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Parkinson’s disease (PD) is the second most common neurodegenerative

disease with a fast-growing prevalence. Developing disease-modifying

therapies for PD remains an enormous challenge. Current drug treatment

will lose efficacy and bring about severe side effects as the disease

progresses. Extracts from Ginkgo biloba folium (GBE) have been shown

neuroprotective in PD models. However, the complex GBE extracts

intertwingled with complicated PD targets hinder further drug development.

In this study, we have pioneered using single-nuclei RNA sequencing data in

network pharmacology analysis. Furthermore, high-throughput screening for

potent drug-target interaction (DTI) was conducted with a deep learning

algorithm, DeepPurpose. The strongest DTIs between ginkgolides and

MAPK14 were further validated by molecular docking. This work should help

advance the network pharmacology analysis procedure to tackle the limitation

of conventional research. Meanwhile, these results should contribute to a better

understanding of the complicated mechanisms of GBE in treating PD and lay

the theoretical ground for future drug development in PD.
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Introduction

Parkinson’s disease (PD) is mainly manifested by progressive motor impairment

(Armstrong and Okun, 2020), leading to severe damage to the everyday lifestyle of

6.1 million patients worldwide (Shandilya et al., 2022). Prevalence and disability-adjusted

life years (DALYs) of PD have been increasing in recent decades (Collaborators, 2019),

causing an enormous burden on the medical system and economy (Rocca, 2018).

The development of novel PD therapeutics is in urgent demand. Without available

disease-modifying therapy, current treatments for PD are only symptomatic (Vijiaratnam

et al., 2021). Long-term symptomatic therapy brings about adverse events, such as

dyskinesia and impulse control disorders (Voon et al., 2017).
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Herbal medicines, including extracts from Ginkgo biloba

extract (GBE), have gradually come to attention as novel

therapies for PD. Herbal medicines generally share the

advantages of multilevel functions with fewer adverse effects

(Yin et al., 2021). Among the most frequently applied herbal

medicines, GBE has been used in clinical therapies since the early

1970s (Saponaro et al., 1971; Bartolo, 1973). One of the most

investigated applications of GBE is in treating

neurodegenerations, represented by Alzheimer’s disease and

mild cognitive impairment (Singh et al., 2019; Nowak et al.,

2021; Tomino et al., 2021). Various studies have also validated

that a mixture of GBE exerts neuroprotective function on both in

vivo and in vitro PDmodels, including toxin-induced PDmodels

on rats (Yu et al., 2021), toxin-induced PD mice (Rojas et al.,

2009; Rojas et al., 2012), transgenic PD mice (Kuang et al., 2018),

and in vitro cultured cell models (Yang et al., 2001; Kang et al.,

2007). Subsequent research is hindered by the mixture nature of

GBE and its multi-target effects. A complicated extraction

procedure is required to obtain bioactive components from

GBE (Liu et al., 2022; Ma et al., 2022), and the procedure is

still ongoing improvement (Boateng, 2022). The variability of

extracts results in difficulty in repeating results across studies,

thereby hampering the exploration of molecular mechanisms.

Delineating the effects of a single active component in GBE

would contribute to proposing feasible targets and aiding future

drug development for PD.

Herein, advances in analytical pharmacy and bioinformatics

would help to detangle the complex molecular mechanisms

underlying the therapeutic efficacy of GBE in PD. The single-

nuclei RNA sequencing (snRNA-seq) has emerged as a powerful

tool for identifying and characterizing cell types, states, and

lineages (Slyper et al., 2020). Recently, the snRNA-seq

approach was conducted to analyze the transcriptome in

midbrains of PD patients (Smajić et al., 2022). Therefore, we

took the unprecedented chance to investigate GBE effects in a

cell-type-specific manner.We intended to focus onmicroglia and

astrocytes in addition to neurons when studying the effects of

GBE. Since PD is attributed to a selective loss of dopaminergic

neurons in the substantia nigra. Meanwhile, mounting clinical

and experimental evidence illuminated that glial cells, especially

microglia and astrocytes, were not only responders but also

significant mediators in PD pathogenesis (Sorrentino et al.,

2019; Bartels et al., 2020). Thus, modulating microglia and

astrocytes functions is a promising pharmacological strategy

for treating PD (Grotemeyer et al., 2022; Lee et al., 2022).

