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Abstract

Background: The selection of disease biomarkers is often difficult because of their unstable identification, i.e., the
selection of biomarkers is heavily dependent upon the set of samples analyzed and the use of independent sets of
samples often results in a completely different set of biomarkers being identified. However, if a fixed set of disease
biomarkers could be identified for the diagnosis of multiple diseases, the difficulties of biomarker selection could be
reduced.

Results: In this study, the previously identified universal disease biomarker (UDB) consisting of blood miRNAs that
could discriminate between patients with multiple diseases and healthy controls was extended to the recently
reported independent measurements of blood microRNAs (miRNAs). The performance achieved by UDB in an
independent set of samples was competitive with performances achieved with biomarkers selected using lasso, a
standard, heavily sample-dependent procedure. Furthermore, the development of stable feature extraction was
suggested to be a key factor in constructing more efficient and stable (i.e., sample- and disease-independent) UDBs.

Conclusions: The previously proposed UDB was successfully extended to an additional seven diseases and is
expected to be useful for the diagnosis of other diseases.
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Background
Identification of biomarkers is important for the diagnosis
of disease. By using biomarkers with high specificity for
certain diseases, patients can be identified without diag-
nosis by doctors. After diagnosis using biomarkers, it is
hoped that fewer patients will require diagnosis by a doc-
tor. This enables doctors to diagnose a limited number of
screened patients in more detail. Blood is a useful source
of biomarkers. Numerous compounds/proteins in blood
have been identified as effective biomarkers that allow the
early diagnosis of several diseases (e.g., [1-3]). One disad-
vantage of this system is that distinct compounds/proteins
are required to diagnose individual diseases, because diag-
noses are usually based on the observation of unexpected
values of compounds/proteins. When following this strat-
egy, new compounds/proteins that increase or decrease
in specific diseases should be identified. This system of
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biomarker identification incurs high costs because of the
measurements of each biomarker. Thus, it is difficult to
test for many diseases simultaneously because the num-
ber of diseases tested is proportional to the cost. The
identification of a universal disease biomarker (UDB) that
can diagnose multiple diseases simultaneously would be
useful and economically beneficial. However, identify-
ing a UDB using the traditional strategy of one com-
pound/protein for one disease is unlikely.

Despite this difficulty, several studies have attempted
to identify UDBs. For example, interleukin-8 (IL-8) was
thought to be a UDB [4] as it was reported to be
a useful biomarker for multiple diseases including uri-
nary bladder cancer, prostatitis, acute pyelonephritis, vesi-
coureteral reflux, pulmonary infections, osteomyelitis,
inflammatory bowel disease, chorioamnionitis, nosoco-
mial bacterial infections, and non-Hodgkin’s lymphoma.
Despite the apparent usefulness of IL-8 as a UDB, it has a
strong tendency to increase non-specifically in individuals
because most inflammatory conditions induce its pro-
duction, therefore it might be considered together with
other biomarkers. Another UDB is pHLIP and acidity,
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which although limited to cancer diagnosis was proposed
to be a UDB for cancers [5]. Fendos and Engelman suc-
cessfully and noninvasively labeled tumor tissues using a
pH-sensitive biosensor. pHLIP also labeled tumors inde-
pendent of the type of cancer. Another example of a
UDB is FibroTest [6], which was used to diagnose sev-
eral liver diseases including alcoholic liver disease, Hep-
atitis B virus, Hepatitis C virus, and Nonalcoholic fatty
liver disease. FibroTest consists of a six-parameter blood
test, α2-macroglobulin, Haptoglobin, Apolipoprotein A1,
γ -glutamyl transpeptidase, Total bilirubin, and Alanine
transaminase, combined with the age and gender of the
patient. However, these biomarkers lacked either speci-
ficity (IL-8 is used in combination with other biomarkers
for accurate diagnoses) or universality (pHLIP is used only
for cancer diagnosis while FibroTest is only used to diag-
nose liver diseases). An ideal disease UDB should have
the ability to diagnose multiple diseases compared with
normal healthy controls. One method to achieve this is
by the combination of multiple biomarkers, as used for
the FibroTest. Although FibroTest has fixed coefficients
to construct a UDB, if varying coupling constants allows
the diagnosis of distinct multiple diseases, biomarkers
that consist of multiple individual biomarkers have the
potential to be UDBs.

