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ABSTRACT.	 Rhabdomyosarcoma (RMS) is an aggressive type of soft tissue sarcoma, and 
pleomorphic RMS is a rare subtype of RMS found in adult. p16 is a tumor suppressor which inhibits 
cell cycle. In human RMS, p16 gene is frequently deleted, but p16-null mice do not develop RMS. 
We reported that genetic ablation of p16 by the crossbreeding of p16 knock-out rats (p16-KO rats) 
improved the dystrophic phenotype of a rat model of Duchenne muscular dystrophy (Dmd-KO 
rats). However, p16/Dmd double knock-out rats (dKO rats) unexpectedly developed sarcoma. In 
the present study, we raised p16-KO, Dmd-KO, and dKO rats until 11 months of age. Twelve out 
of 22 dKO rats developed pleomorphic RMS after 9 months of age, while none of p16-KO rats 
and Dmd-KO rats developed tumor. The neoplasms were connected to skeletal muscle tissue 
with indistinct borders and characterized by diffuse proliferation of pleomorphic cells which had 
eosinophilic cytoplasm and atypical nuclei with anisokaryosis. For almost all cases, the tumor cells 
immunohistochemically expressed myogenic markers including desmin, MyoD, and myogenin. 
The single cell cloning from tumor primary cells gained 20 individual Pax7-negative MyoD-positive 
RMS cell clones. Our results demonstrated that double knock-out of p16 and dystrophin in rats 
leads to the development of pleomorphic RMS, providing an animal model that may be useful to 
study the developmental mechanism of pleomorphic RMS.
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Skeletal muscle is composed of multinucleated and terminally differentiated myofibers. Skeletal muscle is a highly regenerative 
tissue and maintains its homeostasis by rapidly regenerating when the myofibers are injured. Regeneration of myofibers depends 
on muscle progenitor cells called satellite cells, which reside between sarcolemma and myofiber [28, 29, 44]. Muscle regeneration 
is regulated by four basic helix-loop-helix (bHLH)-type transcription factors, Myf5, MyoD, myogenin, and MRF4, which are 
essential for the expression of skeletal muscle-specific proteins [27]. Satellite cells are normally quiescent, but upon injury of 
myofibers, they are activated and proliferate, then differentiate to myoblasts [33]. Activated satellite cells become myoblasts 
expressing MyoD and/or Myf5, and divide several times [9, 33]. Subsequently, the myoblasts exit from cell cycle, and differentiate 
to myocytes expressing myogenin and MRF4 [9, 33]. These myocytes eventually fuse each other to form multinucleated myotubes 
[9, 33]. Then, muscle regeneration is completed by maturation of myotubes to myofibers [9, 33].

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood in humans [30]. RMS often occurs in various 
parts of the body such as head, neck, genitourinary system, and soft tissue regions [20]. Tumor cells which comprise RMS express 
myogenic markers including desmin, MyoD, myogenin [23, 38, 47], and their morphology varies from undifferentiated round 
cells to terminally differentiated myoblasts with cross striations [37]. RMS is pathologically classified into 4 subtypes: embryonal, 
alveolar, pleomorphic, and a newer rare entity, spindle/sclerosing RMS [2]. Embryonal and alveolar RMS are mainly developed 
in children, whereas pleomorphic RMS is common in adult [20]. The prognosis of embryonal RMS is favorable, while those of 
alveolar and pleomorphic RMS are unfavorable [20]. Although what determine the subtype of RMS remains unclear, induction 

Received: 23 April 2021
Accepted: 20 July 2021
Advanced Epub: 		
	 31 July 2021

 J. Vet. Med. Sci. 
83(9): 1416–1424, 2021
doi: 10.1292/jvms.21-0243

https://creativecommons.org/licenses/by-nc-nd/4.0/


RHABDOMYOSARCOMA IN MUSCULAR DYSTROPHY

J. Vet. Med. Sci. 83(9): 14171416–1424, 2021

of mutations in various differentiation stage of myogenic cells; from satellite cells to maturing myoblasts, can result in the 
development of RMS of all histological types [43]. Although RMS cells are mainly derived from myogenic cells, recent reports 
revealed that RMS can also originate from other cell types of mesenchymal or endothelial lineages [14, 17]. In veterinary medicine, 
RMS have been most commonly diagnosed in dogs, but a variety of species is involved [11]. In mice and rats, although RMSs can 
be experimentally induced [62], spontaneous RMSs are very rare [39, 40, 52]. There are a few reported cases for RMSs in both 
young and aged rats [10, 21, 31, 53].

p16, also known as INK4a, is a cyclin-dependent kinase (CDK) inhibitor encoded by CDKN2A gene. In response to irreversible 
DNA damage, including oncogene activation or oxidative stress, p16 is upregulated and lead to cell cycle arrest [26]. p16 is also 
acting as a tumor suppressor. Germ line deletion of CDKN2A can cause familial melanoma in human and tumor-prone phenotype 
in mouse [18, 48]. It has also been reported that loss or inactivation of p16 expression occurs in many spontaneous human tumors 
as results of deletion, epigenetic changes in the promoter region, or abnormal splicing of CDKN2A gene [41, 42]. Although RMS 
cells in human often lack p16 expression [19, 54], p16-deficient mice do not develop RMS, whereas various types of tumors other 
than RMS could be developed [48]. Thus, it is thought that deletion of p16 is related to an onset of RMS but not sufficient to cause 
RMS.

Dystrophin is a protein encoded by DMD gene on the X chromosome. Dystrophin composes dystrophin-glycoprotein complex 
and links the cytoskeleton to the extracellular matrix in skeletal muscle and cardiac muscle [7]. Deletion of DMD gene cause 
Duchenne muscular dystrophy (DMD) [32]. In DMD patients, the cell membrane of myofibers is fragile, and mechanical stress 
damages myofibers, resulting in their repeated necrosis and regeneration. When the rate of necrosis exceeds that of regeneration, 
muscle atrophy as well as loss of muscle strength occurs.