The deep learning approach can be another handy tool to

guide pharmacological studies, including drug-target prediction,

drug repurposing, and novel drug discovery (Zhavoronkov et al.,

2019; Issa et al., 2021; Zhu et al., 2021). Experimental

measurement of the compound–protein binding affinity

remains the most accurate method for studying drug-target

interactions. However, conventional methods are costly, time-

consuming, and laborious, which are infeasible for investigating

the multifarious drug-target interactions (DTI) between complex

GBE ingredients and numerous PD targets. Therefore, deep

learning has been used to conduct high throughput DTI

analyses, which could help to screen out potent DTI between

GBE ingredients and PD-related bio-targets.

In this study, we tended to identify active components in

GBE for PD along with its cell-type-specific targets. Network

pharmacology analysis was conducted, integrating data from

snRNA-seq and existing drug datasets. A cell-type-specific

compound-target-pathway network was established, and DTI

was subsequently investigated with a deep learning algorithm.

Then, we validated the results by molecular docking. This

research will contribute to a better understanding of the

molecular mechanisms of treating PD with GBE.

Methods

Collecting and selecting compounds
in GBE

Firstly, components of GBE were collected via searching the

terms: “ginkgo folium,” “folium ginkgo,” and “Yinxingye” in

databases. TCMSP (Ru et al., 2014) (https://old.tcmsp-e.com/

index.php, version 2.3), TCMID (Huang et al., 2018) (http://bidd.

group/TCMID/, version 2.0) and SymMap (Wu et al., 2019)

(http://www.symmap.org/, version 2.0) databases rendered 307,

94 and 319 ingredients of GBE, respectively. All data were

collected on 18 May 2022.

Secondly, PubChem CID was retrieved from PubChem

(https://pubchem.ncbi.nlm.nih.gov/) to identify each

component.

We also searched the PubMed database with the following

terms " (Ginkgo biloba leaf OR Ginkgo biloba folium) AND

(components OR ingredients OR metabolite)" and added

ginkgolide K, which was not timely updated in databases (Li

et al., 2018a).

Thirdly, chemical properties and pharmacokinetic profiles of

components were retrieved. The chemical properties of

components were annotated via SwissADME (http://www.

swissadme.ch) (Daina et al., 2017), which provided

information on molecular weight, lipophilicity (log Po/w),

number of H-bond acceptors, number of H-bond acceptors,

number of rotatable bonds, and topological polar surface area

(TPSA). ADMETlab 2.0 (Xiong et al., 2021) (https://admetmesh.

scbdd.com/) was employed to evaluate compound

pharmacokinetics and toxicity. To assess components’ oral

bioactivity, HobPre (www.icdrug.com/ICDrug/ADMET) (Wei

et al., 2022), a classification model, was exploited. The

ADMET profiles of components were obtained from pkCSM

(Pires et al., 2015) (http://structure.bioc.cam.ac.uk/pkcsm).

With all the above data collected, Lipinski’s Rule (Lipinski

et al., 2001) was subjected to assess the draggability of collected
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compounds. A total of 25 selected compounds were selected and

listed in Supplementary Table S1. These compounds met the

following criteria: molecular weight of fewer than 500 Da; log Po/

w lower than five and higher than −2; five or fewer hydrogen bond

donor sites and tenor fewer hydrogen bond acceptor sites; the

number of rotatable bonds less than 10.

Acquiring potential molecular targets of
GBE components

Every selected component has been searched in SymMap

(Wu et al., 2019) (http://www.symmap.org/, version 2.0)

database, and 272 potential molecular targets were retrieved.

SymMap database integrates target information from HIT (Ye

et al., 2011) (http://lifecenter.sgst.cn/hit/), TCMSP, HPO (Köhler

et al., 2021) (https://hpo.jax.org/app/), DrugBank (Wishart et al.,

2018) (https://go.drugbank.com/), NCBI(https://www.ncbi.nlm.

nih.gov/) and HERB (Fang et al., 2020a) (http://herb.ac.cn/)

databases. Additional pharmacoproteomic and pharmaco-

transcriptomic data were obtained manually. Additional

ginkgolide J, ginkgolide M, and ginkgolide K targets data,

which is not included in the above databases, was retrieved

from the Comparative Toxicogenomics Database (CTD)

(Davis et al., 2017) (URL: http://ctdbase.org/). All data were

collected on 18 May 2022. After removing duplicates, 283 genes

were identified as putative GBE targets for PD.

