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ABSTRACT: In this Brownian dynamics simulation study on the formation
of aggregates made of spherical particles, we build on the well-established
diffusion-limited cluster aggregation (DLCA) model. We include rotational
effects, allow diffusivities to be size-dependent as is physically relevant, and
incorporate settling under gravity. We numerically characterize the growth
dynamics of aggregates and find that their radius of gyration, Rg, grows
approximately as Rg ∼ t1.02 for classical DLCA but slows to an approximate
growth rate of Rg ∼ t0.71 when diffusivity is size-dependent. We also analyze
the fractal structure of the resulting aggregates and find that their fractal
dimension, d, decreases from d ≈ 1.8 for classical DLCA to d ≈ 1.7 when
size-dependent rotational diffusion is included. The addition of settling effects
further reduces the fractal dimension observed to d ≈ 1.6 and appears to result in aggregates with a vertical extent marginally smaller
than their horizontal extent.

1. INTRODUCTION
The aggregation of small particles into larger clusters occurs in
a great variety of contexts. It has been reported in metallic
crystal1,2 and aerogel formation,3 soot clustering,4 protein
accumulations,5 wastewater treatment,6 and marine aggregate
formation in the oceans.7,8 In all these cases, smaller particles
move, at least in part, in an effectively random manner and
may aggregate upon encountering other similar particles. The
progressively larger aggregates thus formed often exhibit fractal
structures.1−8

Arguably, the most effective and influential models of
aggregation have been the diffusion-limited-aggregation (DLA)
and diffusion-limited-cluster-aggregation (DLCA) models. In
the DLA model,9 individual particles undergo stochastic
motion until they encounter a cluster that they then stick to,
whereas in the DLCA model,10,11 many particles move
simultaneously, form clusters when encountering each other,
and continue moving stochastically as clusters. These
irreversible aggregation models focus on the initial stages of
aggregation assuming that the lifetime of the bonding is much
longer than the time scale of those initial stages.12 Despite its
simplified form of attractive interactions, the DLCA model has
been successfully used to reproduce the characteristic features
of the initial stages of aggregation. This is attributed to the
observation that those features are not significantly influenced
by the exact shape of the interparticle potential. In fact, from
comparisons with more realistic reversible aggregation models,
it was shown that, if the interactions are sufficiently strong, the
structures obtained from those models approach the limit of
irreversible DLCA.13,14

In most cases, the rationale for the stochastic motion of the
particles is that they are subject to large numbers of molecular
collisions. The effect of these collisions can be modeled as
random forces in Langevin dynamics models or directly as
random displacements in Brownian dynamics models.15 The
translational diffusivity of individual particles is well known to
be inversely proportional to their size, as captured by the
Stokes−Einstein relation.16 As aggregates grow in size, the
resistance of the surrounding fluid increases and aggregates are
therefore expected to move slower than individual particles.
This effect was studied early on in two-17,18 and three-
dimensional systems19 but has been neglected in many DLCA
studies. Furthermore, until recently, it was not clear how to
determine the hydrodynamic radius of a fractal aggregate in a
manner consistent with the Stokes−Einstein relation. A recent
study20 showed that the radius of gyration of an aggregate is an
appropriate measure of its size. We study here the effects on
the aggregation of having size-dependent diffusivities, following
and extending the works of refs 17 and 19.

Early DLA models, where the particles were modeled as
spheres and the aggregates formed were fixed, did not include
the effects of particle rotation. However, once clusters are
allowed to move stochastically, they are expected to rotate as
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they are subjected to random torques as well. While early two-
dimensional studies of DLCA incorporated the effects of
rotation,21 these effects were only recently taken into
consideration in three-dimensional systems by Jungblut et
al.22 In contradiction to the prior assumption that the effects of
rotation on aggregation would be negligible, they demon-
strated that the rotation of clusters significantly alter the
structure of the resulting aggregates. However, this conclusion
was drawn by using constant rotational diffusivity. As indicated
by the Stokes−Einstein−Debye relation,23 the rotational
diffusivity of an object is inversely proportional to the cube
of its size, which, for aggregates, was shown to be well captured
by the radius of gyration.20 Based on these physical
observations, we revisit here the effects of rotation. To this
end, we present a DLCA model that incorporates rotational
effects into Brownian dynamics and accounts, to the best of
our knowledge for the first time, for the size dependence of the
rotational diffusivity.