We previously generated Duchenne muscular dystrophy model rats (Dmd-KO rats) with out-of-frame mutations in Dmd gene 
[35]. The skeletal muscles of Dmd-KO rats show repeated necrosis and regeneration, and typical pathologies seen in DMD patients, 
such as progressive muscle atrophy, fibrosis, and adipogenesis in skeletal muscles [35, 51]. In addition, we found that p16, cellular 
senescent marker, was significantly upregulated after 6 months of age in Dmd-KO rats, and the p16 and Dmd double knock-out 
rats (dKO rats) showed improved muscle regeneration, fibrosis, and adipogenesis, suggesting that suppressing cellular senescence 
by p16 deletion ameliorate the dystrophic phenotype of Dmd-KO rats [51]. However, some of dKO rats developed sarcoma at later 
stage of their life. In this study, we aimed to characterize the sarcoma observed in dKO rats.

MATERIALS AND METHODS

Animals
Male wild-type (WT), Dmd knock-out (Dmd-KO), p16 knock-out (p16-KO), and double knock-out (dKO) rats of the Wistar 

Imamichi strain were generated as described in our previous studies [35, 51]. The numbers of rats used and analyzed in the 
present study are shown in Table 1. Animals were maintained under controlled environmental conditions at 23°C with a light/dark 
(12/12 hr) cycle (lights on at 8 am), and food and water were provided ad libitum. Animals developing tumor were euthanized 
by exsanguination under deep anesthesia by isoflurane, and tumor tissues were excised. All animal experiments performed in 
this study were in accordance with the Guide for the Care and Use of Laboratory Animals of The University of Tokyo and were 
approved (P18-125) by the Institutional Animal Care and Use Committee of The University of Tokyo.

Histological analyses
The tumor tissues were excised and fixed in 10% formalin. Paraffin-embedded sections (2–4 µm) were prepared with rotary 

microtome (PR-50; Yamato Kohki Industrial, Asaka, Japan), and stained with hematoxylin and eosin and phosphotungstic acid 
hematoxylin, or used for immunohistochemistry. Slides were observed under the microscope (BX53, Olympus, Tokyo, Japan) 
equipped with a digital camera (DP73, Olympus). Mitotic figures for each case were counted in randomly chosen 10 high-power 
fields (× 400, HPF) and expressed as sum of the counts.

Cell culture
The tumor tissues were excised and cut into approximately 1 mm cubes and digested with 0.05% Trypsin-EDTA (Gibco™, 

Thermo Fisher Scientific, Waltham, MA, USA)/ Dulbecco’s Modified Eagle Medium (DMEM; Gibco™) at 37°C for 30 min. 
The digested cells were centrifuged at 2,150 × g for 3 min, and the supernatant was removed. The cell pellet was resuspended in 
DMEM supplemented with 10% fetal bovine serum (FBS; Biowest, Nuaillé, France) (10% FBS/DMEM), 50 unit/ml penicillin, 50 
µg/ml streptomycin (Penicillin-Streptomycin; Gibco™) and 50 µg/ml gentamicin (Gibco™), and filtered through a cell strainer (70 
µm, BD Falcon, Franklin Lakes, NJ, USA). The cells were plated on poly-L-lysine- and fibronectin-coated 48-well plates (IWAKI, 
Chiba, Japan), and cultured at 37°C and 5% CO2. Immunostaining was performed 1 day after seeding. Where applicable, some 
cells were stored at −80°C using CELLBANKER2® (ZENOAQ, Koriyama, Japan).

Cloning of tumor cells
RMS-derived primary cultured cells preserved at −80°C were plated on poly-L-lysine- and fibronectin-coated 48-well plates 

(IWAKI) and incubated for 2 days. After incubation, cells were detached off the plate by trypsinization and plated on 96-well plates 
(IWAKI) at a density of 1–2 cells per well. Wells with one cell per well were selected on the next day, and wells with one colony per 
well were further selected 4 days later. Selected cells were passaged when confluent and incubated until sufficient cells were obtained.
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Immunostaining
For immunostaining of the tissue sections, endogenous peroxidase activity was blocked with 3% hydrogen peroxide in methanol 

for 5 min, and antigen retrieval was performed. The sections were blocked for 30 min in 8% skim milk/Tris-buffered saline 
(TBS) at 37°C. Then, they were incubated with primary antibodies diluted with TBS overnight at 4°C. The following primary 
antibodies were used: anti-MyoD antibody (1:100, mouse monoclonal, A5.8; Novocastra, Newcastle upon Tyne, UK), anti-desmin 
antibody (1:400, mouse monoclonal, DE-U-10; Sigma-Aldrich, St. Louis, MO, USA), and anti-myogenin antibody (1:100, mouse 
monoclonal, F5D; Developmental Studies Hybridoma Bank). After washing with TBS, the sections were incubated with Dako 
EnVision+ System- HRP Labelled Polymer anti-mouse secondary antibody (Dako, Tokyo, Japan) at 37°C for 40 min and washed 
with TBS. The signal was visualized by diaminobenzidine as a substrate and the cell nuclei were counterstained with hematoxylin.

For immunostaining of the cultured cells except for desmin, they were fixed with 4% paraformaldehyde (PFA)/phosphatate-
buffered saline (PBS) for 15 min. For immunostaining of desmin, the cells were fixed with methanol for 10 min. After washing 
with PBS, cells were blocked with 5% normal goat serum (NGS)/PBS containing 0.1% triton X-100 for 10 min. Then, they were 
incubated with primary antibodies diluted with 5% NGS/PBS overnight at 4°C. The following primary antibodies were used: anti-
Pax7 antibody (1:100, mouse monoclonal; Developmental Studies Hybridoma Bank, Iowa City, IA, USA), anti-MyoD antibody 
(1:100), anti-desmin antibody (1:400), and anti-myogenin antibody (1:100). To detect the labeled cells, they were incubated with 
Alexa-conjugated secondary antibodies (1:400).

