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Abstract: Endometrial cancer is one of the most common female pelvic cancers and has been
considered an androgen-related malignancy. Several studies have demonstrated the anti-cell
proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the
anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type
2 (17β-HSD2), which catalyzes the conversion of E2 to E1, is known to be upregulated by
androgen treatment in breast cancer cells. In this study, we therefore focused on the role of
androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT) was found
to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT
could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19
endometrioid endometrial adenocarcinoma (EEA) tissues, intratumoral DHT concentration was
measured by liquid chromatography/electrospray tandem mass spectrometry and was found to
be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined
the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53
EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage,
and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression.
17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases,
the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with
respect to progression-free survival and endometrial cancer-specific survival. These findings suggest
that androgen suppresses the estrogen dependence of endometrial cancer through the induction of
17β-HSD2 in endometrial cancer.

Keywords: 17β-hydroxysteroid dehydrogenase type 2; androgen; endometrial cancer; endometrioid
endometrial adenocarcinoma

1. Introduction

Endometrial carcinoma is one of the most common female pelvic malignancies in developed
countries and continues to show an increased incidence. In the United States alone, 60,050 new cases
and 10,470 deaths were reported for endometrial carcinoma in 2016 [1]. It is well known that sex-steroid
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hormones play pivotal roles in the development of hormone-dependent carcinomas, including prostate,
breast, and endometrial cancers. In the case of endometrial carcinoma, estrogen is known to play
an important role in carcinoma development and progression. As previously demonstrated, excessive
and/or prolonged exposure to unopposed estrogens increases the risk of endometrial carcinoma,
especially the endometrioid type, also known as Type I endometrial carcinoma [2].

Furthermore, 17β-hydroxysteroid dehydrogenase (17β-HSD) plays an important role in
determining intratumoral estrogen concentrations in both breast and endometrial cancers. 17β-HSD
type 2 (17β-HSD2) preferentially catalyzes the conversion of testosterone and estradiol (E2) to
androstenedione and estrone (E1), respectively [3,4]. On the other hand, 17β-HSD type 1 (17β-HSD1)
is responsible for the conversion of E1 to E2 [3,4]. In breast cancer, it is suggested that 17β-HSD1
plays an important role in the intratumoral estrogen concentration. However, in endometrial cancer
17β-HSD1 expression is either undetectable or very weak, while 17β-HSD2 is essential for the
maintenance of intratumoral estrogen concentrations [5].

Recently, 17β-HSD2 expression was found to be closely associated with androgen signaling
through binding to the androgen receptor (AR) in breast cancer cells [6,7]. Takagi et al. [6] reported
that E2-mediated proliferation in an AR-positive breast cancer cell line, T-47D, was significantly
inhibited by dihydrotestosterone (DHT). E2-mediated proliferation was also associated with increased
17β-HSD2 expression, which was induced by DHT in a dose-dependent fashion. AR expression is
also found in a large majority of endometrial cancers and is associated with a good prognosis [8,9].
In addition, we reported that 5α-reductase type 1 immunoreactivity was positively associated with the
intratumoral level of DHT and was an independent prognostic factor in endometrial cancer [8].
However, the mechanisms of the anti-cancer effect of androgen remain largely unclear. In the
present study, we therefore first examined the effect of DHT treatment on 17β-HSD2 expression in
endometrial cancer cells in vitro followed by an examination of the correlation between the expression
of 17β-HSD2 immunoreactivity and intratumoral androgen concentrations in 19 endometrioid
endometrial adenocarcinoma (EEA) tissues, as measured by liquid chromatography/electrospray
tandem mass spectrometry (LC-MS/MS). Furthermore, the relationship between 17β-HSD2 expression
and clinicopathological parameters, including patient outcomes, was evaluated in an additional 53
EEA patients.