Another factor that can affect the dynamics of particles and
clusters during the aggregation process is the density difference
between the particles and the surrounding fluid. In many
instances, particles, such as soot, plankton, or metal atoms, are
denser than the surrounding medium. The gravitational

acceleration will therefore cause particles to settle downward
at a speed that increases with their size.20,24−26 While this
effect has been well quantified for aggregates already formed,
to the best of our knowledge, it has not been incorporated in
three-dimensional DLCA models. We therefore also study here
the influence of a size-dependent settling velocity on the
formation of aggregates.

The quantity typically used to characterize the fractal
structures of randomly formed aggregates is their fractal
dimension.27 Models of DLCA (see for instance ref 28) as well
as experiments29,30 have reported fractal dimensions in the
1.7−1.8 range. However, lower fractal dimensions (1.5−1.6)
have also been measured in soot aggregates4 and a broad range
of fractal dimensions (1.28−1.86) have been measured in
marine aggregates.31 In addition, models incorporating
rotation21,22,32 have reported fractal dimensions in the 1.5−
1.6 range.

In this article, we discuss the impact of size-dependent
diffusivities, rotation, and settling on the fractal dimension of
aggregates formed via Brownian dynamics. In addition, we
characterize the formation dynamics of the objects by
comparing the growth in size of aggregates formed in various
conditions. An aggregate’s growth rate is an important and

Figure 1. Time snapshots of a typical system with N = 100 spheres at time t = 0 in panel (a), t = 200 in panel (b), and t = 1200 in panel (c).
Eventually, a single aggregate containing M = 100 spheres remains, as shown from a closer perspective in panel (d).
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under studied consideration, for example, for marine
aggregates subject to competing dynamics such as biological
activity as they aggregate.

The structure of the rest of this paper is as follows. In
Section 2 we provide the details of our numerical simulations
of aggregation via the Brownian motion of particles subject to
size-dependent translational and rotational diffusion, as well as
settling. In Section 3, we show and discuss our results
regarding the growth rate of these aggregates and their fractal
dimensions. We present our conclusions in Section 4.

2. METHODS
In our model, aggregates are built from identical spheres. We
consider spheres of radius R1′ ≈ 1 μm or smaller, so that inertial
effects are negligible. Brownian dynamics are applied to
aggregates to randomly translate and rotate them.15 In
addition, following the DLCA model,28 if any two spheres
overlap (i.e., their centers of mass are within one sphere
diameter), the aggregates containing them are made to merge
irreversibly and move as a single aggregate thereafter. Hence,
as time progresses, spheres merge into aggregates of various
sizes and eventually form a single large aggregate. Snapshots
taken from a typical simulation of our model are shown in
Figure 1a−c, and the structure of the final aggregate obtained
is shown in Figure 1d. We provide details of our model in the
paragraphs below and in the Supporting Information.

We non-dimensionalize our system using the radius of a
single sphere, R1′, as our characteristic length scale and using a
diffusive time scale, R D( ) /21

2
1= , as our characteristic time

scale, where D1′ is the translational diffusivity of a single sphere.
Here, primes indicate dimensional quantities. In this setting,
the dimensionless radius and translational diffusivity of a single
sphere therefore become, respectively, R1 = 1 and
D D R/(( ) / ) 0.51 1 1

2= = .
We assume that aggregates have random structures but are

roughly isometric so that their translational and rotational
random motions can be described via corresponding scalar
diffusion coefficients (as opposed to diffusion tensors). At each
time step, spheres and aggregates are translated by

x D t2 (0,1)= , where D is the translational diffusivity
of an aggregate, Δt is the time step size, and (0,1) denotes a
three-dimensional vector with independent random compo-
nents drawn from the standard normal distribution (i.e., with
zero mean and unit variance). To implement Brownian
rotation, another random vector, D t2 (0,1)= , is
sampled, where Dθ is the rotational diffusivity of an aggregate
and (0,1) is a three-dimensional random vector sampled
similarly to (0,1). We compute the magnitude, = ,
and unit vector, /= , corresponding to this
random vector. We then implement a rotation of angle Δψ
about the axis Θ̂. A detailed description of the implementation
of translational and rotational Brownian dynamics is given in
Sections S1.3−S1.4 of the Supporting Information.