Acquiring PD-related-targets in different
cell types from single-nuclei RNA
sequencing data

Gene expression profile of different cell types from the

idiopathic Parkinson’s disease patient’s brain snRNA-seq

(Smajić et al., 2022) (GSE157783) was used to identify the

disease-related targets in this study. Cell-type-specific genes

were identified using the Quasi-Poisson generalized linear

model implemented in the fit models function of the R

package monocle3 (version 1.0.0) (Trapnell et al., 2014). The

cutoff q coefficient was set at 0.05 to obtain differentially

expressed genes (DEGs) in each cell type. The potential

targets were identified by overlapping genes of GBE targets

and DEGs in different cell types of PD. Intersections were

visualized with R package VennDiagram (version 1.7.3) (Chen

and Boutros, 2011).

PPI networks construction

Protein-protein interaction (PPI) network of all targets was

constructed using Cytoscape software (version 3.9.1) with data

from STRING (Szklarczyk et al., 2015) (version 10.0) database.

The confidence score cutoff was set at 0.4.

GO and KEGG pathway enrichment
analysis

R package topGO (version 2.46.0) and cluster profile

(version 4.2.2) was employed to conduct Gene Ontology

(GO) and KEGG pathway analysis. Reference gene data

were retrieved using R package, org. Hs.eg.db (version

3.14.0). The p-value cutoff was set at 0.05, and the q-value

cutoff was set at 0.01 for all analyses. Top clusters from GO

and KEGG enrichment were visualized using R package

ggplot2 (version 3.3.5) and enrichplot (version 1.14.2). All

mentioned analysis was conducted on R version 4.1.2.

Drug-target interaction (DTI) prediction
with DeepPurpose

Pre-trained model CNN_CNN_BindingDB provided by

DeepPurpose (Huang et al., 2020) (https://github.com/

kexinhuang12345/DeepPurpose) was used to calculate the

binding score between selected targets and their proven

ligands. In this pre-trained model, Convolutional Neural

Network (CNN) was chosen to encode SMILES of

components and the amino acid sequence. The Binding

Database (BindingDB), a public drug-target binding

benchmark dataset, was employed to provide measured

binding affinities. DeepPurpose generates predictions via a

Multi-Layer Perceptron (MLP), one of the most common

artificial neural networks. All amino acid sequences of the

selected targets were collected from UniProt (Consortium,

2020) (https://www.uniprot.org/). The SMILES of each

component were obtained from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/).

Molecular docking

Molecular docking was performed using the SwissDock

(Grosdidier et al., 2011) server (http://www.swissdock.ch/). 3D

structure of MAPK14 protein was obtained from RCSB PDB

(https://www.rcsb.org/) with PDB ID: 1WBS. The chemical

structure of ginkgolide J and ginkgolide A was obtained from

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

The DockPrep plugin of Chimera (version 1.16, build 42,360)

was employed to prepare the structures before docking. Docking

results were analyzed and visualized using UCSF Chimera

(version 1.16, build 42,360) and LigPlot (Laskowski and

Swindells, 2011) (version 2.2.5).
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Results

Potential active components and related
targets of GBE

Chemical components of GBE were searched and collected

from TCMSP, TCMID, and SymMap databases and manually

checked references from PubMed. After screening the

druggability of these compounds using Lipinski’s Rule

(Lipinski et al., 2001), a total of 25 compounds were

selected (Figure 1). The selected components’ chemical

properties and ADMET profiles were listed in detail

(Supplementary Table S1). Flavonoids or flavonoid

derivatives were the major part of GBE. Other major active

compounds were the terpenoid of the Ginkgo biloba,

including bilobalide and ginkgolides. Most components

were with high permeability, indicating a high degree of

absorption. The toxicity of all components was relatively

low except for fluoranthene and pyrene, which suggested

suitability for drug development. Targets of these selected

compounds were retrieved from databases and supplemented

by manually screened references, rendering 283 potential

targets.