2. Results

Expression levels of ERα, AR, and 17β-HSD2 in endometrial cancer cell lines were examined.
Expression of ERα and AR were detected by Western blotting (Figure 1A). Relatively high levels of
ERα protein were detected in both Ishikawa and HEC-1B cells compared to those in HEC-1A, Sawano,
and RL95-2 cells (Figure 1A). AR protein expression was detected in all cell lines except for Sawano
(Figure 1A). Expression of 17β-HSD2 mRNA evaluated by qRT-PCR is shown in Figure 1B. 17β-HSD2
mRNA was markedly overexpressed in HEC-1A (Figure 1B). Relatively high expression levels of
17β-HSD2 mRNA were also detected in HEC-1B compared to Ishikawa and RL95-2 cells (Figure 1B).
Based on these results, we employed Ishikawa, HEC-1A, and HEC-1B cells in subsequent 17β-HSD2
mRNA induction assays.

2.1. Induction of 17β-HSD2 Expression by DHT

17β-HSD2 mRNA levels in Ishikawa cells were increased by more than 1.5-fold, compared
to control cells, when treated with both 1 nM and 10 nM DHT; however, these differences were not
statistically significant (Figure 1C). DHT (0.1 nM and 1 nM) treatment significantly increased 17β-HSD2
mRNA in HEC-1A (p < 0.05). However, estradiol did not stimulate cell proliferation in HEC-1A (data
not shown). It is possible that the ERα was not functional because its expression level was low in
HEC-1A cells when compared to Ishikawa and HEC-1B (Figure 1A).

Expression levels of 17β-HSD2 mRNA in HEC-1B cells were increased by DHT in
a dose-dependent manner, with significant differences, compared to the control, observed from 10 nM
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(p < 0.001) (Figure 2A). The effect of DHT treatment on 17β-HSD2 mRNA induction was significantly
inhibited by co-treatment with 1 µM bicalutamide (p < 0.001, Figure 1A). Bicalutamide (1 µM) alone
did not significantly change 17β-HSD2 mRNA levels in HEC-1B cells (data not shown). In Western
blot analysis, relatively high levels of 17β-HSD2 immunoreactivity were detected in HEC-1B cells
treated with 1 nM and 10 nM DHT. The induction of 17β-HSD2 immunoreactivity was inhibited by
1 µM bicalutamide treatment (Figure 2B).

Figure 1. (A) Expression of ERα and AR proteins in endometrial cancer cell lines. ERα and AR proteins
were detected by Western blotting. (B) Expression of 17β-HSD2 mRNA in endometrial cancer cell lines.
17β-HSD2 mRNA expression was examined using qRT-PCR. (C) Effect of DHT treatment on 17β-HSD2
mRNA expression in Ishikawa cells; (D) effect of DHT treatment on 17β-HSD2 mRNA expression in
HEC-1A cells. ‘0’ denotes vehicle treatment alone; * p < 0.05.

Figure 2. (A) Effect of DHT treatment on 17β-HSD2 mRNA expression in HEC-1B cells. 17β-HSD2
mRNA expression was examined using qRT-PCR. BIC, bicalutamide; ‘0’ denotes vehicle treatment
alone; * p < 0.05. (B) Effect of DHT treatment on 17β-HSD2 protein expression in HEC-1B cells.
17β-HSD2 protein was detected by Western blotting. BIC, bicalutamide; ‘0’ denotes vehicle treatment
alone. (C) Effect of DHT and E2 on HEC-1B cell proliferation. BIC, bicalutamide; ‘0’ denotes vehicle
treatment alone; * p < 0.05; ** p < 0.01.
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2.2. DHT Inhibits E2-Induced Cell Proliferation in HEC-1B Cells

HEC-1B cells were treated with or without E2 (100 pM), DHT (10 nM), and bicalutamide (1 µM)
for 4 days (Figure 2C). The relative cell proliferation was evaluated as a ratio (%) compared with
control cells. HEC-1B cell proliferation was significantly higher in E2-treated (0.1 nM) HEC-1B cells
than in control HEC-1B cells. DHT (10 nM) treatment significantly inhibited the increase in HEC-1B
cell proliferation induced by E2 (0.1 nM). This DHT inhibitory effect on E2-induced cell proliferation
was significantly prevented by co-treatment with bicalutamide (1 µM).