Recently, blood microRNAs (miRNA) have been identi-
fied as promising disease biomarkers [7]; combinations of
mir-498 clusters are potential biomarkers for pregnancy,
although pregnancy is not a disease. Blood miRNAs were
also identified as anti-doping biomarkers [8], biomarkers
of peripheral arterial disease [9], acute myocardial infarc-
tion and underlying coronary artery stenosis [10], and
acute graft-versus-host disease [11]. They are also sta-
ble biomarkers [12]. Furthermore, although combinatorial
circulating biomarkers are considered potential effective
biomarkers for various diseases [13-20], combinations
for the diagnosis of individual diseases often fluctuate
between studies. For example, two recent distinct stud-
ies that tried to construct combinatorial blood miRNA
biomarkers for the diagnosis of Alzheimer’s disease had
no common miRNAs [21,22]. Even for the diagnosis of an
individual disease, there is often no unique combination
of blood miRNAs. This suggests that a UDB is unlikely to
be constructed from multiple blood miRNAs.

In contrast to these studies, we recently identified a
potential UDB consisting of blood miRNAs [23]. Ten to
12 common blood miRNAs could be used to diagnose
13 various diseases from normal controls. Although this
demonstrated the potential of blood miRNAs to be used
as a UDB, the study used samples taken from only one
study with shared normal controls. Thus, further stud-
ies are required to provide convincing data. In the cur-
rent study, we cross-validated the previously proposed
UDB [23] of 12 fixed miRNAs by investigating whether

miRNAs could diagnose an additional seven distinct dis-
eases using blood miRNAs that were recently reported
and were not available when the previous study [23]
was performed. The discriminatory ability of a UDB
composed of 12 fixed blood miRNAs was competitive
compared with that using a conventional method and
miRNAs selected by a recently proposed principal compo-
nent analysis (PCA)-based unsupervised feature selection
method [23].

Results and discussion
Universality of UDB
To determine whether previously identified UDBs con-
sisting of blood miRNAs [23] were universal, we eval-
uated their performance using seven independent data
sets targeting seven diseases (see Methods). Although
10 miRNAs were selected for each disease from a
total of 13 diseases in the previous study, 12 combined
blood miRNAs (hsa-miR-425, hsa-miR-15b, hsa-miR-185,
hsa-miR-92a, hsa-miR-140-3p, hsa-miR-320a, hsa-miR-
486-5p, hsa-miR-16, hsa-miR-191, hsa-miR-106b, hsa-
miR-19b, and hsa-miR-30d) were used to form the UDB in
this study. Missing miRNAs in the data sets were excluded
from the discrimination.

In Figure 1, the accuracy achieved by PCA-based liner
discriminant analysis (LDA, red crosses) and support vec-
tor machine (SVM, red x-marks) using UDB is shown (also
red boxes in Figure 1(b)). Mean accuracies were 0.791
and 0.815, respectively, and they were coincident with the
mean accuracy (0.784) estimated using PCA-based LDA
with UDB in a previous study [23] (see Table 1). Values
of accuracy together with sensitivity and specificity values
are also listed in Table 1. It was observed that perfor-
mances were independent of the methods and samples,
demonstrating the usefulness of the UDB. More detailed
performances and their evaluations, i.e., true and false
positives and negatives in a 2 × 2 tables together with
P-values computed by Fisher’s exact test, odds ratio and
area under the receiver operating characteristic (ROC)
area under the curve (AUC), are shown in Additional
file 1: Table S2.

Comparison of performances between UDB and lasso
Although Table 1 shows the usefulness of a UDB con-
sisting of blood miRNAs, it is important to determine
how effective the UDB is when compared with con-
ventional methods (i.e., non-universal, sample-dependent
sets). We performed lasso-based discrimination (see
Methods) between healthy controls and patients of each
disease. Lasso-based discrimination was used so that per-
formances of feature extraction (FE) between unsuper-
vised FE and lasso could be compared. In addition, there
are generally limited numbers of individual miRNAs that
exhibit significant differences between normal controls
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Figure 1 Accuracies achieved by various discrimination methods and FEs. (a) Dependence upon diseases and methods. (b) Boxplot of
accuracies.

and patients (see below), thus selection based on signifi-
cant differences between patients and healthy controls as
usual was difficult. The results are shown in Table 2 and
Figure 1 (blue diamonds and a blue box in Boxplot). More
detailed performances and their evaluations, i.e., true and
false positives and negatives in a 2 × 2 tables of lasso-