RESULTS

All rats were maintained under normal conditions until 11 months of age and compared their tumorigenesis. None of WT, p16-
KO, and Dmd-KO rats developed tumor, while 12 out of 22 dKO rats developed tumor (Table 1). Tumors from the 12 dKO rats 
were pathologically analyzed for diagnosis. Gross postmortem examination revealed that the majority of tumors were located in 
forelimbs or hindlimbs (7/12 cases), and others in neck, cheek, or peritoneal cavity (Table 2). Among 12 cases, all the tumors were 
located subcutaneously and connected to skeletal muscle (Fig. 1A) and were found at 9 months or older (Table 2). Histologically, 
diffuse proliferation of tumor cells replaced the skeletal muscle tissue (Fig. 1B). The tumor tissues were composed of highly 
pleomorphic cells with higher cellularity and irregular bundle arrangement (Fig. 1C). Sheets of round-to-ovoid or spindle cells with 
eosinophilic cytoplasm were observed, and the tumor cells displayed significant pleomorphism and atypia, such as anisokaryosis, 
multiple nuclei and prominent nucleoli (Fig. 1D, 1E). The average number of mitotic figures in 12 cases was 21 ± 2.3 (per 10 
HPFs) (Table 2). Multinucleated giant cells and aberrant mitosis were occasionally observed (Fig. 1D, 1E). Cross striations were 
rarely present in spindle cells in 5/12 cases (Fig. 1F). The results of immunohistochemical features are summarized in Table 3. The 
neoplastic cells were immunopositive for both desmin and myogenin in all cases, and immunopositive for MyoD in all cases except 
for case 10 (Fig. 2A, 2B, Supplementary Fig. 1). Based on the aforementioned findings, the tumors were diagnosed as pleomorphic 
RMS in all 12 cases.

Table 1.	 Tumor incidence rate of wild-type (WT), p16 knock-out (p16-KO), Dmd knock-out 
(Dmd-KO) and double knock-out (dKO) rats until 11 months old

Genotype WT p16-KO Dmd-KO dKO
Number of rats developed tumor (until 11 months) 0/14 0/12 0/13 12/22

Table 2.	 Age at onset, tumor location, and mitotic figures of tumor 
found in double knock-out (dKO) rats

Case No. Age at onset 
(month) Tumor location Mitotic figuresa

#1 9 Neck 26
#2 9 Forelimbs 21
#3 10 Hindlimbs 16
#4 10 Hindlimbs 17
#5 10 Peritoneal cavity 13
#6 10 Neck 17
#7 10 Cheek 13
#8 11 Cheek 12
#9 11 Forelimbs 28
#10 11 Forelimbs 35
#11 11 Hindlimbs 19
#12 11 Hindlimbs 35

a) Mitotic figures are expressed as sum of the counts from randomly chosen 
different 10 high-power fields.

Table 3.	 Expression of myogenic markers (desmin, 
MyoD, myogenin) in 12 rhabdomyosarcoma cases

Case No. Desmin MyoD Myogenin
#1 + + +
#2 + + +
#3 + + +
#4 + + +
#5 + + +
#6 + + +
#7 + + +
#8 + + +
#9 + + +

#10 + - +
#11 + + +
#12 + + +
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In order to gain insight to the nature of RMS developed in dKO rats, it is advantageous to isolate and characterize tumor cells 
in vitro. Cells were enzymatically isolated from the tumor tissues of case 1, which contained desmin-, MyoD-, and myogenin-
positive cells (Fig. 2A). One day after cell isolation, immunocytochemistry was performed for myogenic markers, desmin, as a 
muscle-specific marker, and Pax7, MyoD, and myogenin, which are expressed in myogenic cells at early, middle, and late stages 
of myogenesis, respectively [33]. Nearly 100% of the cells were desmin-positive, while the percentage of Pax7 and MyoD positive 
cells was about 40% to 50%. There were almost no myogenin-positive cells (Fig. 3A and 3B). For further characterization of RMS-
derived myogenic cells, obtained cells were analyzed after establishing single cell-derived clones. Twenty individual clones were 
obtained after 3 passages, and all clones were positive for desmin and MyoD, while they were negative for Pax7 and myogenin 
(Fig. 4, Table 4).

Fig. 1.	 Gross and histopathological appearance of rhabdomyosarcoma in double knock-out rats. (A) The subcutaneous tumors (arrows) 
are located in the cheek, neck, peritoneal cavity and forelimb region. All the tumors are connected to skeletal muscles. (B) Tumor cells 
invade the adjacent muscle tissue and are now diffuse. Hematoxylin and eosin stain. Bar=250 μm. (C) Tumor cells showing indistinct 
cytoplasmic borders are arranged in an irregular bundle pattern. Hematoxylin and eosin stain. Bar=100 μm. (D) Sheets of pleomorphic 
round-to-ovoid cells are observed. Multinucleated giant cells are occasionally present (arrowhead). Hematoxylin and eosin stain. Bar=20 
μm. (E) Sheets of pleomorphic spindle cells are observed. Aberrant mitotic figures are occasionally present (arrowhead). Hematoxylin 
and eosin stain. Bar=20 μm. (F) Striations are rarely present (arrowhead). Phosphotungstic acid hematoxylin stain. Bar=20 µm.
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DISCUSSION

In this study, more than 50% of dKO rats developed RMS until 11 months old, while none of p16-KO and Dmd-KO rats 
developed tumor, suggesting that lack of p16 or dystrophin alone does not induce tumor development, but defects in both increase 
the incidence of tumor formation.