Target genes in different cell types of PD

Aided by recent advances in the snRNA-seq technique, we could

characterize all cell types in the midbrain of Parkinson’s disease

(Smajić et al., 2022). Astrocytes and microglia have been proved

FIGURE 1
ADMET features of 26 compounds in GBE. Heatmaps showed pharmacokinetic parameters of two components in GBE, including parameters
describing drug absorption, distribution, metabolism, excretion, and toxicity.
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critical modulators in PD pathogenesis and are both targets of

disease-modifying therapies (Bartels et al., 2020; Lee et al., 2022).

Thus, we selected microglia, astrocytes, and neurons as potential

cellular targets of GBE. PD-related targets were determined

according to DEGs in different cell types. As shown in Venn

diagrams (Figure 2), potential targets were identified in the

intersections between GBE and PD-related targets. The 3-

category Veen diagram showed that only several targets were

shared between cell types, such that PIK3CA was identified as a

potential target in all 3 cell types. Despite that, most GBE targets

were unique in each cell type. Cell-type-specific GBE targets were

listed in Supplementary Table S2, and Supplementary

Figure S1 showed the overlapping status of GBE targets in other

cell types.

FIGURE 2
PPI Network analysis of potential GBE targets for PD. All GBE targets for PD inmicroglia, neurons, and astrocytes were identified via PPI Network.
Node size was positively correlated to the degree score. The thickness of the edges indicated the connectivity score between linking nodes. Three
Venn diagrams showed cell-type-specific targets in the intersection between PD-related targets and GBE targets.

FIGURE 3
GO enrichment analysis of the potential GBE targets for PD in three cell types. GO enrichment analysis of the potential GBE targets inmicroglia,
neurons and astrocytes were conducted separately. The top five categories of biological process (BP) for each cell type were shown together with
genes enriched in each category. Dot size represents the number of genes enriched in each category.
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GO and KEGG pathway enrichment
analysis

GO, and KEGG enrichment analysis was performed

separately on GBE targets in 3 cell types, documented in

Supplementary Tables S3, S4, respectively. The categories of

pathway enrichment include biological process (BP), cellular

component (CC), and molecular function (MF). The top

enriched BP of targets is shown in Figure 3 and

Supplementary Figure S2. Note that no CC category was

enriched with a p-value set at 0.05 in microglia targets.

Results showed that GBE potentially contributes to PD

therapy by influencing neurons on biological processes

involved in the cellular response to peptide hormone and

peptide. For astrocytes, GBE would affect biological processes

relating to peptidyl-serine phosphorylation. In microglia, GBE

may also contribute to peptidyl-serine modification and response

to insulin. Figure 4 and Supplementary Figure S3 illustrated the

top KEGG pathways with most genes enriched. Top enriched

pathways concerned targets from more than one single cell type.

Most high-rank pathways were related to viruses, including

coronavirus, hepatitis, measles, human cytomegalovirus, and

human immunodeficiency virus 1. Tumor-associated pathways

were also enriched concerning hepatocellular carcinoma,

pancreatic cancer, prostate cancer, and PD-1 checkpoint

pathway in cancer. Since PD-related pathways like the mTOR

signaling pathway and PI3K-Akt signaling pathway were also

enriched, these analysis results indicated an overall effect

concerning multiple signal pathways of GBE to treat PD. GBE

may influence several vital pathways in PD by influencing more

than one cell type. Figure 5 shows a holistic integration of drug-

components-target-pathway interactions.

DTI prediction with DeepPurpose and
molecular docking

High-throughput analysis was conducted to predict the

potential drug-target interaction (DTI) between all 25 active

compounds in GBE and all 47 PD targets in three cell types.

Detailed results are listed in Supplementary Table S5. Predicted

binding scores of targets in top enriched pathways were shown in

the matrix plot in Figure 6. The binding score between

MAPK14 and ginkgolide J was 8.43, the highest among all

predicted, suggesting a possible strong interaction between

them. The second highest interaction between MAPK14 and

ginkgolide A reached 8.41. Notably, ginkgolides A, B, J, and K

showed similar binding patterns to potential targets, possibly due

FIGURE 4
KEGG enrichment analysis for potential GBE targets for PD. Sankey diagram showed top enriched KEGG pathways and according to targets in
3 cell types. p < 0.0015 in all shown pathways.
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to similar chemical structures among these compounds.