Table 1 Performance of UDB with PCA-based LDA and SVM

Diseases Accuracy Sensitivity Specificity

PCA-based LDA

AD 0.829 0.833 0.818

Carcinoma 0.768 0.730 0.800

CAD 0.846 0.846 0.846

NPC 0.740 0.806 0.632

HCC 0.700 0.700 0.700

BC 0.870 0.813 0.955

AML 0.784 0.769 0.846

Mean 0.791 0.785 0.800

Mean of previous study [23] 0.784 0.750 0.800

SVM

AD 0.914 0.917 0.909

Carcinoma 0.786 0.867 0.692

CAD 0.769 0.769 0.769

NPC 0.720 0.806 0.579

HCC 0.725 0.550 0.900

BC 0.852 0.813 0.909

AML 0.938 0.981 0.769

Mean 0.815 0.815 0.800

AD, Alzheimer’s disease; CAD, coronary artery disease; NPC, nasopharyngeal
carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute
myeloid leukemia; UDB, universal disease biomarker; SVM, support vector
machine; LDA, linear discriminant analysis; PCA, principal component analysis.
Data from previous study [23] are also shown for comparison.

based discrimination together with P-values computed
by Fisher’s exact test, odds ratios and AUC, are shown
in Additional file 1: Table S3. Although performances
achieved by lasso-based discrimination were better than
by PCA-based LDA with UDB (Table 1), those achieved
by SVM with UDB were not significantly lower than the
lasso-based discrimination (although three tests were per-
formed, t-test, Wilcoxon rank sum test and Kolmogorov-
Smirnov test, no P-values lower than 0.05 were detected).
Since the lack of significance was because of large fluc-
tuations in performances achieved by SVM with UDB,
this suggested UDB might not be as effective as lasso-
based discrimination. However, the possibility that UDB
is as effective as standard discrimination using sample-
dependent (not universal) features is indicated.

Stability of FE: the condition to get UDB
To understand why we could successfully identified a UDB
in the previous study that could never be indeitified by

Table 2 Performance of lasso-based discrimination

Diseases Accuracy Sensitivity Specificity Optimal s

AD 0.928 0.979 0.818 0.09

Carcinoma 0.818 0.867 0.760 0.9

CAD 0.884 0.769 1.000 0.24

NPC 0.900 0.935 0.842 1

HCC 0.825 0.650 1.000 0.03

BC 0.925 0.906 0.955 0.46

AML 0.985 1.000 0.923 0.64

Mean 0.895 0.872 0.900

AD, Alzheimer’s disease; CAD, coronary artery disease; NPC, nasopharyngeal
carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute
myeloid leukemia. s (fraction) is used for the predict.lars function (see Methods).
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anyone, the stabilities of FE were compared between lasso
and PCA-based unsupervised FE. PCA-based unsuper-
vised FE was used for the previous UDB discovery [23].
The importance of stability was previously demonstrated
by Wehrens et al. [24], who showed that a stable FE
improved the performance.

Figure 2 shows the stabilities S (see Methods) of lasso-
based discrimination (blue diamonds). Generally, the sta-
bilities were very low and each miRNA was selected as
a biomarker at most for half the trials. Thus, lasso does
not have the ability to provide UDBs, because it could not
select stable (sample-independent) biomarkers for each
disease. One may suppose that the stabilities will improve
if miRNAs that exhibit significant differences between
healthy controls and patients are identified and selected.
However, this is not currently a realistic strategy, since
there are insufficient numbers of miRNAs (often < 10)
that exhibit significant differences between healthy con-
trols and patients (Table 3). For coronary artery disease
(CAD) and hepatocellular carcinoma (HCC), no miRNAs
have been identified that exhibit significant differences
between normal controls and patients in the present data
sets.

However, PCA-based unsupervised FE (black circles in
Figure 2) showed significantly larger S values than lasso.
In addition, performances were comparative with those
achieved by lasso (Table 4, black circles and triangles in
Figure 1(a) and black box in Figure 1(b)). More detailed
performances and their evaluations, i.e., true and false
positives and negatives in a 2 × 2 tables together with
P-values by Fisher’ exact test, odds ratio and AUC, are
shown in Additional file 1: Table S4.

Figure 2 Stabilities achieved by UDB, PCA-based FE and lasso.
Since no selections are required for UDB, stabilities of UDB are
uniquely designated as 1.