Deletion of dystrophin might be the leading cause of the development of RMS observed in the present study. Interestingly, 
all of 12 tumors found in dKO rats were RMS. p16 is known as a tumor repressor [26]. In response to various stressors, loss 
of p16 function increases tumorigenesis [26, 48]. p16 is inactivated in most tumor including RMS [19, 42], and p16 knock-out 
mice develop not only soft tissue sarcomas, but also lymphomas and melanomas [49]. Thus, deficiency of p16 may not seem to 
be a leading cause that restricts the type of tumor to RMS in dKO rats. It has been reported that lack of dystrophin increases the 

Fig. 2.	 Immunohistochemical characteristics of rhabdomyosarcoma in double knock-out rats. (A) The tumor cells show focal cytoplasmic 
immunolabeling with desmin. The nuclei of the tumor cells weakly to moderately label with MyoD and myogenin. Arrowheads indicate 
immune-positive cells. Bar=50 μm. (B) The tumor cells in case 10 show focal cytoplasmic immunolabeling with desmin. The nuclei of 
the tumor cells weakly to moderately label with myogenin. The tumor cells are negative for MyoD. Bar=50 μm.
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incidence of RMS in mice [8, 16]. Ninety percent of mdx mice lacking p53, a cell cycle inhibitor, developed RMS by 5 months 
of age, and induction of recurring myofiber necrosis in p53-deficient mice by repeated injection of myotoxin, cardiotoxin, to 
their skeletal muscle also caused a high incidence of RMS [6]. In DMD, prolonged damage of skeletal muscle causes chronic 
inflammation [5, 60], and this can support tumorigenesis by inducing DNA damage [34]. In fact, previous studies suggest that the 
accumulation of inflammation and DNA damage attributes to RMS development in mdx mice [6, 45]. Thus, repeated myofiber 

Fig. 3.	 Immunocytochemical characteristics of rhabdomyosarcoma-derived primary cells from case 1. (A) The cells express strongly 
desmin, but moderately Pax7 and MyoD. The cells are negative for myogenin. Yellow arrowheads indicate immune-positive 
cells, and white arrowheads indicate immune-negative cells. Scale bar=250 μm. (B) Quantification of desmin, Pax7, MyoD, and 
myogenin-positive cells relative to total cell count. Data are expressed as means of 5 middle-power fields ± standard error.

Fig. 4.	 Immunocytochemical characteristics of rhabdomyosarcoma-derived cloned cell lines from case 1. The cells express strongly 
desmin and MyoD. The cells are negative for Pax7 and myogenin. Scale bar=100 μm.
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necrosis and inflammation in skeletal muscle of dKO rats due to 
the lack of dystrophin [35, 51] would have caused RMS in the 
p16-deficient background in this study. It should be also mentioned 
that dystrophin regulates asymmetric division of satellite cell 
upon myogenesis, and the lack of dystrophin cause such abnormal 
division as centrosome amplification [15]. This report suggested 
that dystrophin has a role, additionally to its original role in 
maintaining membrane integrity, in regulating cell cycle. Supporting 
this hypothesis, dystrophin has been reported to act as a tumor 
suppressor in myogenic sarcomas [61]. Therefore, although it is 
unknown at present whether the absence of dystrophin itself or 
chronic inflammation caused by the lack of dystrophin attributes 
the incidence of RMS, the genetic background of dKO rats, in 
which both dystrophin and p16 are lacked, could be associated with 
development of RMS in the present study.

As in humans, pleomorphic RMS appears to be the least common 
form in animals [11]. Although virtually all RMSs may show some 
cellular pleomorphism, only tumors lacking any areas of embryonal 
or alveolar pattern should be diagnosed as the pleomorphic variant 
in humans and animals [11]. In the present study, the embryonal 
or alveolar morphology was not observed in all cases, and thus, it 
was indicated that RMS observed in dKO rats is pleomorphic type. 
Based on the widely accepted categorization of RMS, embryonal 
RMS is thought to be both myogenic and non-myogenic origin, and 
genetically heterogeneous [2, 17, 43], while alveolar RMS is often 
driven by the expression of Pax3-FOXO1 or Pax7-FOXO1, produced 

by gene translocation [1, 2, 12, 24]. On the other hand, the driving mutations of pleomorphic RMS are almost completely unknown 
so far. Future studies such as tracing myogenic and non-myogenic progenitor cells during RMS development in dKO rats will be 
shed light on this issue.

Without exception, RMS development in dKO rats was observed after 9 months of age in the present study. Cellular senescence 
is considered to be a physiological system to repress tumor development. In our previous study, Dmd-KO rats showed persistently 
increased expression of p16 in skeletal muscle after 6 months of age, indicating the accumulation of senescent cells [51]. Since 
chronic inflammation is known to induce either cellular senescence or tumor development and is consistently seen in the skeletal 
muscle of Dmd-KO rats as early as from 1 month of age, cellular environment in their muscle could be preferable to induce both 
cellular senescence and tumor development. Thus, the expression of p16 is thought to be act as a key to specify the cells to either 
fate. As the dKO rats lack p16 expression which is seen after 6 months of age in Dmd-KO rats, this would have forced the fate of 
cells in their skeletal muscle to tumor development, and, as a result, RMS development became apparent after 9 months of age.

RD cell line, which was established from human RMS, expresses MyoD and myogenin [56]. This contrasts with the results 
that the cells isolated from RMS of dKO rats in the present study were negative for myogenin expression. Although myogenin 
expression was confirmed in all 12 RMS analyzed by immunohistochemistry, RMS-derived cells did not express myogenin 
after cultured in vitro. Currently, the reason for the lack of myogenin-positive cells is unknown. One of the possibilities is that 
enzymatically isolated myogenin-positive cells may loose adhesive property and were detached from the surface of culture plate. 
It is known that myogenin expression is regulated by cell-to-cell contact [55]. Thus, alternatively, cells that had been positive for 
myogenin in vivo were not lost but the myogenin expression may have been downregulated upon culturing in vitro. If the latter is 
the case, it will be intriguing to see whether myogenin expression is regained when the cloned cells obtained in the present study 
are transplanted in vivo.

