoMap. The distribution of the 
normal slides is in gray, whereas the probabilities of cancer are in red.

Figure 7.  The original WSIs (left), patch-wise probability maps (middle), and HipoMaps (right) of the three 
samples, N-237-3069, N-681-1513, and ADC-951-8686.

Figure 8.  The histograms of pixel values on the averaged HipoMaps of the four subtypes of lung cancer and 
non-tumor patients, and the averaged HipoMaps (top right corner) on each group.
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lower than SCLC and LCNEC in Fig. 8. It may be because SCC or ADC can be well-differentiated and similar to 
benign or reactive lesions, such as squamous metaplasia and type 2 pneumocyte hyperplasia. On the other hand, 
SCLC and LCNEC are high grade neuroendocrine carcinomas and poorly-differentiated, so these carcinomas 
morphological patterns are more distinguishable from normal or reactive cells. Therefore, SCLC and LCNEC 
may show higher average scores because reactive counterpart lesions for these carcinoma can be hardly found 
in non-tumor slides.

Furthermore, we compared the performance to classify lung cancer WSIs subtype as a multi-class classifica-
tion problem. The benchmarks of HMRF, Histo-SVM, ATSA, RNNSA were extended to multi-class classifiers, 
but the binary classifiers of Logistic, Mean were not included in this experiment. HipoMap achieved the highest 
micro- and macro-F1 scores of 0.704±0.051 and 0.773±0.046 respectively (Table 4).

Survival analysis using TCGA datasets. We verified HipoMap’s performance for survival analysis using 
publicly available TCGA repository. We applied HipoMap for 507 WSIs, including censoring data, in Lung Can-
cer Adenocarcinoma (TCGA-LUAD). We considered diagnostic WSIs only. We generated HipoMaps of the 
entire TCGA-LUAD WSIs with the pretrained model of CAT-Net and GB, which were trained with the GNUH 
lung cancer data. Note that HipoMap captures comprehensive morphological patterns of cancer, whereas the 
simple CNN trains to predict survivals. We performed 5-fold cross-validation on the entire samples, where we 
used 20% of the training data as validation data. We trained the simple CNN model with the training data of 
TCGA-LUAD, where the CNN model used a linear activation in the output layer to generate prognostic index 
for survival analysis. We used negative log likelihood as a loss function of Cox regression model and SGD as an 
optimizer.

We considered the negative log likelihood as loss function for ATSA and RNNSA. We did not consider the 
benchmark method, Mean, for this experiment, because it is designed for classification problems. The optimal 
hyper-parameters were obtained using a grid search on the validation data with minimum validation loss. We 
computed c-index as an evaluation metric for survival analysis, and we repeated the experiments ten times. 
Table 5 and Fig. 10 show HipoMap’s outperformance in survival analysis, compared to the benchmark methods. 
HipoMap achieved the highest c-index of 0.787 ± 0.013, and 0.763 ± 0.016 with pretrained models of CAT-Net 
and GB respectively, which was 4.7% improved compared to second highest benchmark of RNNSA.

Survival prediction on uncensored TCGA dataset. Moreover, we tested the performance of HipoMap 
with uncensored dataset of TCGA Lung Cancer for a regression problem to predict actual survival months. First, 
we estimated the survival of patients from 150 WSIs (excluding censored data from 507 samples) in TCGA-
LUAD. We used the same experimental procedure with survival analysis but used loss function of ordinary 
least squares (OLS) for the regression problem. For the benchmark, we considered linear regression, random 

Figure 9.  HipoMap distributions on the subtypes.

Table 4.  Slide-based micro- and macro-F1 score of HipoMaps with various subtypes of lung cancer with the 
pretrained models of CAT-Net (left) and GB (right). The highest micro- and macro-F1 scores are highlighted 
in bold.