Table 3 The number of miRNAs that exhibit significant
differences between normal controls and patients for each
disease

Diseases Significant Not significant

AD 4 498

Carcinoma 7 558

CAD 0 746

NPC 264 622

HCC 0 255

BC 86 188

AML 6 122

AD, Alzheimer’s disease; CAD, coronary artery disease; NPC, nasopharyngeal
carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute
myeloid leukemia. For more details, see Methods.

Why selected biomarkers are frequently varied between
samples was attributed to the difference of data normal-
ization. However, the results shown here indicate this
might be caused by using incorrect and unstable FE
methods. To obtain UDB, stable FE methods should be
used [23].

The study by Wehrens et al. [24] used PCA-based
LDA to maximize the stability of FE, whereas the current
study did not require better stability, as this is automat-
ically obtained when using PCA-based unsupervised FE.
Thus, stability achieved by PCA-based unsupervised FE is
expected to be more robust than feature selections by sta-
bility maximization using PCA-based LDA. Moreover, to
rank features based on stability, Wehrens et al. [24] per-
formed time-consuming iterative cross-validations that
were not required by the PCA-based unsupervised FE.
Thus, PCA-based unsupervised FE methodology is less
computationally challenging than feature selections by
stability maximization using PCA-based LDA.

The successful identification of UDBs [23] was possi-
bly because of stable FE methods, which we suggest are
important for developing UDBs, although the stability of
FE is often overlooked. To determine more efficient UDBs,
searching with efficient and stable FEs is required.

The number of features selected by FE
Previously [23], the number of features selected by PCA-
based unsupervised FE was fixed at 10, because data
sets analyzed previously were taken from a single study.
Previous studies used the same microarray to measure
miRNA expression in multiple diseases. In contrast, data
sets used in the current study were heterogeneous. They
were collected from multiple studies performed by inde-
pendent research groups. Measurements were not per-
formed by a single microarray but by various methods
including qPCR. The sources of samples were also hetero-
geneous, ranging from whole blood to serum or plasma.
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Table 4 Performance of miRNAs selected by PCA-based FE with PCA-based LDA and SVM

Number of

Diseases Accuracy Sens. Spec. miRNAs* PCs+ �#

PCA-based LDA

AD 0.886 0.917 0.818 22 16 2.5

Carcinoma 0.857 0.846 0.867 36 2 7

CAD 0.885 0.923 0.846 16 14 9

NPC 0.720 0.806 0.579 28 18 5

HCC 0.650 0.600 0.700 8 1 7

BC 1.000 1.000 1.000 18 13 6

AML 0.862 0.846 0.923 11 8 7

Mean 0.837 0.848 0.819

Mean of previous study [23] 0.784 0.750 0.800

SVM

AD 0.843 0.833 0.864 22

Carcinoma 0.786 0.807 0.767 36

CAD 0.807 0.615 1.000 16

NPC 0.720 0.774 0.632 28

HCC 0.770 0.550 0.850 8

BC 0.963 1.000 0.938 18

AML 0.969 1.000 0.846 11

Mean 0.837 0.797 0.842
*number of miRNAs selected by PCA-based FE, +optimal number of PCs estimated by LOOCV, #threshold value of PCA-based FE. Data from previous study [23] are
also shown for comparison. AD, Alzheimer’s disease; CAD, coronary artery disease; NPC, nasopharyngeal carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer;
AML, acute myeloid leukemia; UDB, universal disease biomarker; SVM, support vector machine; LDA, linear discriminant analysis; PCA, principal component analysis.

Thus, we varied the number of features selected by PCA-
based unsupervised FE between diseases (Additional
file 2: Figure S1 for two-dimensional embeddings of
miRNAs used for FE).

Interestingly, the optimal number of selected features
was common between lasso and PCA-based unsupervised
FE (Additional file 2: Figure S2). This suggests that the
number of miRNAs required to discriminate healthy con-
trols from patients is not dependent on the methods used
but on the samples. This is not surprising because many
sets of miRNAs discriminate between patients and nor-
mal controls if miRNAs are not independent of each other.
In addition, the stability of FE is important, otherwise
selected features will vary between trials.

This study did not identify a UDB from a data set
we used, but rather validated the usefulness of UDBs
identified in a previous study. To identify UDBs, sam-
ple preparation and measurements must be standardized
to minimize the variance between samples. This should
be possible because the target is uniquely independent of
blood in disease.