To build a more realistic model of aggregation, we allow
diffusivities to be size dependent, as was previously done for
translational diffusivity.19 It has been shown20 that the best
length scale to describe the hydrodynamic resistance of fractal
aggregates is the radius of gyration, Rg, and it was found that
the translational and rotational friction coefficients of an
aggregate are proportional to Rg and Rg

3, respectively. Because

the corresponding diffusivities are inversely proportional to the
friction coefficients, D and Dθ are proportional to 1/Rg and 1/
Rg

3, respectively, which is consistent with the Stokes−Einstein16

and Stokes−Einstein−Debye equations23 for the diffusivities of
a sphere. For an aggregate made of M spheres of uniform
density, the radius of gyration is defined as

R
M

x x3
5

1

m

M

mg
1

c
2= +

= (1)

Here, xm denotes the position of the mth sphere in the
aggregate and xc is the center of mass of the aggregate. Note
that the definition of Rg for point-mass particles is slightly
modified by the addition of 3/5 to accurately account for the
non-zero radius of the spheres, which also recovers the radius
of gyration of a single unit sphere with uniform mass
distribution: R 3/5g1 = . From the Stokes−Einstein16 and
Stokes−Einstein−Debye23 equations, the translational and
rotational diffusivities for single spheres are set to D = 0.5
and Dθ = 0.375, respectively. Using the results of Yoo et al.20

on the friction coefficients of aggregates, the size-dependent
diffusivities of aggregates are defined as

D
R

D
R

0.5
, and

0.375

g g
3= =

(2)

Further details on the relevant equations and their derivation
are provided in Section S1.6 of the Supporting Information.

We aim to characterize the impact of size-dependent
diffusivities and rotation on the structure of aggregates and
their growth dynamics. To this end, we study four different
cases:

• Case 1: D = 0.5, Dθ = 0,
• Case 2: D = 0.5, Dθ = 0.375,
• Case 3: D = 0.5/Rg, Dθ = 0,
• Case 4: D = 0.5/Rg, Dθ = 0.375/Rg

3.
In Case 1, we follow the traditional DLCA approach, see for

instance ref 28, where rotational diffusion is not incorporated
and translational diffusivity is kept constant. In Case 2, we
incorporate rotation, keeping diffusivities constant, as in ref 22.
In Case 3, while rotation is absent, we allow translational
diffusivity to be size-dependent, similarly to ref 19. In Case 4,
we use more realistic size-dependent diffusivities for both
translation and rotation. To the best of our knowledge, the
latter model has not been studied to date.

When spheres have a greater density than the surrounding
fluid, they will, in addition to being subject to Brownian
dynamics, settle under the influence of gravity. While this effect
was neglected up to this point as it is often small, it is more
likely to become influential for larger aggregates. We therefore
study Case 5, with the same conditions as Case 4
supplemented by a size-dependent aggregate settling speed,
U, which is determined by balancing the weight and the drag
force as characterized by their radius of gyration.20 For
aggregates containing M spheres and with radius of gyration
Rg, one finds that

U
M
Rg

=
(3)

where Γ is the dimensionless gravitational potential energy of a
single sphere and is proportional to the density difference
between the spheres and the surrounding fluid and to R( )1

4, as
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detailed in Section S1.7 of the Supporting Information. We
consider three different sets of parameters, denoted by Cases
5a, 5b, and 5c. In these cases, single spheres are computed to
have settling speeds of, respectively, U1 = 0.525, 1.05, and 2.10,
while aggregates containing M spheres have Γ = 0.55, 1.10, and
2.20 for a settling speed of

U
M
R

U M
R

U
M
R

0.55 (Case 5a),

1.10 (Case 5b),

2.20 (Case 5c)

g

g

g

=

=

=
(4)

In our simulations, the ratio M/Rg is typically of order one and
does not exceed 20. We note that a size-dependent aggregate
Pećlet number is found to be Pe = U′Rg′/D′ = 2ΓRgM. This
indicates that whenever settling is present its importance grows
very quickly with aggregate sizes, as both M and Rg grow, with
a magnitude prescribed by the dimensionless gravitational
potential energy of a single sphere Γ.

In our Brownian dynamics simulations for Case 5, the
settling velocity is implemented as a bias in the vertical
direction, which is added to Case 4. Details of the parameter
selection, computation, and implementation of the settling
speed in Brownian dynamics are given in Section S1.7 of the
Supporting Information.

For all cases considered in our simulations, we initially
confine single spheres to a cubic box of side length L = 128
(unless otherwise stated) with periodic boundary conditions
applied in all directions. The time step size Δt is chosen to be
small enough to ensure that the overlap between adjacent
spheres never exceeds 5% of their total volume. This
corresponds to setting Δt = 0.01 in all cases, except when
rotational diffusion is constant (Case 2) and large aggregates
are present, when Δt was chosen to be as small as Δt = 0.001.
The total number of speres N is varied between 100 and 400,
giving a range of volume fraction ϕ = (4/3)πN/L3 between 2
× 10−4 and 10−3. Unless otherwise stated, we collect a total of
400 samples per volume fraction for each case under study. We
provide further details on the validation of our implementation
in Section S2.1, on the selection of the time step size in Section

S2.2, and on our data collection method in Section S2.4 of the
Supporting Information.