2.3. Immunohistochemistry of 17β-HSD2 and AR in EEA

17β-HSD2 immunoreactivity was detected in the cytoplasm of carcinoma cells (Figure 3A),
while AR immunoreactivity was detected in the nuclei of carcinoma cells (Figure 3B). In the 19 cohort
1 EEA tissues, staining for 17β-HSD2 was positive in 7 cases (36.8%). All 19 samples were AR positive.
In the 53 cohort 2 EEA tissues, staining for 17β-HSD2 was positive in 19 cases (35.8%) (Table 1).
Staining for AR was positive in 40 cases (75.5%) (Table 1).

Table 1. Correlation between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53
patients with EEA.

Parameter
Total

(n = 53)
17β-HSD2

+ (n = 19) − (n = 34) p-Value

Grade 1 (G1) 22 11 11
2 (G2) 20 7 13
3 (G3) 11 1 10 0.0480

Stage
I, II 43 19 24
III, IV 10 0 10 0.0218

LVI
No 37 15 22
Yes 16 4 12 0.2704

MI
None or less than half 31 14 17
More than half 22 5 17 0.0884

Androgen receptor
Positive 40 17 23
Negative 13 2 11 0.0629

Estrogen receptor
Positive 37 15 22
Negative 16 4 12 0.2704

Progesterone receptor
Positive 33 17 16
Negative 20 2 18 0.0023

Ki-67 LI median
(min-max) (%)

20.4
(3–90)

30.6
(0–96) 0.0212

MI, myometrial invasion; LVI, lymphovascular invasion. We performed lymphadenectomy for 42 cases, and did not
resect any lymph node in 11 cases (not resected).
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Figure 3. Immunohistochemistry for 17β-HSD2 (endometrioid endometrial adenocarcinoma: grade 1,
stage IA) ((A) low magnification; (B) high magnification) and AR (endometrioid endometrial
adenocarcinoma: grade 1, stage IA) ((C) low magnification; (D) high magnification). Scale bar, 100 µm
(A,C) and 500 µm (B,D).

2.4. 17β-HSD2 Expression Is Correlated with DHT Concentration in Cancer Tissues

We evaluated the correlation between the areas of immunoreactivity of 17β-HSD2 and
intratumoral DHT concentration in 19 EEA tissues (Figure 4). As shown in Figure 4A, the area of
immunoreactivity of 17β-HSD2 (%) was positively correlated with the intratumoral DHT concentration
in 19 EEA tissues. We also examined the intratumoral concentration of E2 and E1 in 19 EEA
tissues. As shown in Figure 4B,C, the intratumoral E2 concentration did not correlate with DHT
concentration. Meanwhile, the intratumoral E1 concentration was significantly positively correlated
with the intratumoral DHT concentration. However, E2/E1 ratio was not correlated with the
intratumoral DHT concentration (Figure 4D).

Figure 4. (A) Correlation between 17β-HSD2 (%) and intratumoral DHT concentration (pg/g)
in 19 endometrioid endometrial adenocarcinoma cases. (B–D) Correlation between intratumoral
DHT and E1 (B), E2 (C) concentrations (pg/g) or E2/E1 ratio (D) in 19 endometrioid endometrial
adenocarcinoma cases.
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2.5. 17β-HSD2 Clinicopathological Parameters in EEA

The correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters are
summarized in Table 1. Nineteen of the 53 cohort 2 EEA tissues (35.8%) were 17β-HSD2-positive.
The 17β-HSD2 status was inversely associated with the histological grade (p < 0.05), clinical stage
(stage I and II vs. stages III and IV), and the Ki-67 LI (p < 0.05), and positively correlated with the PR
LI (p < 0.01). 17β-HSD2 status tended to be positively associated with AR status (p = 0.0629).