Toward a mechanism-based biomarker
The UDB in this study was clearly decided by meta-
analysis, and thus was not mechanism-based. However,
if it also functions as a mechanism-based biomarker, this
would be more plausible. To determine the possibility

of using a UDB as a mechanism-based biomarker, we
employed DIANA-mirpath [25]. Table 5 lists the 27 signif-
icant KEGG pathways reported by DIANA-mirpath (see
Methods). Among 27 KEGG pathways, nine were cancer
pathways (bold font). There were also five pathways (bold
ilatic) that were disease pathways other than cancers. In
addition, three pathways (italicized) were cancer-related
pathways and four pathways (asterisked) were parts of
“Pathways in cancer” (Figure 3). Thus, there were only five
pathways that were not directly related to diseases. There-
fore, miRNAs included in the UDB in this study were not
only extensively included disease pathways, but also con-
tributed to various disease pathways. Further experimen-
tal investigations of the expression of miRNA target genes
will be required to demonstrate how UDB is involved in
disease mechanisms.

Heterogeneity of blood sources
In contrast to previous research [23] where only serum
samples were used, the blood sources in this study
were heterogenous, ranging from whole blood [21] to
serum [26] or plasma [27] (full list of sources is shown
in Additional file 1: Table S1). One may wonder why
UDB works well despite this heterogeneity of sources.
However, in a previous study [23], we tried to select 12
miRNAs included in UDB, not based on inference accu-
racy but rather by stability. That study only checked
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Table 5 KEGG pathway analysis of 12 miRNAs included in
the UDB using DIANA-mirpath [25]

KEGG.pathway p.value # of genes # of miRNAs

1 Prion diseases 0.00e+00 6 2

2 Pathways in cancer 3.00e-13 39 6

3 PI3K-Akt signaling pathway∗ 1.07e-11 43 4

4 TGF-beta signaling pathway∗ 5.98e-10 14 4

5 Viral carcinogenesis 1.56e-09 27 5

6 Ribosome 6.04e-09 22 1

7 Small cell lung cancer 6.33e-09 17 5

8 Colorectal cancer 1.02e-08 9 6

9 Ribosome biogenesis 2.02e-08 20 1
in eukaryotes

10 p53 signaling pathway∗ 6.75e-08 16 5

11 RNA transport 1.19e-07 28 1

12 Cell cycle∗ 1.56e-07 22 3

13 Pancreatic cancer 2.75e-07 11 5

14 Hepatitis B 1.17e-06 12 5

15 Prostate cancer 4.64e-06 16 5

16 Bladder cancer 6.94e-06 7 4

17 Chronic myeloid leukemia 2.01e-05 8 4

18 Measles 1.28e-04 19 5

19 Protein export 3.29e-04 9 1

20 Non-small cell lung cancer 3.69e-04 6 5

21 HTLV-I infection 1.43e-03 11 3

22 Glioma 1.46e-03 6 3

23 Melanoma 1.71e-03 7 5

24 Transcriptional misregulation 1.22e-02 9 3
in cancer

25 Oocyte meiosis 1.36e-02 14 1

26 Focal adhesion∗ 1.50e-02 8 3

27 Epstein-Barr virus infection 2.45e-02 19 3

Bold faces: tumors/cancers, Bold italic: other diseases, Italic: tumors/cancers
related, *parts of “Pathways in cancer”, and surrounded by blue rectangular in
Figure 3.

sample independency, but it is likely that sample indepen-
dency is also related to source independency, since it is
often as large as source dependency. miRNA expression is
dependent upon both the source and patients’ age, gender,
and body mass index. In addition, UDB was independent
of measurement methods, i.e., NGS, microarray or qPCR
(a full list of measurement methods is shown in Additional
file 1: Table S1). If UDB is independent of patient prop-
erties and measurement methods, it is not surprising that
UDB is also independent of sources, since all sources were
taken from blood. Source independency of UDB should be
investigated in more detail in the future.

Usefulness of UDB as practical clinical tools
One may wonder if the expected accuracy (0.8) of UDB
is useful or not. However, UDB can diagnose multi-
ple diseases simultaneously. Therefore, by measuring 12
miRNAs in blood, over 20 diseases (14 diseases in the pre-
vious study [23] and seven diseases in this study) can be
diagnosed. Thus, UDB can be used for pre-screening. For
example, patients are diagnosed by UDB for the 20 dis-
eases. Then, if patients are positive for one disease, further
diagnosis using more precise biomarkers can confirm the
diagnosis. This will be more effective and non-invasive
than performing 20 independent diagnoses using disease-
specific biomarkers.