We monitor over time the radius of gyration Rg of the
aggregates as well as the number of spheres M they contain. To
characterize the dynamical evolution of the aggregates, we
introduce a weighted average of the radius of gyration within a
system

R
N

R1

n

N
n

g
1

g
( )=

= (5)

where Rg
(n) denotes the radius of gyration of the aggregate

containing the nth sphere. We note that Rg is computed from
each sample as a function of time and that in this average,
aggregates with a large number of spheres, M, will have a larger
weight, as their radius of gyration is summed M times. We then
take the average of Rg over all samples formed in the same
conditions, which we denote R g .

3. RESULTS AND DISCUSSION
3.1. Growth Rate. We investigate the size growth of

aggregates over time using the weighted average of the radius
of gyration R g and compare the results of Cases 1−4 to
discuss the effects of size-dependent diffusivities as well as
rotation. Before comparing those results, we first report the
effects of finite system-size on the time profile of R g and also
investigate the dependence of the latter quantity on the volume
fraction ϕ to justify our choice of simulation parameter values.
We note that contrary to molecular dynamics simulation
models, whose finite system-size effects have been well
understood (see, e.g., refs 33 and 34), these effects have not
been as systematically investigated for aggregation models.

We show in Figure 2a the time profiles of the average radius
of gyration of aggregates obtained from 36 samples in Case 4
for different domain sizes, L, and a fixed volume fraction ϕ =
10−3. For reference, we note that R Rg g1= at t = 0 and that if
two spheres meet and form an aggregate the increase in radius
of gyration is approximately 0.5. We observe that there is a
time period where the growth of R g is independent of L and
is well described by a power law (i.e., a straight line in the log−
log plot). At later times, the number of spheres available for
aggregation decreases and eventually the growth saturates as

Figure 2. Growth over time of the average radius of gyration of aggregates, Rg , relative to their initial value, Rg1, for Case 4. Panel (a) compares
the results obtained for a fixed volume fraction ϕ = 10−3 and different system sizes (specified by the total number N of spheres and the different
domain side lengths L). Panel (b) compares the results of different volume fractions ϕ for a fixed system size with side length L = 128. On each
curve, tmax is shown as a black dot. The inset shows the same curves superimposed by vertical translation.
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too few spheres remain to maintain growth. This behavior
happens later for larger domains as they initially contain more
spheres. We will focus our study on the time period before
saturation occurs, that is, t ≤ tmax, where we define tmax as the
first time when the slope of the growth rate of the radius of
gyration in the log−log scales (as shown in Figure 2) becomes
less than half what it was over the time period where it
remained approximately constant. More details about the
definition of tmax can be found in Section S2.4 of the
Supporting Information.

We also investigate aggregate growth for various volume
fractions and for a fixed domain size, L = 128, as shown in
Figure 2b. We see that the very early growth for t ≲ 1 is faster
for larger volume fractions. This is a reflection of the higher
probability that two spheres have initial positions that are
separated by a very short distance when the volume fraction is
larger. Less time is then required for spheres to first encounter
each other. However, the increase in R g during this time

period is rather small ( 10 )2< . More significantly, in a wide
time range for t > 1 and before finite-size effects start impacting
the results, all curves can be superimposed by vertical
translation, as shown in the inset of Figure 2b. This indicates
that the slopes of the curves in the log−log scales are
independent of the volume fraction ϕ. Thus, in a time period
where the curves exhibit a nearly constant slope, the growth
over the time period can be characterized by an exponent α in
the following relation

R C t R( )g g1= + (6)

The values of α estimated in Cases 1, 3, and 4 are given in
Table 1. The time range used for linear regression was between

the time t1 for which R t R( ) 1g 1 g1 = and tmax. For all cases,
corresponding plots to Figure 2b are given in Section S3.1 of
the Supporting Information. Overall similar trends are
observed for Cases 1−4 except that an acceleration in growth
appears before saturation in Case 2, as discussed below.

As shown in Figure 2b, at t = 10 the aggregates’ average
radius of gyration has grown by less than 0.1, showing that
most spheres have yet to encounter other spheres. Rotational
effects and size-dependent diffusivities thus have a negligible
effect on the growth of the aggregates up to that time. At the
other end of the spectrum, after tmax the growth of the
aggregates slows down and saturates, as too few spheres remain
to maintain growth. Therefore, we focus on the effects of
rotational diffusion and size-dependent diffusivity on aggregate
growth over the time interval 10 ≤ t ≤ tmax, where the volume
fraction of spheres has only a negligible effect. We show in
Figure 3 the temporal evolution of the average size of

aggregates for ϕ = 6 × 10−4 for Cases 1−4. For t < 100, the
four curves overlap, indicating that, at those early times,
aggregates exhibit the same growth dynamics. In this regime,
the size dependence of the diffusivities is still weak, as most
aggregates are still small, and aggregates move as if their
diffusivities were constant. Moreover, rotational diffusion has
no effect on single spheres, which still constitute most of the
aggregates.