The progression-free survival (PFS) and endometrial cancer-specific survival (ECSS) curves of the
patients were constructed using the Kaplan–Meier method (Figure 5). In this analysis, we examined PFS
rather than disease-free survival to include stage IVB lesions, for which distant metastases remained
after the primary surgery. We also examined ECSS rather than the overall survival because one patient
death was unrelated to endometrial cancer and occurred in the absence of relapse. Patients positive
for 17β-HSD2 immunoreactivity tended to have better prognosis than those negative for 17β-HSD2
immunoreactivity, with respect to PFS (Figure 5A) and ECSS (Figure 5B).

Figure 5. Correlation between 17β-HSD2 status and progression-free survival (A) or endometrial
cancer-specific survival (B) for 53 patients with endometrioid endometrial adenocarcinoma. 17β-HSD2
status was evaluated via immunohistochemistry, and immunoreactivity greater than 50% was
considered positive. Dates were compared statistically using the log-rank test. p < 0.05 was considered
significant. The median value of 17β-HSD2 score was as follows: total, 40 ± 20.30 (range 0–70%);
positive group, 50 ± 6.97 (range 50–70%); negative group, 20 ± 14.45 (range 0–40%).

3. Discussion

To the best of our knowledge, this is the first report that 17β-HSD2 was induced by DHT in
endometrial cancer. It has long been known that 17β-HSD2 mRNA expression is induced by DHT
treatment in prostate (LNCaP) [10] and breast (T-47D) [6] cancer cell lines. In invasive lobular carcinoma
(ILC) of the breast, significant positive association was reported between the status of androgenic
enzymes, which are 17β-HSD type 5 (17β-HSD5) and 5α-reductase, and 17β-HSD2 [7]. In addition,
17β-HSD2 expression was inversely correlated with tumor size of breast ILC [7]. These findings,
combined with the results from our present study, indicate that DHT acted, at least in part, through
17β-HSD2 induction and decreasing intratumoral E2 concentrations, to influence anti-proliferative
effects in breast and endometrial cancer. Takagi et al. [6] also reported that E2-mediated proliferation
was significantly inhibited by DHT in AR-positive T-47D cells. In this instance, proliferation was also
associated with an increase in 17β-HSD2 expression levels [6]. In addition, local E2 concentrations
were inversely associated with 17β-HSD2 status in breast carcinoma tissues [6]. In our study, the cell
proliferative effect of E2 was significantly inhibited by DHT treatment in HEC-1B cells. Therefore,
it is considered that intratumoral estrogen concentrations were reduced by 17β-HSD2, which was
induced by DHT treatment in both endometrial and breast cancers. In our study, DHT did not have
a significant effect on 17β-HSD2 expression in Ishikawa cells, which had very low levels of 17β-HSD2
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expression. We believe that stable results were not obtained because of very low levels of 17β-HSD2
expression in Ishikawa cells.

In the present study, an inverse correlation between intratumoral E2 and DHT was not observed in
19 EEA tissues examined owing to the small number of cases. Furthermore, both intratumoral E1 and E2
concentrations positively correlated with DHT concentration in all 19 EEA tissues. However, the E2/E1
ratio also did not correlate with DHT concentration for the 19 EEA cases. It is well-established
that in breast cancer tissues, circulating androstenedione is converted by aromatase to E1 [11,12].
Intratumoral E1 is then further converted to E2 by 17β-HSD1 activity in breast cancer tissues [11,12].
Therefore, androstenedione has a key role in intratumoral estrogen synthesis in estrogen-dependent
breast cancer. On the other hand, in endometrial cancer, E1 is not converted to E2 because of lack of
17β-HSD1 expression [13]. As expected, there was no 17β-HSD1 immunoreactivity in 19 EEA tissues
examined in our study (data not shown). Therefore, testosterone to E2 conversion is an important
pathway for intratumoral estrogen synthesis in endometrial cancer. It is also well-known that
17β-HSD2 converts testosterone into androstenedione, whereas 17β-HSD5 produces testosterone
from androstenedione [14,15]. Therefore, these findings, in addition to the results from our study,
suggest that 17β-HSD2 is a key player in intratumoral estrogen and androgen production. Further
examination of the correlation between 17β-HSD2 and other estrogen/androgen-related enzymes
is, however, required to clarify the role of 17β-HSD2 in the intratumoral hormone environment of
endometrial cancer.