Pretrained model  Method Micro F1  Macro F1  Pretrained model  Method  Micro F1  Macro F1

CAT-Net

HMRF 0.523±0.094 0.673±0.087

GB

HMRF 0.528±0.084 0.654±0.081

Histo-SVM 0.541±0.098 0.647±0.068 Histo-SVM 0.505±0.092 0.613±0.086

ATSA 0.657±0.056 0.721±0.045 ATSA 0.644±0.047 0.725±0.067

RNNSA 0.683±0.044 0.754±0.053 RNNSA 0.671±0.053 0.742±0.048

HipoMap 0.704±0.051 0.773±0.046 HipoMap 0.685±0.046 0.752±0.053
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forest regression, SVM regression, ATSA, and RNNSA. We computed Root Mean Square Error (RMSE) and the 
coefficient of determination ( R2 ) between predictions and ground truth. Table 6 and Fig. 11 show HipoMap’s 
outperformance to estimate survival compared to the benchmark methods. The RMSE and R2 of HipoMap were 
2.77±0.36 and 0.978±0.032 respectively We, furthur, demonstrate the process of HipoMap for survival predic-
tion with three patients with lung cancer, who actually survived for one month (Sample ID: TCGA-97-7938), 
20.8 months (TCGA-50-5044), and 54.3 months (TCGA-55-6972). Figure 12 illustrates the original WSI (left), 
patch-wise probability map (middle), and HipoMap (right) of the three patients. The patch-wise probability 

Figure 10.  C-index with (A) CAT-Net and (B) GB in the benchmark methods and our proposed HipoMap for 
survival analysis.

Table 5.  Comparison of c-index between the benchmark methods and our proposed HipoMap. The best 
performance is highlighted in bold.

 Pretrained model Method C-index  Pretrained model Method C-index

CAT-Net

ATSA 0.674±0.019

GB

ATSA 0.642±0.015

RNNSA 0.752±0.016 RNNSA 0.726±0.018

HipoMap 0.787±0.013 HipoMap 0.763±0.010

Figure 11.  Survival prediction using HipoMap on 150 whole slide images in TCGA LUAD. (A) Results with 
CAT-Net as pretrain and (B) Results with GB as pretrain.
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maps depict cancer probabilities on the patches by the pretrained model of CAT-Net. The HipoMaps in Fig. 12 
illustrate the intensity of comprehensive patterns on lung cancer, since the pretrained model was trained for 
lung cancer classification. The simple CNN was optimized for survival prediction. The survival estimations of 
the three patients with HipoMaps were 1.8, 19.4, and 48.3 months, while the ground truths were 1 month, 20.8 
months, and 54.3 months, respectively. The overall intensity of HipoMaps on the three patients are inversely 
proportional to the survival.

Survival prediction of STAD and COAD. We applied HipoMap to other TCGA cancers, TCGA-STAD 
and TCGA-COAD, coupled with the pretrained model (i.e., CAT-Net), which was trained with WSIs in Stomach 
Adenocarcinoma Carcinoma used in the previous  study16. The pretrained model was trained by the independ-
ent data to the TCGA-STAD or TCGA-COAD. Similarly, we chose three patients on each dataset and examined 
HipoMap’s patterns with the patients’ survivals. We considered the patients, who survived one month (TCGA-
CG-5720), 23.3 months (TCGA-CG-5733), and 53.1 months (TCGA-F1-6875) in TCGA-STAD, and survived 
one month (TCGA-AY-4071), 12.1 months (TCGA-A6-4105), and 87.4 months (TCGA-G4-6303) in TCGA-
COAD. For the samples, HipoMap predicted the survival months of 3.2 months (error = 2.2), 28.2 months 
(error=4.9), and 46.4 months (error=6.7) in TCGA-STAD, 2.8 months (error = 1.8), 17.2 months (error=5.1), 
and 73.4 months (error=14) in TCGA-COAD, respectively. The RMSE between the survival predictions and 
their ground truth was 7.02 months for the six samples. Figures 13 and  14 show the HipoMap’s overall intensi-
ties to be reversely proportional to the survival in TCGA-STAD and TCGA-COAD, respectively. Although the 
high correlation between cancer probabilities and survival is not straightforward evidence to verify the perfor-

Figure 12.  The original WSIs (left), patch-wise probability maps (middle), and HipoMaps (right) of the three 
patients, who survived one month (TCGA-97-7938), 20.8 months (TCGA-50-5044), and 54.3 months (TCGA-
55-6972) in TCGA-LUAD.