Consequently, molecular docking was performed to confirm

the affinity between MAPK14 and ginkgolide J or A. As

shown in the 3D and 2D structures, MAPK14 will be stably

docked with ginkgolide J or ginkgolide A, and the delta G

calculated for each docking were −7.207,632 kJ/mol

and −7.0555,134 kJ/mol, respectively (Figure 7). Molecular

docking results were in agreement with predictions rendered

by DeepPurpose. Detailed results of molecular docking are listed

in Table 6. In conclusion, DTI between selected targets and GBE

components was predicted with DeepPurpose. Further validation

with the molecular docking approach suggested a potentially

strong interaction between ginkgolide J or A with MAPK14, a

potential target for PD.

FIGURE 5
Component-target-pathway network. Component-target-pathway were holistic integrated into the network diagram. Blue nodes in the left
circle represent potential active components in GBE. Yellow nodes in the middle circle represent PD targets linking to specific cell types. Purple and
green nodes on the right circle represent correlating pathways.

FIGURE 6
DTI prediction. Dot-matrix showed a binding score predicted using the cnn_cnn_bindingdbmodel, a pre-trained deepmode of DeepPurpose.
The color and size of dots indicate the level of binding score.
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Discussion

Parkinson’s disease (PD) is a neurodegenerative disorder due

to selective loss of dopaminergic neurons in the substantia nigra

and Lewy body formation (Kalia and Lang, 2015). PD patients

suffer from motor-dominant symptoms, including tremors at

rest, bradykinesia, stiffness, and postural instability (Movement

Disorder Society Task Force on Rating Scales for Parkinson’s

Disease, 2003). Non-motor signs severely diminish the life

quality of PD patients as well. For example, hyposmia, rapid

eye movement (REM), sleep behavior disorder (RBD),

depression, and constipation can precede the symptoms

related to dopamine deficiency for several years or arise later

in the disease (Schapira et al., 2017).

Developing effective therapeutics to slow or halt the

progression of PD remains a top priority for researchers. So

far, no agents have been proven with sufficient evidence for

disease-modifying effects in PD (Lang and Espay, 2018;

Vijiaratnam et al., 2021). Currently used therapies alleviate

symptoms initially while losing efficacy as the disease

progresses (Beckers et al., 2022). Furthermore, dopaminergic

medications bring about motor and non-motor behavioral

side-effects (Voon et al., 2017). Approximately 80% of PD

patients on levodopa treatment would suffer from drug-

induced dyskinesia (Espay et al., 2018; Olanow et al., 2020).

Long-term application of medication also results in impulse

control disorders, including gambling disorder, binge eating

disorder, compulsive sexual behavior, and compulsive

shopping (Voon et al., 2017).

Natural herbal medicines like extracts from Ginkgo biloba

extract (GBE) have shed light on drug development for PD.

Herbal products have gradually gained acceptance in treating

neurodegenerative diseases for their multi-functional

characteristic with relatively fewer adverse effects (Wahid

et al., 2020; Gregory et al., 2021; Wang et al., 2021). Herbal

medicines have been applied to treat PD (Chen et al., 2022;

Sharma et al., 2022; Zahedipour et al., 2022), and GBE has proven

efficacy. G. biloba, a medicinal plant belonging to the

Ginkgoaceae family, is considered the oldest tree alive in the

world (Chen et al., 2021). GBE has been used for medical

purposes for centuries in various diseases, typically for

cardiovascular conditions (Li et al., 2018b; Zhan et al., 2021;

Tao et al., 2022). Commercialized GBE, EGB 761®, has a

recognized neuroprotective role for cognitive impairment like

Alzheimer’s disease (AD) (Liu et al., 2019; Verma et al., 2020;

Abdelmeguid et al., 2021; Ge et al., 2021; Zhao et al., 2021). In

many European states, EGB 761®is the only drug therapy in the

guideline for treating mild cognitive impairment (MCI)

FIGURE 7
3D structures of MAPK14 docked with ginkgolide A or ginkgolide J. (A) Docking of ginkgolide A to MAPK14(PDB ID:1WBS). Left: 3D structure
represented of ginkgolide A docked to MAPK14. Middle: Surface representation of ginkgolide A docked to MAPK14. Right: Protein-ligand interaction
visualized by Ligplot. (B) Docking of ginkgolide J to MAPK14(PDB ID:1WBS). Left: 3D structure represented of ginkgolide J docked to MAPK14. Right:
Surface representation of ginkgolide J docked to MAPK14. Right: Protein-ligand interaction visualized by Ligplot.
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(Kandiah et al., 2019; Tomino et al., 2021; Barbalho et al., 2022).