In breast cancer, 17β-HSD2 expression was reported to show significant association with decreased
risk to develop late relapse [16,17]. We have reported that 17β-HSD2 immunoreactivity was detected in
37% of endometrial carcinoma cases and correlated with 17β-HSD2 enzymatic activity and expression
of 17β-HSD2 mRNA [13,18]. In a normal endometrium, it was reported that both 17β-HSD2 protein and
mRNA were present at all the stages of the secretory phase, but not in the endometrial mucosa during
the proliferative phase [18,19]. Several studies consistently detected 17β-HSD2 mRNA expression
in endometrial carcinoma compared to the adjacent normal endometrium at menopause [20–22].
Therefore, the 17β-HSD2 enzyme may play an important role in modifying the balance of estrogen
production in endometrial carcinoma. In this study, 17β-HSD2 status was inversely associated
with the histological grade, clinical stage (stage I and II vs. stages III and IV), and the Ki-67 LI
(Table 1). The 17β-HSD2 positive cases had lower levels of Ki-67 LI; therefore, 17β-HSD2 possibly
inhibits cell proliferation in EEA cells. The 17β-HSD2 positive group tended to have good prognoses,
but a significant difference between them was not observed. In 17β-HSD2 positive cases, there were
no deaths. Further studies, including a larger number of cases and longer periods of follow-up, are,
therefore, warranted to elucidate the functional significance of 17β-HSD2 in endometrial cancer.

17β-HSD2 is considered as a DHT-induced gene in endometrial cancer cells, although
androgen-responsive genes are not currently characterized in endometrial cancer cells. In the present
study, DHT was found to induce 17β-HSD2 expression in HEC-1B cells. To the best of our knowledge,
these findings have not been previously reported. Results obtained in our study suggest that the
androgen signal plays a crucial role in the estrogen-dependency of ER-positive endometrial cancer
cells. AR target genes such as XBP1, MYC, ZBTB16, and UHRF1 were previously reported to be
induced by DHT treatment in AR-positive endometrial cancer MFE-296 cells [23]. It was also reported
that XBP1 and UHRF1 are related to tumor growth or carcinogenesis in endometrial cancer [24,25].
Furthermore, several studies demonstrated that tumor suppressor genes were directly induced by
androgen treatment through AR genomic action in breast and prostate cancers [26,27]. It has also
been suggested that androgen and its receptor signal may exert anti-tumor effects on endometrial
cancer [14,15]. Further studies, such as comprehensive gene expression analysis, are, however, required
to clarify the role that androgens play in the pathogenesis of endometrial cancer.
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4. Materials and Methods

4.1. EEA Patient and Tissue Preparation

A total of 72 endometrial endometrioid adenocarcinoma tissues (EEA) of postmenopausal
women were retrieved from the surgical pathology files of Tohoku University Hospital, Sendai,
Japan. Both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) specimens were available for
19 patients operated between 2012 and 2013 (cohort 1). The other 53 EEA tissues were available only as
FFPE samples and were collected between 1993 and 2003 (cohort 2). The Ethics Committee of Tohoku
University School of Medicine approved the research protocol of this examination (No. 2013-1-265).
The clinicopathological parameters of the 19 patients in cohort 1 are summarized in Table S1.
We measured E2, E1, and DHT concentration using LC-MS/MS in the 19 EEA fresh-frozen samples.
The clinicopathological features of the 53 patients in cohort 2, for whom only FFPE tissues were
available, are summarized in Table S2. None of the patients received radiation therapy, hormone
therapy, or chemotherapy before surgery. All 72 EEA samples were post-menopausal to exclude the
effect of serum hormonal concentration.