Several evidences indicate that most of the RMS originates from myogenic cells [3, 43, 57]. However, RMS can originate from 
endothelial cells through trans-differentiation induced by hyperactivation of Sonic hedgehog (SHH) signaling [14]. Activation of SHH 
signaling is also capable of driving cells of adipogenic lineage to RMS [17]. Although the present study highly suggested that RMS 
cells developed in dKO rats are of myogenic origin, we still cannot exclude the possibility that they are from non-myogenic lineages.

In multiple cancer types, small populations of self-renewing cancer stem cells (CSC) are thought to be present. They proliferate 
and differentiate to give rise to heterogeneous cancer cells [22]. So far, CSC of RMS has been identified only in zebrafish [25]. In 
mammalian model, mouse muscle stem cells are shown to give rise to RMS in severe dystrophic mouse model [4]. These reports 
suggest the existence of stem cells in RMS. In the present study, Pax7-positive cells were present in isolated cells from RMS, but 
no Pax7-positive clones were obtained. Pax7 is expressed in myogenic cells with stem cell property such as satellite cells [46], and 
its expression is decreased along with the myogenic differentiation [58]. Thus, it is possible that the Pax7-positive cells observed in 
isolated cells from RMS had stem cell-like property but during cloning, they partially underwent myogenic differentiation process 
and lost Pax7 expression. If so, there might be a specific environment that maintains their stem cell-like property in vivo, and RMS 
in dKO rat model and cloned RMS cells will be a useful tool to identify and elucidate the nature of RMS stem cells.

It is obvious that more careful considerations are required to firmly conclude that the cloned cells are indeed representing 

Table 4.	 Expression of myogenic markers (desmin, Pax7, 
MyoD, myogenin) in 20 cell lines from case 1

Clone No. Desmin Pax7 MyoD Myogenin
#1 + - + -
#2 + - + -
#3 + - + -
#4 + - + -
#5 + - + -
#6 + - + -
#7 + - + -
#8 + - + -
#9 + - + -
#10 + - + -
#11 + - + -
#12 + - + -
#13 + - + -
#14 + - + -
#15 + - + -
#16 + - + -
#17 + - + -
#18 + - + -
#19 + - + -
#20 + - + -
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the nature of tumor cells. Especially, the essential and basic features of tumor cells such as cell morphology, doubling time and 
karyotype should be examined. In addition, it would be needed to establish the appropriate condition to maintain the cloned cells 
including the requirement of supplement such as cytokines and growth factors. Furthermore, in vivo transplantation experiments to 
see whether the cloned cells indeed have a tumorigenicity are also awaited. These points would be clarified in our future study.

In dKO rats, spontaneous pleomorphic RMS developed at high frequency, and the neoplasms with pleomorphic RMS in human 
shared histopathological features of anaplastic and atypical cells with bizarre nuclei and very rare cross-striations. Pleomorphic 
RMS is very rare with limited cases, and typically has a bad prognosis [36]. Only a few mouse models are reported to develop 
pleomorphic RMS specifically [13, 50, 59]. Therefore, dKO rats and their derived RMS cell clone would be useful to gain deeper 
insights into pleomorphic RMS development and to establish effective treatment.

POTENTIAL CONFLICTS OF INTEREST. The authors have nothing to disclose.

ACKNOWLEDGMENTS. The anti-Pax7 and anti-myogenin monoclonal antibodies were obtained from the Developmental 
Studies Hybridoma Bank developed under the NICHD and maintained by the University of Iowa. This work was supported by the 
Grant-in-Aid for JSPS Research Fellows (17J08505 to NT), and Grant-in-Aid for Scientific Research (B) (15K14883, 16H05041 and 
25292185 to KY) from Japan Society for the Promotion of Science.

REFERENCES

	 1.	 Barr, F. G., Galili, N., Holick, J., Biegel, J. A., Rovera, G. and Emanuel, B. S. 1993. Rearrangement of the PAX3 paired box gene in the paediatric 
solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 3: 113–117. [Medline]  [CrossRef]

	 2.	 Barr, F. G., Nascimentro, A. F., Montgomery, E. A. and Parham, D. M. 2013. Skeletal-muscle tumours. pp. 123–135. In: WHO clasification of 
tumours of soft tissue and bone, 4th ed. (Fletcher, C. D. M., Bridge, J. A., Hogendoorn, P. C. W. and Mertens, F. eds.), IARC Press, Lyon.

	 3.	 Blum, J. M., Añó, L., Li, Z., Van Mater, D., Bennett, B. D., Sachdeva, M., Lagutina, I., Zhang, M., Mito, J. K., Dodd, L. G., Cardona, D. M., Dodd, 
R. D., Williams, N., Ma, Y., Lepper, C., Linardic, C. M., Mukherjee, S., Grosveld, G. C., Fan, C. M. and Kirsch, D. G. 2013. Distinct and overlapping 
sarcoma subtypes initiated from muscle stem and progenitor cells. Cell Rep. 5: 933–940. [Medline]  [CrossRef]

	 4.	 Boscolo Sesillo, F., Fox, D. and Sacco, A. 2019. Muscle stem cells give rise to rhabdomyosarcomas in a severe mouse model of Duchenne muscular 
dystrophy. Cell Rep. 26: 689–701.e6. [Medline]  [CrossRef]

	 5.	 Bulfield, G., Siller, W. G., Wight, P. A. L. and Moore, K. J. 1984. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. 
Sci. USA 81: 1189–1192. [Medline]  [CrossRef]

	 6.	 Camboni, M., Hammond, S., Martin, L. T. and Martin, P. T. 2012. Induction of a regenerative microenvironment in skeletal muscle is sufficient to 
induce embryonal rhabdomyosarcoma in p53-deficient mice. J. Pathol. 226: 40–49. [Medline]  [CrossRef]