As time increases past t = 100, differences in the four cases
emerge. Unsurprisingly, when the diffusivities are reduced with
aggregate size, the growth slows. In the absence of rotation, we
see that Case 3 produces a slower growth than Case 1 and
similarly Case 4 produces a slower growth than Case 2, which
has constant non-zero diffusivities for both translation and
rotation. In the latter case (green curve), the growth of the
aggregates accelerates as time progresses and becomes faster
than a power law. This is due to the larger displacements
induced by a fixed rotational diffusivity applied to larger
aggregates. In fact, this is the only case where we had to reduce
the simulation time step size, using values as low as Δt = 0.001
to limit the magnitude of those displacements. Such larger
displacements clearly facilitate aggregation, yielding much
faster growth. However, it is unlikely that real aggregates can
maintain a constant rotational diffusivity as they grow because
the resistance of the surrounding fluid to rotation typically
grows with the cube of the aggregate size.20

The second fastest growth, which exhibits a power-law
behavior throughout, is observed to be the classic DLCA with
fixed translational diffusivity and without rotation (Case 1, red
curve). In this case, the growth is nearly linear in time, with a
best fit yielding R t RC ( )g 1

1.02
g1= + .

In the two cases, where diffusivities are size-dependent,
whether rotation is absent (Case 3, black curve) or present
(Case 4, magenta curve), the growth is quite similar and
appears to follow a power law but is markedly slower than for
DLCA. The presence of rotation again is observed to
accelerate growth, as it provides an additional displacement,
which increases the odds of coming into contact with another
aggregate. However, because of the strong dependence of Dθ
on Rg, this effect remains small. The growth rate therefore
appears to be mostly set by the translational diffusivities. Best
fi t s o f t h e g r o w t h r a t e s a r e f o u n d t o b e

Table 1. Values of the Exponent α and the Fractal
Dimension d for Cases 1−4

diffusivities exponent αa
fractal dimension

db

Case 1 D = 0.5,Dθ = 0 1.02 1.82 ± 0.02
Case 2 D = 0.5,Dθ = 0.375 not applicable 1.23 ± 0.10
Case 3 D = 0.5/Rg,Dθ = 0 0.66 1.81 ± 0.02
Case 4 D = 0.5/Rg,Dθ = 0.375/Rg

3 0.71 1.69 ± 0.01
aSee eq 6 for mathematical definition and Figure 3 for actual
estimation. bSee eq 7 for mathematical definition and Figure 4 for
actual estimation.

Figure 3. Comparison of the growth patterns of average radius of
gyration observed in Cases 1−4 for volume fraction ϕ = 6 × 10−4.
The time profiles of R Rg g1 are shown in the log−log scales as
solid lines. For each case except Case 2, linear regressions are also
shown as dashed lines. In each case, the time range [t1, t2] for linear
regression was chosen such that R t R( ) 1g 1 g1 = and t2 = tmax.
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R t RC ( )g 3
0.66

g1= + in the absence of rotation (Case 3)

and R C t R( )g 4
0.71

g1= + for the most complete model
(Case 4) that includes both rotation and size-dependence.
Note that while the prefactors in the above relationships
depend on ϕ, the powers of t found are consistent across all
the volume fractions analyzed.
3.2. Fractal Dimension. We now wish to characterize the

structure of aggregates observed in the course of aggregation.
In general, they are fractal objects with a dimension between
one and two, meaning that they are denser than one-
dimensional chains but less compact than two-dimensional
sheets. For example, if we look at the number of nearest
neighbors of a sphere that is part of an aggregate, we find that a
majority of spheres have the two nearest neighbors, as in linear
objects. About 25% of spheres have only one neighbor,
forming the end of a branch, and roughly the same number of
spheres have three or more nearest neighbors, as they would in
a two-dimensional object. This is illustrated in more detail in
Section S2.3 of the Supporting Information. More precisely, we
can characterize the aggregates in terms of their fractal
dimension, d. To this end, we use the well-known relation-
ship19,28 between the number of spheres M in an aggregate and
its size, here characterized by the radius of gyration Rg

R M
d

, with
1

g =
(7)

As shown in Figure 4a for Case 4, Rg grows approximately as
a power of M, with that power being the inverse of the fractal
dimension, consistent with eq 7. As shown in Section S3.2 of
the Supporting Information, Cases 1 and 3 yield a similar
relationship, as does Case 2 (with constant rotational
diffusivity and exhibiting the fastest growth), with the caveat
that in that case the size of the largest aggregates eventually
becomes limited by the domain size.