Table 6.  Slide-based performance of survival prediction with HipoMap and the benchmark methods. The best 
performance is highlighted in bold. 

Pretrained model  Method  R2  RMSE Pretrained model Method  R2 RMSE

CAT-Net

Logistic 0.778±0.042 8.99±0.89

GB

Logistic 0.714±0.053 10.17±0.74

HMRF 0.705±0.037 10.34±0.64 HMRF 0.687±0.036 10.65±0.84

Histo-SVM 0.736±0.047 9.77±0.65 Histo-SVM 0.671±0.041 10.93±0.95

ATSA 0.755±0.052 9.41±0.61 ATSA 0.781±0.045 8.89±0.86

RNNSA 0.787±0.051 8.806±0.37 RNNSA 0.790±0.035 8.72±0.87

HipoMap 0.978±0.032 2.77±0.36 HipoMap 0.948±0.041 3.74±0.44
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Figure 13.  The original WSIs (left), patch-wise probability maps (middle), and HipoMaps (right) of the 
three patients, who survived one month (TCGA-CG-5720), 23.3 months (TCGA-CG-5733), and 53.1 months 
(TCGA-F1-6875) in TCGA-STAD.

Figure 14.  The original WSIs (left), patch-wise probability maps (middle), and HipoMaps (right) of the 
three patients, who survived one month (TCGA-AY-4071), 12.1 months (TCGA-A6-4105), and 54.3 months 
(TCGA-G4-6303) in TCGA-COAD.
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mance on this small number of examples, typically severe cancerous patterns may predict poor prognosis. It may 
be because HipoMap can be a representation independent to cancer types for slide-based analysis, which may 
be useful for pan-cancer studies or transfer learning across multiple cancer datasets. For instance, HipoMaps 
reflect intensities on the patterns of interest in cancer classification or survival predictions, regardless of origins 
of cancers, through the pretrained models optimized to the corresponding cancer datasets. HipoMap abstracts 
different morphological patterns on each cancer in a uniform manner. The abstracted representation maps of 
HipoMap may provide the capability to integrate several cancer datasets easily.

Conclusion
Automatic whole slide image analysis coupled with advanced machine learning has been changing the paradigm 
in digital pathology. However, there were few approaches proposed for a slide-based analysis in spite of its many 
applications. In this study, we developed a novel slide representation of whole slide images, named HipoMap, that 
can apply to any slide-based problems, such as cancer classification, survival analysis, protein fusion prediction, 
and protein expression prediction from WSIs. HipoMap converts a WSI of various shapes and sizes to structured 
image-type representation. HipoMap considers top-K patches, which is robust to noises and outlier patches. 
Grad-CAM in HipoMap take advantages of weakly supervised learning efficiently, where no pixel-based anno-
tation is required. HipoMap efficiently captures morphological dependencies among patches, while analyzing 
inner morphological patterns in a patch in the same time. The experimental results show that HipoMap is effec-
tive than RNN-based methods, since HipoMap considers CNN activation features for prioritizing class-specific 
morphological patterns, whereas RNN lacks the information because of spatial pooling of features. HipoMap 
may abstract comprehensive patterns of multiple patches on a whole slide image, as a uniform data structure. 
HipoMap would be easily extended for pan-cancer studies or transfer learning.

Methods
In this section, we elucidate our proposed method, HipoMap, for a slide-based analysis. The proposed method 
consists of the following processes: (1) top-K patch selection, (2) patch representation, (3) patch aggregation, 
and (4) slide-based analysis (Fig. 3). To be short, HipoMap considers top-ranked K patches based on predictive 
scores of a patch-wise pretrained model. Each patch produces a class-specific representation vector. Then, the 
representation vectors of the top-K patches are aggregated to generate an image-formatted matrix, which is 
called as HipoMap. Finally, HipoMaps are introduced to a CNN to perform a slide-based analysis. The details 
are elucidated in the following sections.