In Tohoku University Hospital, the standard primary treatment is surgery consisting of total
abdominal hysterectomy, salpingo-oophorectomy, and pelvic and/or para-aortic lymphadenectomy
with peritoneal washing cytology. Among 19 and 53 patients in cohort 1 and 2, 12 patients in cohort 1
and 42 patients in cohort 2 underwent lymphadenectomy, respectively. The lymph node metastasis was
shown in four patients in cohort 1 and three patients in cohort 2, respectively. Pathological diagnosis
including evaluation of pathological types and histologic grades was evaluated independently by
pathologist and cytopathologist (S.T., K.I.). We diagnosed the patients according to the FIGO 2009
staging guidelines (FIGO Committee on Gynecologic Oncology, 2009).

Among 53 patients in cohort 2, 31 patients received pelvic radiation therapy (50 Gy) or 3–6 courses
of chemotherapy [cisplatin-based combination regimen CAP (60–70 mg/m2 cisplatin, 40 mg/m2

doxorubicin, and 500 mg/body weight cyclophosphamide, triweekly)]. Among 19 patients in cohort 1,
10 patients received 3–6 courses of chemotherapy [AP (60 mg/m2 adriamycin and 50 mg/m2 cisplatin,
triweekly) or TC (175 mg/m2 Taxol and area under the curve 5 carboplatin, triweekly)] after surgery.
Patients diagnosed with early-stage and low-grade disease (stage IA, grade 1; or stage IA, grade 2) did
not receive any adjuvant therapy. Patients with poor performance status also had no any adjuvant
therapy. None of the patients in cohorts 1 and 2 received hormonal therapy after surgery.

4.2. Cell Lines and Chemicals

Ishikawa 3-H-12, HEC-1A, and HEC-1B were obtained from the Japanese Collection of Research
Bioresources Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition (Osaka,
Japan). RL95-2 (CRL-1671) was obtained from the American Type Culture Collection (Manassas,
VA, USA). Sawano was obtained from the RIKEN BioResource Center (Tsukuba, Japan). Ishikawa
3-H-12, HEC-1A, and HEC-1B were cultured in MEM (Sigma-Aldrich, St. Louis, MO, USA) with
10% fetal bovine serum (FBS; Nichirei, Tokyo, Japan). HEC-1B cells were cultured in phenol
red-free DMEM/F12 (Sigma-Aldrich) medium containing 10% dextran-coated charcoal (DCC)-FBS
for three days before experimental treatment. DHT and E2 were purchased from Wako Pure
Chemical Industries (Osaka, Japan). Bicalutamide, was purchased from Abcam (Cambridge, UK).
Bicalutamide, which is well established as an androgen receptor antagonist, was employed in the
range of 1 µM to 10 µM in several in vitro studies [28–30]. 10 µM bicalutamide had a cytotoxic effect
at 24 h on HEC-1B cells (data not shown). Therefore, in this study, we used 1 µM bicalutamide to
block androgen receptor signals. The status of cell proliferation was determined using the WST-8
(2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium monosodium
salt) method (Cell Counting Kit-8; Dojindo, Kumamoto, Japan).