	 7.	 Campbell, K. P. 1995. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80: 675–679. [Medline]  [CrossRef]
	 8.	 Chamberlain, J. S., Metzger, J., Reyes, M., Townsend, D. and Faulkner, J. A. 2007. Dystrophin-deficient mdx mice display a reduced life span and are 

susceptible to spontaneous rhabdomyosarcoma. FASEB J. 21: 2195–2204. [Medline]  [CrossRef]
	 9.	 Chargé, S. B. P. and Rudnicki, M. A. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84: 209–238. [Medline]  [CrossRef]
	10.	 Conner, M. W. 1994. Spontaneous rhabdomyosarcoma in a young Sprague-Dawley rat. Vet. Pathol. 31: 252–254. [Medline]  [CrossRef]
	11.	 Cooper, B. J. and Valentine, B. A. 2016. Tumors of Muscle. pp. 425–466. In: Tumors in Domestic Animals, 5th ed. (Meuten, J. D. ed.), John Wiley & 

Sons, Ames.
	12.	 Davis, R. J., D’Cruz, C. M., Lovell, M. A., Biegel, J. A. and Barr, F. G. 1994. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation 

in alveolar rhabdomyosarcoma. Cancer Res. 54: 2869–2872. [Medline]
	13.	 Doyle, B., Morton, J. P., Delaney, D. W., Ridgway, R. A., Wilkins, J. A. and Sansom, O. J. 2010. p53 mutation and loss have different effects on 

tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. J. Pathol. 222: 129–137. [Medline]  [CrossRef]
	14.	 Drummond, C. J., Hanna, J. A., Garcia, M. R., Devine, D. J., Heyrana, A. J., Finkelstein, D., Rehg, J. E. and Hatley, M. E. 2018. Hedgehog pathway 

drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33: 108–124.e5. [Medline]  [CrossRef]
	15.	 Dumont, N. A., Wang, Y. X., von Maltzahn, J., Pasut, A., Bentzinger, C. F., Brun, C. E. and Rudnicki, M. A. 2015. Dystrophin expression in muscle 

stem cells regulates their polarity and asymmetric division. Nat. Med. 21: 1455–1463. [Medline]  [CrossRef]
	16.	 Fernandez, K., Serinagaoglu, Y., Hammond, S., Martin, L. T. and Martin, P. T. 2010. Mice lacking dystrophin or α sarcoglycan spontaneously develop 

embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. Am. J. Pathol. 176: 
416–434. [Medline]  [CrossRef]

	17.	 Hatley, M. E., Tang, W., Garcia, M. R., Finkelstein, D., Millay, D. P., Liu, N., Graff, J., Galindo, R. L. and Olson, E. N. 2012. A mouse model of 
rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 22: 536–546. [Medline]  [CrossRef]

	18.	 Hussussian, C. J., Struewing, J. P., Goldstein, A. M., Higgins, P. A. T., Ally, D. S., Sheahan, M. D., Clark, W. H. Jr., Tucker, M. A. and Dracopoli, N. 
C. 1994. Germline p16 mutations in familial melanoma. Nat. Genet. 8: 15–21. [Medline]  [CrossRef]

	19.	 Iolascon, A., Faienza, M. F., Coppola, B., Rosolen, A., Basso, G., Della Ragione, F. and Schettini, F. 1996. Analysis of cyclin-dependent kinase inhibitor 
genes (CDKN2A, CDKN2B, and CDKN2C) in childhood rhabdomyosarcoma. Genes Chromosomes Cancer 15: 217–222. [Medline] [CrossRef]

	20.	 Kashi, V. P., Hatley, M. E. and Galindo, R. L. 2015. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model 
systems. Nat. Rev. Cancer 15: 426–439. [Medline]  [CrossRef]

	21.	 Kerry, P. J., Evans, J. G., Pearson, E. C. and Coleman, H. 1995. Identification of a spontaneous pleomorphic rhabdomyosarcoma in the thoracic and 
abdominal cavities of a female Wistar rat. Vet. Pathol. 32: 76–78. [Medline]  [CrossRef]

	22.	 Kreso, A. and Dick, J. E. 2014. Evolution of the cancer stem cell model. Cell Stem Cell 14: 275–291. [Medline]  [CrossRef]
	23.	 Kumar, S., Perlman, E., Harris, C. A., Raffeld, M. and Tsokos, M. 2000. Myogenin is a specific marker for rhabdomyosarcoma: an 

immunohistochemical study in paraffin-embedded tissues. Mod. Pathol. 13: 988–993. [Medline]  [CrossRef]
	24.	 Lam, P. Y. P., Sublett, J. E., Hollenbach, A. D. and Roussel, M. F. 1999. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 

homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol. Cell. Biol. 19: 594–601. [Medline]  [CrossRef]
	25.	 Langenau, D. M., Keefe, M. D., Storer, N. Y., Guyon, J. R., Kutok, J. L., Le, X., Goessling, W., Neuberg, D. S., Kunkel, L. M. and Zon, L. I. 2007. 