Top‑K patch selection. Shapes and sizes of WSIs are various depending on a biopsy, and class-specific 
morphology (e.g., cancer cells) may be partially observed in a WSI. HipoMap examines only a fixed number 
of patches of interest so that all slides produce the same shape of representation maps regardless of the size of 
WSIs. A predictive score of each patch is computed by a pretrained model. Then, top-K patches are selected by 
ranking the predictive scores, where K is a hyper-parameter. For the patches with same predictive scores, a patch 
with higher averaged activation value is assigned to higher rank. A large K may increase the computational cost, 
whereas a small K may reduce the performance of slide-based analysis.

A patch-wise pretrained model is optimized on an objective function of a target task (e.g., classification, sur-
vival analysis) using entire patches of the training data, and each patch produces a predictive result (e.g., cancer 
probability) as a patch-wise analysis. In this study, we used Google-Brain (GB)12 and CAncer-Texture Network 
(CAT-Net)13 as pretrained models.

Patch representations. Each of the top-K patches generates a one-dimensional representation vector 
using Gradients of Class Activation Maps (Grad-CAM) on a patch-wise pretrained model. Grad-CAM identify 
class-specific morphological patterns of a patch image. Grad-CAM computes importance scores of activation 
maps (typically in the last convolutional layer), and the weighted averaged activation maps create a class-specific 
feature map. Specifically, an importance score ( αm ) for the mth activation map ( 1 ≤ m ≤ M ) is computed by:

where Am
ij  is a value in the ith row and the jth column of the activation map ( 1 ≤ i ≤ H , 1 ≤ j ≤ W ), and ∂Am

ij  
is a gradient of the activation function obtained in back-propagation. PC is an objective function with respect 
to the target class C. Rectified Linear Unit (ReLU) eliminates negative activation maps. In the original paper of 
GRAD-CAM, ReLU was used to eliminate negative activation values in the class-specific feature map (i.e., the 
global average of activation maps), whereas we eliminate negative activation maps before generating the class-
specific feature map. The class-specific feature map, T ∈ ℜH×W , for a patch can be generated by:

The class-specific feature map ( T ) is flattened into the one-dimensional vector and sorted in descending order 
(i.e., F ∈ ℜ1×(H×W)).

(1)αm = ReLU


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Patch aggregation. The one-dimensional representation vectors ( {F1, . . . ,FK } ) of the top-K patches are 
aggregated to produce a matrix, X ∈ ℜK×(H×W) , that represents a whole slide image. The row vectors of the 
matrix X are sorted by the sums of the row vectors in descending order, so that highly activated patch represen-
tations are on the top:

Slide‑based analyses. A WSI produces a matrix of fixed-size, HipoMap. For a slide-based analysis, Hipo-
Maps can be analyzed with any machine learning models. In this study, HipoMap is analyzed by a CNN, which is 
the most popular for imagery data analysis. We used a simple CNN model, which includes three sets of sequen-
tial convolutional and max-pooling layers, followed by flattening, fully connected layers, and the output layer. 
We used 64 kernels of 3 × 3 for the convolutional layers, and 64 kernels of 2 × 2 on the average pooling layer. 
The fully connected layer consisted of 1024 nodes with an activation of ReLU. The hidden layer connected to the 
output layer with a sigmoid activation for cancer classification and a linear activation for the regression problem 
of survival estimation. The details of the HipoMap algorithm are in Algorithm 1.

Data availability
The Python package is available at https:// pypi. org/ proje ct/ hipom ap, and the package can be easily installed 
using Python PIP. The open-source codes in Python are available at: https:// github. com/ datax- lab/ HipoM ap. 
Supplementary data, including original slides, probability maps, and HipoMapss of the entire GNUH dataset, is 
available at: http:// datax lab. org/ HipoM ap/ hipom ap/ Suppl yHipo Map. pdf.
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