Conclusion
In this study, we demonstrated that a predefined UDB [23]
could discriminate seven diseases from healthy controls.
Since the diseases and samples were not included in our
previous study [23] that defined UDBs, this study suggests
the robustness of UDB for disease diagnosis. The perfor-
mance achieved by UDB was comparative with that of
lasso, the standard sample-dependent FE. Because PCA-
based unsupervised FE, used for UDB identification in a
previous study, outperformed lasso in terms of stability,
the use of stable FE will be a key factor for discovering
UDBs.

Methods
Blood miRNA expression profiles
Seven blood miRNA expressions used in this study were
from the Gene Expression Omnibus (GEO): Alzheimer’s
disease (AD) (GSE46579) [21], carcinoma (GSE37472)
[26], CAD (GSE49823), nasopharyngeal carcinoma (NPC)
(GSE43329), HCC (GSE50013) [27], breast cancer (BC)
(GSE41922) [28] and acute myeloid leukemia (AML)
(GSE49665) [29]. Detailed information is shown in
Additional file 1: Table S1.

Principal component analysis-based unsupervised feature
extraction
To select blood miRNAs for the diagnosis of seven dis-
eases, blood miRNAs were selected using the recently
proposed PCA-based unsupervised FE as previously
described [23,30]. Briefly, suppose X is the matrix such
that xij represents the amount of the ith miRNA expres-
sion in the jth sample. PCA is regarded as the eigenvalue
problem

1
N

XT Xuk = λkuk , (k = 1, . . . , M)

where N and M are the total number of miRNAs and sam-
ples, respectively. Here M is assumed to be less than N
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Figure 3 KEGG pathway: “Pathways in cancer”. Yellow: genes targeted by an miRNA included in the UDB in this study. Orange: genes targeted
by more than one miRNAs included in the UDB in this study. Pathways surrounded by blue rectangles are listed in Table 5.

as is usual. λi and ui represent the eigenvalue and vector,
respectively.

xik ≡
∑

j
ukjxij

gives the principal component score (PCS) of ith miRNA.
Using the obtained xik , k = 1, . . . , D(< M), miRNAs
were determined to be embedded into low D dimensional
space.

Multiplying X on both sides, the following is obtained:

1
N

(
XXT

)
(Xuk) = λk (Xuk) , (k = 1, . . . , M)

where vk = Xuk can be regarded as an eigenvector. Then,

xkj ≡
∑

i
vkixij

gives the PCS of the jth sample. Using the obtained xkj, k =
1, . . . , D(< M), samples were regarded to be embedded
into low D dimensional space.

PCA-based unsupervised FE selects outlier miRNAs in
low K(< M) dimensional embedding space,

rKi > �

where

r2
Ki ≡

K∑
k=1

x2
ik

Typically K is taken to be two. Since these outliers could
have a major contribution to uk ’s by definition, if there
are a limited number of well-defined outliers, the exclu-
sion of miRNAs other than outliers does not alter uk ’s.
Since vk is a linear transformation of uk as shown above,
the exclusion of miRNAs other than outliers does not
alter vk . Thus, retaining only outlier miRNAs may also
preserve lower dimensional embeddings of samples that
are important for disease diagnosis, e.g., discrimination
between patients and healthy controls. Although this is
only hypothetical, it explains why PCA-based unsuper-
vised FE is expected to function well. Currently, there are
no well-defined criteria for the selection of �. Although
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� was decided to include sufficient numbers (majority)
of outliers, these were selected by the visual inspec-
tion of two-dimensional embedding of miRNAs. Singular
decomposition-based interpretation is also available as
Additional file 3: Text S1.