Various studies have provided experimental evidence supporting

GBE, a mixture of active components, as a competent

intervention for alleviating PD (Kuang et al., 2018;

Mohammed et al., 2020; Yu et al., 2021). Existing evidence

supported that GBE alleviates neuroinflammation

(Mohammed et al., 2020) and oxidative impairments (Kuang

et al., 2018; Mohammed et al., 2020) in PD models. The Akt/

GSK3β pathway may be involved in the neuroprotective effects of

GBE (Yu et al., 2021).

However, GBE composition may vary across studies, largely

dependent on the complicated extraction procedure (Fang et al.,

2020b; Boateng, 2022; Liu et al., 2022; Ma et al., 2022).

For a further in-depth understanding of molecular

mechanisms, studies attempt to delineate the role of a single

active component in GBE. Previous studies have separately

focused on several GBE components and validated their

protective effects on PD models. These components, including

ginkgetin (Wang et al., 2015), amentoflavone (Cao et al., 2017),

Ginkgolide B (Liu et al., 2020; Zhao et al., 2020), Ginkgolide K

(Yu et al., 2018; Miao et al., 2022), protocatechuic acid (Zhang

et al., 2015; Gallardo-Fernández et al., 2019), apigenin (Liu et al.,

2015; Anusha et al., 2017), and bilobalide (Hua et al., 2017), have

all been proved neuroprotective in PD models when applied

alone. These studies revealed that GBE exerted neuroprotective

function via various cellular and molecular pathways. The

inflammation-related mechanism was among the most

investigated (Spagnuolo et al., 2018). p-NF-kB/p65 was

regulated by several components in GBE, such as ginkgolide

K83, protocatechuic acid, and chrysin (Zhang et al., 2015).

Another broadly accepted mechanism was relieving oxidative

stress (Siima et al., 2020; Behl et al., 2022). Other identified

mechanisms included promoting neurotrophic factors like

BDNF (Song et al., 2022) and increasing the expression of

anti-senescences proteins like SIRT-2 (Gallardo-Fernández

et al., 2019).

In this study, bioinformatics approaches were exploited to

tackle the limitation of conventional research. Laboratory

experiments are hindered by high costs, consuming enormous

time and laborious work. Determined by the complex mixture

nature of GBE and multifarious targets of PD, laboratory

experiments are infeasible to uncover all possible molecular

mechanisms underlying drug efficacy. Herein, network

pharmacology analysis would guide further investigations by

screening potential targets related to bioactive GBE

components. The single-nuclei RNA sequencing (snRNA-seq)

technique was recently developed and applied to study the

midbrain transcriptome of PD patients. This cell-specific data

allowed the chance to delineate GBE effects in different cell types.

Moreover, advances in deep learning algorithms conferred the

potential to conduct high-throughput screening for potent drug-

target interaction (DTI) between GBE components and related

PD targets.

A total of 25 potentially active components were obtained

after selection by Lipinski’s Rule of Five. As mentioned above,

part of the ingredients has already been reported for efficacy in

PD. Components information was manually curated and

supplemented from published reports. Certain ingredients like

ginkgolide K were not documented in existing compounds

databases since they were not identified as components of

GBE until recently (Yuan et al., 2008). With advances in

chemistry technologies, ingredients with only trivial amounts

in GBE would be detected more thoroughly. Consequent analysis

of the pharmacological characteristics would be needed to

conduct biological studies.

Mainly, selected GBE compounds largely constitute

flavonoids and flavone derivates, such as luteolin, kaempferol,

and apigenin. As the main ingredients of GBE, flavonoids are

among the most studied herbal products in medical applications

(Dong et al., 2022; Tian et al., 2022). Also, our results were

consistent with conclusions drawn from studies on PD animal

models, which proved flavonoids’ efficacy for neuroprotection

(Siima et al., 2020; Rahul and Siddique, 2021). Consequently,

rising interest has extensively engrossed in the clinical trial

designs of applying flavonoids (Zhang et al., 2022) based on

its commonly recognized functions concerning anti-oxidation

(Behl et al., 2022) and anti-inflammation (Spagnuolo et al., 2018).

Results from this study further support the application of a single

component or mixture of flavonoids to PD.