To find d, we apply eq 7 to data collected at time tmax. We
focus on aggregates of size M ≥ 25 to ensure that we are
looking at fractal-like objects. Figure 4b shows a linear fit of the
radius of gyration as a function of M for Cases 1−4, and the
fractal dimensions found are listed in Table 1. Because the
choice of the range of M values for linear regression may affect
the resulting estimated value of d, we also compute linear
regressions using two different ranges, M ≥ 5 and M ≥ 50, and
use them to quantify the level of uncertainty in the d values.

Our results for cases without rotation, Cases 1 and 3, are
consistent with previous numerical simulations of DLCA, for
example, refs 19 and 28. However, including rotational
diffusion lowers the fractal dimension of the aggregates, most
significantly when it is constant. This can be understood by
noting that larger aggregates subject to rotation will have their

Figure 4. Radius of gyration, Rg, of aggregates observed at time tmax as a function of the number of spheres in an aggregate, M. Panel (a) shows the
scatter plot of Rg vs M for Case 4 for all volume fractions on a log−log scale. Panel (b) compares the results of Cases 1−4 for all volume fractions,
where, for visual clarity, each dot represents the average value of Rg computed over a small interval around a given value of M. The corresponding
scatter plot of each case is shown in Section S3.2 of the Supporting Information. Solid lines depict the linear regression results based on data for
which M ≥ 25. For Case 2 (green line), aggregates of maximum radius greater than or equal to half the domain size were discarded.

Figure 5. Comparison of simulation results without settling (Case 4: magenta) and with size-dependent settling for different values of Γ (Cases 5a:
purple, 5b: cyan, and 5c: blue). Size-dependent diffusivities are used in all four cases. Panel (a) shows the time profiles of R Rg g1 in the log−log
scales for volume fraction ϕ = 6 × 10−4. Panel (b) compares the results of Cases 4, and 5a−5c for all volume fractions, where, for visual clarity, each
dot represents the average value of Rg computed over a small interval around a given value of M. The corresponding scatter plot of each case is
shown in Section S3.2 of the Supporting Information. Solid lines depict the linear regression results based on data for which M ≥ 25. The inset
shows only the fitted lines for the range M ≥ 200 to emphasize where they differ.
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tips experience the largest displacements. This in turn increases
the probability that contact with surrounding aggregates will
take place at or near the tips, resulting in an object with a more
linear structure and therefore a smaller fractal dimension.

The trend of rotational diffusion lowering fractal dimension
was previously reported in two-dimensional simulations18,21 as
well as a recent simulation study with a setup similar to Case 2
with a constant rotational diffusivity by Jungblut et al..22 In the
latter study, using Langevin dynamics rather than Brownian
dynamics and considering systems of a volume fraction
approximately 10 times greater than ours, a value of fractal
dimension of 1.55 ± 0.02 was reported, which is greater than
what was found in the present study. We note that this fractal
dimension was obtained using data for both smaller aggregates
than what was used here and considering aggregates that had
reached the percolation limit, where an aggregate can connect
with itself via the periodic boundary conditions, both of which
tend to increase the computed fractal dimension.

As can be seen comparing Cases 1 and 3, incorporating a
size-dependent translational diffusivity is found to cause only a
very small reduction of the fractal dimension. The aggregates’
structure then appears to remain qualitatively the same and to
simply be formed slower when D is size-dependent. Finally, the
model with both rotation and size-dependent diffusivities, Case
4, shows a slightly reduced fractal dimension, d = 1.69,
compared to DLCA. This is most likely due to the inclusion of
rotational diffusion, which generates less compact aggregates.
However, taking into account the size dependence of the
rotational diffusion greatly reduces this effect. The ratio of the
diffusivities, D/Dθ = (4/3)Rg

2, indicates that as the aggregates
become larger, translational diffusion becomes dominant, and
the resulting aggregates are closer in structure to those formed
by DLCA.
3.3. Settling. We present in this section results for Cases