http://www.ncbi.nlm.nih.gov/pubmed/8098985?dopt=Abstract
http://dx.doi.org/10.1038/ng0293-113
http://www.ncbi.nlm.nih.gov/pubmed/24239359?dopt=Abstract
http://dx.doi.org/10.1016/j.celrep.2013.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30650360?dopt=Abstract
http://dx.doi.org/10.1016/j.celrep.2018.12.089
http://www.ncbi.nlm.nih.gov/pubmed/6583703?dopt=Abstract
http://dx.doi.org/10.1073/pnas.81.4.1189
http://www.ncbi.nlm.nih.gov/pubmed/21915858?dopt=Abstract
http://dx.doi.org/10.1002/path.2996
http://www.ncbi.nlm.nih.gov/pubmed/7889563?dopt=Abstract
http://dx.doi.org/10.1016/0092-8674(95)90344-5
http://www.ncbi.nlm.nih.gov/pubmed/17360850?dopt=Abstract
http://dx.doi.org/10.1096/fj.06-7353com
http://www.ncbi.nlm.nih.gov/pubmed/14715915?dopt=Abstract
http://dx.doi.org/10.1152/physrev.00019.2003
http://www.ncbi.nlm.nih.gov/pubmed/8203091?dopt=Abstract
http://dx.doi.org/10.1177/030098589403100215
http://www.ncbi.nlm.nih.gov/pubmed/8187070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20662002?dopt=Abstract
http://dx.doi.org/10.1002/path.2748
http://www.ncbi.nlm.nih.gov/pubmed/29316425?dopt=Abstract
http://dx.doi.org/10.1016/j.ccell.2017.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26569381?dopt=Abstract
http://dx.doi.org/10.1038/nm.3990
http://www.ncbi.nlm.nih.gov/pubmed/20019182?dopt=Abstract
http://dx.doi.org/10.2353/ajpath.2010.090405
http://www.ncbi.nlm.nih.gov/pubmed/23079662?dopt=Abstract
http://dx.doi.org/10.1016/j.ccr.2012.09.004
http://www.ncbi.nlm.nih.gov/pubmed/7987387?dopt=Abstract
http://dx.doi.org/10.1038/ng0994-15
http://www.ncbi.nlm.nih.gov/pubmed/8703847?dopt=Abstract
http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:4<217::AID-GCC3>3.0.CO;2-4
http://www.ncbi.nlm.nih.gov/pubmed/26105539?dopt=Abstract
http://dx.doi.org/10.1038/nrc3961
http://www.ncbi.nlm.nih.gov/pubmed/7725603?dopt=Abstract
http://dx.doi.org/10.1177/030098589503200114
http://www.ncbi.nlm.nih.gov/pubmed/24607403?dopt=Abstract
http://dx.doi.org/10.1016/j.stem.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/11007039?dopt=Abstract
http://dx.doi.org/10.1038/modpathol.3880179
http://www.ncbi.nlm.nih.gov/pubmed/9858583?dopt=Abstract
http://dx.doi.org/10.1128/MCB.19.1.594


N. TERAMOTO ET AL.

1424J. Vet. Med. Sci. 83(9): 1416–1424, 2021

Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21: 1382–1395. [Medline]  [CrossRef]
	26.	 LaPak, K. M. and Burd, C. E. 2014. The molecular balancing act of p16(INK4a) in cancer and aging. Mol. Cancer Res. 12: 167–183. [Medline]  [CrossRef]
	27.	 Lassar, A. B., Skapek, S. X. and Novitch, B. 1994. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. 

Curr. Opin. Cell Biol. 6: 788–794. [Medline]  [CrossRef]
	28.	 Lepper, C., Partridge, T. A. and Fan, C. M. 2011. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle 

regeneration. Development 138: 3639–3646. [Medline]  [CrossRef]
	29.	 Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493–495. [Medline]  [CrossRef]
	30.	 Meyer, W. H. and Spunt, S. L. 2004. Soft tissue sarcomas of childhood. Cancer Treat. Rev. 30: 269–280. [Medline]  [CrossRef]
	31.	 Minato, Y., Takada, H., Yamanaka, H., Wada, I., Takeshita, M. and Okaniwa, A. 1983. Spontaneous rhabdomyosarcoma in a young rat. Nippon 

Juigaku Zasshi 45: 837–842. [Medline]  [CrossRef]
	32.	 Monaco, A. P., Neve, R. L., Colletti-Feener, C., Bertelson, C. J., Kurnit, D. M. and Kunkel, L. M. 1986. Isolation of candidate cDNAs for portions of 

the Duchenne muscular dystrophy gene. Nature 323: 646–650. [Medline]  [CrossRef]
	33.	 Morgan, J. and Partridge, T. 2020. Skeletal muscle in health and disease. Dis. Model. Mech. 13: dmm042192. [Medline]  [CrossRef]
	34.	 Multhoff, G., Molls, M. and Radons, J. 2012. Chronic inflammation in cancer development. Front. Immunol. 2: 98. [Medline]  [CrossRef]
	35.	 Nakamura, K., Fujii, W., Tsuboi, M., Tanihata, J., Teramoto, N., Takeuchi, S., Naito, K., Yamanouchi, K. and Nishihara, M. 2014. Generation of 

muscular dystrophy model rats with a CRISPR/Cas system. Sci. Rep. 4: 5635. [Medline]  [CrossRef]
	36.	 Noujaim, J., Thway, K., Jones, R. L., Miah, A., Khabra, K., Langer, R., Kasper, B., Judson, I., Benson, C. and Kollàr, A. 2015. Adult pleomorphic 

rhabdomyosarcoma: A multicentre retrospective study. Anticancer Res. 35: 6213–6217. [Medline]
	37.	 Parham, D. M. and Ellison, D. A. 2006. Rhabdomyosarcomas in adults and children: an update. Arch. Pathol. Lab. Med. 130: 1454–1465. [Medline]  

[CrossRef]
	38.	 Parham, D. M., Webber, B., Holt, H., Williams, W. K. and Maurer, H. 1991. Immunohistochemical study of childhood rhabdomyosarcomas and 

related neoplasms. Results of an Intergroup Rhabdomyosarcoma study project. Cancer 67: 3072–3080. [Medline]  [CrossRef]
	39.	 Poteracki, J. and Walsh, K. M. 1998. Spontaneous neoplasms in control Wistar rats: a comparison of reviews. Toxicol. Sci. 45: 1–8. [Medline]  [CrossRef]
	40.	 Prejean, J. D., Peckham, J. C., Casey, A. E., Griswold, D. P., Weisburger, E. K. and Weisburger, J. H. 1973. Spontaneous tumors in Sprague-Dawley 

rats and Swiss mice. Cancer Res. 33: 2768–2773. [Medline]
	41.	 Quelle, D. E., Cheng, M., Ashmun, R. A. and Sherr, C. J. 1997. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a 

but not by the alternative reading frame protein p19ARF. Proc. Natl. Acad. Sci. USA 94: 669–673. [Medline]  [CrossRef]
	42.	 Ruas, M. and Peters, G. 1998. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378: F115–F177. [Medline]
	43.	 Rubin, B. P., Nishijo, K., Chen, H. I. H., Yi, X., Schuetze, D. P., Pal, R., Prajapati, S. I., Abraham, J., Arenkiel, B. R., Chen, Q. R., Davis, S., 