In order to identify GBE targets in a cell-type-specific

manner, we analyzed snRNA-seq data on PD midbrain

samples (Smajić et al., 2022). Since previous studies validated

astrocytes and microglia as significant modulators in PD

pathogenesis (Bartels et al., 2020; Lee et al., 2022), subsequent

analysis was conducted on astrocytes andmicroglia in addition to

neurons. Most targets of GBE were unique in each cell type.

Except that only a few targets were found in intersections

between different cell types, such as PIK3CA. At the same

time, GO enrichment analysis rendered similar results in

astrocytes and microglia. Data suggested that GBE may exert

neuroprotection via modulating cellular response to peptide

hormone, peptide, and insulin, as well as biological processes

relating to peptidyl-serine phosphorylation in glia. KEGG

enrichment analysis showed commonly shared pathways

across cell types. In all three cell types, pathways related to

virus and tumor were significantly enriched, concerning

hepatocellular carcinoma, pancreatic cancer, prostate cancer,

and PD-1 checkpoint pathway in cancer. An apparent virus

and tumor-associated bias in enrichment analysis were

observed. One possible explanation was that the GBE targets

collected in this study were from existing reports, which have

intensively studied its anti-infection and anti-tumor effects (Man

et al., 2012; Jiao et al., 2016; Ibrahim et al., 2021). Apart from that,

GBE’s anti-oxidative and anti-inflammatory effects have been

pivotal to attention in previous studies (Rogerio et al., 2010; Jiao

et al., 2016; Lichota et al., 2019). Both play vital roles in infection
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and tumor-related biological processes (Fridman et al., 2022; Zuo

et al., 2022), and both have been recognized for participating in

PD pathogenesis (Pajares et al., 2020; Kip and Parr-Brownlie,

2022; Shandilya et al., 2022). Other closely PD-related pathways

like the mTOR (Ceccariglia et al., 2020) signaling pathway and

PI3K-Akt (Jin et al., 2022; Neves et al., 2022) signaling pathway

were also enriched. Collectively, GBE may exert an overall effect

concerning different cell types and multiple signal pathways to

treat PD.

The component-target-pathway network showed that

potential mechanisms were complex interactions between

multiple components, targets, and pathways in GBE therapy

for PD. Nearly all potentially active components were linked with

more than one target for PD. Similarly, most potential targets

were regulated by multiple components in GBE.

Herein, we exploited recently developed deep learning

technology to help detangle complex drug-target interactions.

DTI between all potential compounds and targets was predicted

with DeepPurpose, a deep learning method-based approach for

drug discovery. Our results suggested relatively strong

interactions between ginkgolides and several PD targets

participating in core biological pathways. Notably, ginkgolide

A, B, J, and K showed similar binding patterns to targets, possibly

due to their similar chemical structures.

Published experimental reports supported the reliability of

our bioinformatic methods. For instance, a recent study on

lipopolysaccharide (LPS) induced inflammation models has

shown ginkgolide A as a modulator for MAPK (Li et al.,

2017). According to our results from DeepPurpose, predicted

binding scores between MAPK14 and ginkgolide A were the

second-highest among all tested. Interestingly, our data indicated

a more vital interaction between MAPK14 and ginkgolide J than

ginkgolide A. Since a higher binding score between ginkgolide J

andMAPK14 was predicted by DeepPurpose, corroborating with

results by molecular docking approach. Although interactions

between ginkgolide J and MAPK had not been reported in

experimental reports yet by the time we conducted this

bioinformatic study. Supported by published reports and our

bioinformatics data, we cautiously proposed that the GBE

component, ginkgolide J, may interact with MAPK14 and

exert biological function. Conclusions from this study do

come with many caveats due to a lack of validation by

benchwork experiments. In vivo or/and in vitro laboratory

work is still required to establish concrete interaction between

predicted DTI in this study.

Conclusion

Taken together, through the integration of data from

snRNA-seq and employing a deep learning algorithm, a

cell-type-specific targets and compound network was

established. This work took advantage of recently advanced

bioinformatics approaches. Herein, an unprecedented

procedure of conducting network pharmacology analyses in

a cell-type-specific manner was established. This work will

better facilitate our understanding of GBE mechanisms in

treating PD. Moreover, identified interaction of drugs and

targets would lay a theoretical foundation for the development

PD drugs.
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