In general, the E2 concentration used in in vitro studies ranged from 0.1 nM to 10 nM [31–33].
In this study, we used 0.1 nM E2, which was within the range of E2 levels found in EEA examined
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in this study. We used 0.1–10 nM DHT, the range used for in vitro experiments [6,29,30], for the
17β-HSD2 mRNA induction assay. A concentration of 10 nM DHT was approximately 10 times the
average intratumoral concentration in EEA examined in this study. It is considered that 10 nM DHT
did not exert a significant pharmacological effect in this examination due to the following reasons:
DHT may be used at doses up to 100 nM [30]; the effect of DHT was inhibited by AR antagonist
(Figure 2); and the induction of 17β-HSD2 mRNA was also obtained by 1 nM DHT treatment, though
the difference was not statistically significant (Figure 2).

4.3. Real-Time PCR

Total RNA was extracted using TRIzol reagent (Molecular Research Center, Cincinnati, OH,
USA), and cDNA synthesized using a QuantiTect reverse transcription kit (Qiagen, Hilden,
Germany). Real-time PCR was carried out using the LightCycler System and FastStart DNA
Master SYBR Green I (Roche Diagnostics, Mannheim, Germany). The PCR primer sequences
for 17β-HSD2 and the ribosomal protein L13A (RPL13A) were as follows; 17β-HSD2 (NM_002153):
forward 5′-CAAAGGGAGGCTGGTGAA-3′ and reverse 5′-TTGAGGACCTCTGTGTATTT-3′;
and RPL13A (NM_012423): forward 5′-CCTGGAGGAGAAGAGGAAAGAGA-3′ and reverse
5′-TTGAGGACCTCTGTGTATTTGTCAA-3′. PCR products were purified and subjected to direct
sequencing to verify amplification of the correct sequences. 17β-HSD2 mRNA levels were determined
as a ratio of the reference RPL13A mRNA levels (%). We used only one housekeeping gene for
normalization of quantitative PCR.

4.4. Western Blotting

Protein was extracted from cultured cells using Mammalian Protein Extraction Reagent (Pierce
Biotechnology, Rockford, IL, USA) added with Halt Protease Inhibitor Cocktail (Pierce Biotechnology).
The protein extracted from whole cell (20 µg) was analyzed by SDS-PAGE (10% acrylamide gel) and
transferred onto Hybond P polyvinylidene difluoride membrane (GE Healthcare, Little Chalfont, UK).
Primary antibodies employed in this study were anti-human 17β-HSD2 (10978-1-AP; Proteintech,
Chicago, IL, USA) and anti-human β-actin (AC-15; Sigma-Aldrich). Antibody–protein complexes were
detected using ECL plus Western Blotting Detection reagents (GE Healthcare), and visualized with
LAS-1000 image analyzer (Fuji Photo Film, Tokyo, Japan). The intensity of each band of 17β-HSD2
was quantitated by using the Imaging Analyzer (Lumina Vision; MITANI CORPORATION, Tokyo,
Japan). The data were demonstrated as an intensity score in Figure 2.

4.5. Immunohistochemistry

Rabbit polyclonal antibody against 17β-HSD2 (10978-1-AP) was purchased from Proteintech.
Mouse monoclonal antibodies against androgen receptor (AR; AR441), estrogen receptor (ER; ER1D5),
progesterone receptor (PR; MAB429), and Ki-67 (MIB1) were purchased from DAKO (Carpinteria,
CA, USA), Immunotech (Marseille, France), Chemicon (Temecula, CA, USA), and DAKO, respectively.
A Histofine Kit (Nichirei), which employs the streptavidin–biotin amplification method, was used for
immunohistochemistry. The antigen–antibody complex was visualized with 3,3′-diaminobenzidine
(DAB) solution (1 mM DAB, 50 mM Tris–HCl, pH 7.6, and 0.006% H2O2) and counterstained
with hematoxylin.