Discriminatory analyses between patients and healthy
controls with cross-validations
Three discriminant analyses were performed in this study
as follows. The first, a PCA-based LDA, a discriminant
counterpart of the partial least square (PLS), is defined as
discrimination using the first k PCSs (i.e., from the first
to the kth PCSs). First, PCA was applied to all samples.
Then, PCA-based LDA was performed using only PCSs
in the training set. Since the learning process includes
unlabeled information of the test set, it is semi-supervised
learning. Samples in the test set were predicted using
trained PCA-based LDA. LDA was performed using lda
functions in R [31] and the prediction of samples in the
test set was performed by predict.lda functions in
R. Optimal k was determined using cross-validations.
The second analysis used an SVM trained with training
set samples using svm function included in the e1071
R package with default settings (e.g., with the usage of
Gaussian kernel), other than class.weight argument
that was set to attribute equal weights to sets of nor-
mal controls and patients when the number of samples in
normal controls differed from that of patients. Then, sam-
ples in the test set were predicted using predict.svm
function in R. Third, lasso was used for a discrimina-
tion study. Lasso was performed using the lars func-
tion included in lars R package, attributing 1 and 2
to healthy controls and patients, respectively, and using
the setting type=‘lasso’. Then, samples in the test set
were predicted using predict.lars function in R for
s = n/100, n = 0, . . . , 100 with mode=‘fraction’. Sam-
ples with predicted values larger (less) than 1.5 were
regarded to be patients (healthy controls). Optimal s was

selected by cross-validation. For all cases, leave one out
cross-validation (LOOCV) was employed.

Data normalization
Since this study is a meta-analysis using data sets col-
lected from various independent studies employing dis-
tinct measuring methods, we normalized data sets indi-
vidually by distinct methods (Table 6). Data from multiple
studies were treated identically and compared. In addi-
tion, some miRNAs with abnormally large values were
excluded from the analysis. Excluded miRNAs were hsa-
miR-486-5p (AD), hsa-miR-223 and hsa-miR-338 (CAD),
and hsa-miR-451 (NPC).

Stability test
On LOOCV FE, selected features (miRNAs) are listed.
For lasso, miRNAs with non-zero βs were listed by set-
ting type=‘coefficients’ for predict.lars function
with estimated optimal s. Because of LOOCV, FE was
performed by M(=the number of samples) times. Then
stability was defined as

S ≡ 1
N̂

∑
i∈{i|Fi �=0}

Fi
M

where Fi is the number of times that ith miRNA was
selected within M times FE. Summation was performed
for miRNAs that were non-zero Fi (i.e., selected at least
once in FEs) and N̂ is the number of miRNAs included
in the summation. Larger S,

( 1
M ≤ S ≤ 1

)
indicates more

stable FEs.

P-values computation for significant difference between
healthy controls and patients
P-values computed for significant differences between
healthy controls and patients of each disease were deter-
mined using t-test for each miRNA. Computed P-values
were adjusted by BH-criterion [32] and miRNAs with

Table 6 Details of data normalization

Data set names/ Data normalization Data normalization
GEO ID Disease Data retrieval methods timing methods

GSE46579 AD GSE46579_AD_ngs_data_summarized.xls.gz before FE zero mean/variance is one

GSE37472 carcinoma getGEO before FE zero mean/variance is one

GSE49823 CAD getGEO after FE zero mean/variance is one∗

GSE43329 NPC getGEO before FE zero mean/variance is one+

GSE50013 HCC getGEO before FE# zero mean/variance is one∗

GSE41922 BC GSE41922_series_matrix.txt.gz after FE zero mean/variance is one∗

GSE49665 AML getGEO after FE zero mean/variance is one∗

*no normalization for SVM/lasso, +no normalization for SVM with PCA-based FE, #after FE for PCA-based LDA with universal features. All the sample normalizations
were sample-based; i.e., each sample was normalized to have both zero mean and unit variance. AD, Alzheimer disease; CAD, coronary artery disease; NPC,
nasopharyngeal carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute myeloid leukemia. Data retrieval methods/data set names were used to
name files and for analysis. getGEO indicates that individual sample profiles whose files names started with “GEO” were downloaded by the getGEO command in R.
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adjusted P-values less than 0.05 were regarded to have sig-
nificantly different expression between normal controls
and patients.

KEGG pathway analysis of UDB using DIANA-mirpath
DIANA-mirpath [25] was employed to investigate KEGG
pathways enriched by miRNA target genes. Twelve genes
were uploaded to DIANA-mirpath with the following set-
tings: “Species” was “Human”, “FDR” correction was “yes”,
“P-value threshold” was 0.05, and “Select the way to merge
results” was “pathway union” (direct link to DIANA-
mirpath and full list of KEGG pathways are shown in
Additional file 3: Text S2 and Additional file 1: Table S5).
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