5a−5c, where settling is added to Case 4 using a different value
of the single sphere gravitational potential energy Γ in each
case. From equations 4 and 7, we see that for d > 1, the settling
speed of an aggregate increases with its size, potentially
affecting the formation dynamics of aggregates and their
resulting structure. Note that for Cases 5a−5c, results
presented were obtained from 100 samples. Figure 5a shows
that, at early times, incorporating settling in the simulations
does not have a significant effect on the growth of aggregates.
This is because settling affects dynamics when aggregates have
different settling speeds, which only happens when a range of
aggregate sizes is present. However, in the time range 40 < t <
100, the growth of the aggregates is accelerated by the
presence of settling, and it can readily be seen that increasing
the value of Γ enhances this effect. This acceleration is
attributable to larger aggregates settling faster and effectively
capturing smaller aggregates located in a vertical column
beneath them as they settle. We note that this process takes
place over a settling time scale, which here is significantly faster
than the diffusive time scale. As a result, finite system-size
effects can be felt earlier than in the absence of settling. In
other words, in a periodic domain, larger aggregates can
quickly collect all smaller aggregates within their vertical
column and then continue to grow slowly due to horizontal
diffusive effects. More care to avoid system-size effects must
therefore be taken in simulations of aggregation that include
settling.

As can be seen in Figure 5b and in the values listed in Table
2, the fractal dimension of aggregates formed in the presence of

settling decreases as the importance of settling, characterized
by the gravitational potential energy of a single sphere Γ,
increases. For the largest effect of settling we considered, Γ =
2.20, we find a fractal dimension of d = 1.56 ± 0.06. Moreover,
settling breaks the isotropy of the system and distinguishes the
vertical direction (denoted with coordinate z) from the
horizontal directions (denoted with coordinates x and y). To
quantify the effect of this break in symmetry, we measure
coordinate specific components of the radius of gyration for
Cases 5a−5c. We define the vertical component of the radius
of gyration of an aggregate as

R
M

z z1
( )z

m

M

m
1

c
2=

= (8)

and we define Rx and Ry analogously. Figure 6 compares the
scatter plot of Ry versus Rx with that of Rz versus Rx at t = 4000
from 100 samples for ϕ = 8 × 10−4 for Case 5b, with Cases 5a
and 5c exhibiting similar results. The best fits, obtained by
averaging the polar angle of the data plotted, are, respectively,
Ry = 0.99Rx and Rz = 0.92Rx. This indicates that, as a statistical
average, the size of an aggregate in the x and y directions is
effectively the same, but that aggregates are on average smaller
in the vertical direction.

Even in the absence of settling, individual aggregates do not
generally have the same extent in every direction. However, the
direction in which they are the shortest is then uniformly
distributed. In the presence of settling, the shortest direction is
statistically preferentially aligned with the vertical. We define
the average aggregate aspect ratio γ using the best fit of Rz
versus Rx as

R Rz x= (9)

and compute it also for Cases 5a and 5c. The results are
summarized in Table 2. While this aspect ratio remains close to
one, it nonetheless reflects the influence of the settling
direction on the structure of the aggregates formed and shows
that the anisotropy increases with the magnitude of the settling
speed. We note that, at earlier times, a smaller difference
between the horizontal and vertical directions is observed,
presumably because the effects of settling are not yet at their
peak. At later times, the vertical extent is also observed to be
closer to the horizontal extent. We suspect that finite system-
size effects then come into play in this behavior as settling first
depletes available aggregates in vertical columns and further
growth effectively occurs sufficiently slowly through horizontal
diffusive processes to allow rotational diffusion to re-orient
aggregates in an isotropic manner. When the departure from
statistical isotropy becomes significant, the assumption of

Table 2. Values of the Fractal Dimension d for Cases 4 and
5a−5c

single sphere Grav. P.E.
Γa

fractal dimension
db

aspect ratio
γc

Case 4 0.0 1.69 ± 0.01 0.99
Case 5a 0.55 1.64 ± 0.08 0.94
Case 5b 1.10 1.60 ± 0.07 0.92
Case 5c 2.20 1.56 ± 0.06 0.90

aSee eq 3 for relation between Γ and settling speed U and eq 22 of the
Supporting Information for its definition. bSee eq 7 for mathematical
definition and Figure 5b for actual estimation. cSee eq 9 for
mathematical definition.
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scalar diffusivities is no longer appropriate and diffusivity
tensors must be used to describe the Brownian motion of each
aggregate.35,36 This will be an important consideration to
incorporate in future simulations where settling effects are
dominant.