4.6. Evaluation of Immunoreactivity

The immune expression of AR, PR, ER, and Ki-67 was detected in the nuclei of endometrial
cancer cells. We counted more than 500 carcinoma cells from at least three representative high-power
fields (×400). The percentage of immunoreactive cells [labeling index (LI)] was evaluated. LI more
than 10% was evaluated as being a positive case according to previous reports [34,35]. 17β-HSD2
immunoreactivity was detected in the cytoplasm of carcinoma cells, which were evaluated using
a semi-quantitative score such as positive and negative according to previous reports [13,18].



Int. J. Mol. Sci. 2018, 19, 1139 10 of 13

Taking both intensity of immunoreactivity and expression areas into consideration, specimens
stained with more than 50% immunoreactivity for 17β-HSD2 were evaluated as a positive case,
and those with less than 50% immunoreactivity were determined as a negative case [13,18].
The immunohistochemistry of 17β-HSD2 was reported to be significantly associated with its enzyme
activity and mRNA expression, when the cutoff value of the immunohistochemical score was 50% [18].

4.7. LC-MS/MS

The intratumoral concentrations of DHT, E2, and E1 in 19 endometrial specimens were measured
using LC-MS/MS at ASKA Pharma Medical Co. Ltd. (Kawasaki, Japan), as described previously [6,36].
Approximately 1 cm3 specimens were obtained immediately after hysterectomy and cryopreserved at
−80 ◦C in liquid nitrogen. Pathological diagnoses were conducted using an adjacent section of tissue.
For all of these specimens we employed LC-MS/MS analysis, which confirmed that the proportion of
carcinoma cells was at least 80%. The weights of tissue specimens used for LC-MS/MS analysis were
9–100 mg (mean ± standard deviation [SD]; 49 ± 21 mg). Frozen tissues were homogenized in 1 mL
distilled water. Then, the steroid fraction derived from these samples was extracted by diethyl ether.
LC system (Agilent 1100, Agilent Technologies, Waldbronn, Germany) coupled with an API 4000 triple
stage quadrupole mass spectrometer (Applied Biosystems, Concord, ON, Canada) operated with
electron spray ionization in the positive ion mode were employed in this analysis. Chromatographic
separation was performed on a Cadenza CD-C18 column (3 × 150 mm, 3.5 mm, Imtakt, Kyoto, Japan).
The detection limits of E2, E1, and DHT were 1.0. 2.0, 1.0 pg/g, respectively. Values less than the
detection limit were assigned 0.0 pg/g.

4.8. Statistical Analyses

Statistical analyses were carried out using JMP Pro12 (SAS Institute Japan, Tokyo, Japan).
The statistical significance of correlations between the 17β-HSD2 status and the DHT concentration
in EEA were examined using the Wilcoxon test. The statistical significance of correlations between
17β-HSD2 status and other clinicopathological parameters [grade, stage, lymphovascular invasion
(LVI), myometrial invasion (MI), AR status, ER status, PR status, and Ki-67 labeling index (LI)] were
examined using the χ2 and Wilcoxon tests. Univariate analyses were examined using the Kaplan–Meier
method and the log-rank test. p-values < 0.05 were considered statistically significant in this study.

5. Conclusions

E2 is known as a major substrate for 17β-HSD2. 17β-HSD2 catalyzes the oxidation of the highly
active E2 into the weak estrone, which has a very low affinity to ER compared to E2. In our study,
HEC-1B cell proliferation was increased by E2 treatment. We found that induction of 17β-HSD2
occurred in HEC-1B cells when the cells were treated with DHT with E2, and E2 co-treated was
converted into the weaker form, E1 (Figure 6). This finding suggests that DHT decreased E2-dependent
endometrial cancer proliferation.
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Figure 6. (A) In endometrial cancer cells, estradiol promotes cancer cell proliferation through binding
to estrogen receptors (ER). (B) Androgen [dihydrotestosterone (DHT)] induces 17β-HSD2 expression
through binding to androgen receptors (AR). When estradiol is converted into the weaker estrone,
by 17β-HSD2, the cell proliferative activity of ER signal is diminished.
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