4. CONCLUSIONS
In this paper, we studied the impact of size-dependent
diffusivities and rotation on the formation mechanisms of
aggregates. To this end, we investigated the growth rate and
fractal dimension of aggregates by computing the radius of
gyration Rg over time. To ensure that the conclusions of our
simulation study be independent of the size of the simulation
domain, we systematically investigated the finite system-size
effects on these quantities. We considered a dilute regime,
where the solid volume fraction, was seen to only be impactful
in the very early stages of aggregation.

We found that including size-dependent translational
diffusivity, D, into the traditional DLCA model has a negligible
impact on the fractal dimension, d, of the aggregates formed,
which remained near d = 1.8. However, we observed that a
size-dependent D significantly reduces the growth rate of
aggregates, with their average radius of gyration growing like
R tg

0.66 compared to R tg
1.02 in DLCA.

The effects of non-zero rotational diffusion, Dθ, were found
to be significant for a constant Dθ. The aggregates then grew
much faster and had a significantly reduced fractal dimension,
d = 1.23. However, this scenario is not appropriate to systems,
where diffusive effects are due to molecular effects, as the
rotational friction coefficient quickly increases with the
aggregate size. The use of a more realistic, size-dependent,
Dθ, greatly reduced the impact of rotational diffusion as larger
aggregates rotated much more slowly owing to the Dθ ∼ Rg

−3

scaling. Nonetheless, the fractal dimension of aggregates
formed with size-dependent Dθ was reduced compared to
DLCA, yielding d = 1.69, and their growth rate was accelerated
to scale as R tg

0.71.
To obtain even more realistic models of aggregation, we also

included gravitational effects, causing the aggregates to settle at
a rate depending on their size and on the choice of a
dimensionless parameter here set to Γ = 0.55, 1.10, 2.20. We
found that settling, much like rotational diffusion, hastened the
growth of aggregates and resulted in aggregates of smaller

fractal dimension, d = 1.64, 1.60, 1.56, for the parameters we
considered. We also observed the breaking of isotropy in this
case, resulting in aggregates with a slightly shorter vertical
extent compared to their horizontal extent. Depending on the
size and density of the aggregating spheres, the impact of
settling can vary from negligible to dominant and a more
systematic study of this effect remains to be completed. Our
simulations revealed that finite system-size effects quickly come
into play in the presence of settling, so that obtaining results
applicable to larger systems likely require significantly greater
computational effort.

In order to obtain a realistic model of aggregation, several
other factors will eventually need to be taken into account. For
example, particles may only stick to each other with a certain
probability rather than automatically as we have assumed,37

leading to a transition from DLCA to reaction-limited cluster
aggregation (RLCA). It would be also interesting to consider a
more realistic potential for the van der Waals interaction and
investigate its effect. In many cases,32,38 particles can become
charged, leading to either attractive or repulsive interactions
that can be modeled via the Derjaguin−Landau−Verwey−
Overbeek (DLVO) theory. Hydrodynamic interactions can
also affect the diffusivity of particles, particularly at a low
Reynolds number and as the distance between particles
becomes small. Such interactions break the isotropy of the
system, and the scalar diffusivities describing the motion of
each particle must be replaced by diffusivity tensors. Such
tensors may be computed using accurate but computationally
expensive methods such as multipole methods39 or approxi-
mated focusing on nearest neighbors interactions using, for
example, the Rotne−Prager−Yamakawa approximation35,36 as
has been done in bead models of macromolecular formation40

and as was more generally reviewed in ref 41. Moreover, the
suspending fluid itself may not be at rest, either moving in a
deterministic manner in a rotating tank42 or subject to
turbulence. Such flows can affect the effective translational
and rotational diffusivities of aggregates. In addition, aggregates
are known to break up or disaggregate,43,44 either under the
effect of external flows or under the stress due to their own
settling. Disaggregation is likely to modify the types of
aggregates that may be collected; aggregates with the lowest
fractal dimensions are most likely to break up and therefore
will be less likely to be observed. The present work was a step
toward making aggregation models more realistic by including

Figure 6. Evidence of anisotropy in aggregates formed in the presence of settling, for Γ = 1.10 (Case 5b). Here, the quantities Rη (η = x, y, or z)
represent the contribution of each direction η to the radius of gyration of an aggregate, see eq 8. Panel (a) shows a scatter plot of Ry vs Rx and panel
(b) shows a scatter plot of Rz vs Rx. The solid lines are the best fitted line obtained by averaging the polar angle of the data points and are of slope
0.99 for panel (a) and 0.92 for panel (b). Simulation results were collected at t = 4000 for ϕ = 8 × 10−4 from 100 samples.
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rotational diffusion and size-dependence and exploring the
impact of settling. The features mentioned here underline that
several more steps remain to be taken to obtain a complete
model of aggregation.
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