McCleish, A. T., Capecchi, M. R., Michalek, J. E., Zarzabal, L. A., Khan, J., Yu, Z., Parham, D. M., Barr, F. G., Meltzer, P. S., Chen, Y. and Keller, C. 
2011. Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. Cancer Cell 19: 
177–191. [Medline]  [CrossRef]

	44.	 Sambasivan, R., Yao, R., Kissenpfennig, A., Van Wittenberghe, L., Paldi, A., Gayraud-Morel, B., Guenou, H., Malissen, B., Tajbakhsh, S. and Galy, 
A. 2011. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138: 3647–3656. [Medline]  [CrossRef]

	45.	 Schmidt, W. M., Uddin, M. H., Dysek, S., Moser-Thier, K., Pirker, C., Höger, H., Ambros, I. M., Ambros, P. F., Berger, W. and Bittner, R. E. 2011. 
DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies. PLoS Genet. 7: e1002042. [Medline]  [CrossRef]

	46.	 Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P. and Rudnicki, M. A. 2000. Pax7 is required for the specification of myogenic 
satellite cells. Cell 102: 777–786. [Medline]  [CrossRef]

	47.	 Sebire, N. J. and Malone, M. 2003. Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas. J. Clin. Pathol. 56: 412–416. [Medline] [CrossRef]
	48.	 Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. and DePinho, R. A. 2004. The differential impact of p16(INK4a) or 

p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23: 379–385. [Medline]  [CrossRef]
	49.	 Sharpless, N. E., Bardeesy, N., Lee, K. H., Carrasco, D., Castrillon, D. H., Aguirre, A. J., Wu, E. A., Horner, J. W. and DePinho, R. A. 2001. Loss of 

p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413: 86–91. [Medline]  [CrossRef]
	50.	 Sher, R. B., Cox, G. A., Mills, K. D. and Sundberg, J. P. 2011. Rhabdomyosarcomas in aging A/J mice. PLoS One 6: e23498. [Medline]  [CrossRef]
	51.	 Sugihara, H., Teramoto, N., Nakamura, K., Shiga, T., Shirakawa, T., Matsuo, M., Ogasawara, M., Nishino, I., Matsuwaki, T., Nishihara, M. and 

Yamanouchi, K. 2020. Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci. Rep. 10: 16385. [Medline]  [CrossRef]
	52.	 Sundberg, J. P., Adkison, D. L. and Bedigian, H. G. 1991. Skeletal muscle rhabdomyosarcomas in inbred laboratory mice. Vet. Pathol. 28: 200–206. 

[Medline]  [CrossRef]
	53.	 Tageldin, M. H. and Elamin, M. A. G. 1981. Observations on spontaneous rhabdomyosarcoma in a rat (Rattus norvegicus). Lab. Anim. 15: 355–357. 

[Medline]  [CrossRef]
	54.	 Takahashi, Y., Oda, Y., Kawaguchi, K., Tamiya, S., Yamamoto, H., Suita, S. and Tsuneyoshi, M. 2004. Altered expression and molecular 

abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod. Pathol. 17: 660–669. [Medline]  [CrossRef]
	55.	 Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., Shirao, T., Yanagawa, T. and Watanabe, H. 2011. Evidence for cell density 

affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle Nerve 44: 968–977. [Medline]  [CrossRef]
	56.	 Tapscott, S. J., Thayer, M. J. and Weintraub, H. 1993. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. 

Science 259: 1450–1453. [Medline]  [CrossRef]
	57.	 Tiffin, N., Williams, R. D., Shipley, J. and Pritchard-Jones, K. 2003. PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle 

satellite cells. Br. J. Cancer 89: 327–332. [Medline]  [CrossRef]
	58.	 Troy, A., Cadwallader, A. B., Fedorov, Y., Tyner, K., Tanaka, K. K. and Olwin, B. B. 2012. Coordination of satellite cell activation and self-renewal 

by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11: 541–553. [Medline]  [CrossRef]
	59.	 Tsumura, H., Yoshida, T., Saito, H., Imanaka-Yoshida, K. and Suzuki, N. 2006. Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic 

rhabdomyosarcoma development in adult mice. Oncogene 25: 7673–7679. [Medline]  [CrossRef]
	60.	 Verhaart, I. E. C. and Aartsma-Rus, A. 2019. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 15: 373–386. [Medline]  

[CrossRef]
	61.	 Wang, Y., Marino-Enriquez, A., Bennett, R. R., Zhu, M., Shen, Y., Eilers, G., Lee, J. C., Henze, J., Fletcher, B. S., Gu, Z., Fox, E. A., Antonescu, C. 

R., Fletcher, C. D. M., Guo, X., Raut, C. P., Demetri, G. D., van de Rijn, M., Ordog, T., Kunkel, L. M. and Fletcher, J. A. 2014. Dystrophin is a tumor 
suppressor in human cancers with myogenic programs. Nat. Genet. 46: 601–606. [Medline]  [CrossRef]

	62.	 Zanola, A., Rossi, S., Faggi, F., Monti, E. and Fanzani, A. 2012. Rhabdomyosarcomas: an overview on the experimental animal models. J. Cell. Mol. 
Med. 16: 1377–1391. [Medline]  [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/17510286?dopt=Abstract
http://dx.doi.org/10.1101/gad.1545007
http://www.ncbi.nlm.nih.gov/pubmed/24136988?dopt=Abstract
http://dx.doi.org/10.1158/1541-7786.MCR-13-0350
http://www.ncbi.nlm.nih.gov/pubmed/7880524?dopt=Abstract
http://dx.doi.org/10.1016/0955-0674(94)90046-9
http://www.ncbi.nlm.nih.gov/pubmed/21828092?dopt=Abstract
http://dx.doi.org/10.1242/dev.067595
http://www.ncbi.nlm.nih.gov/pubmed/13768451?dopt=Abstract
http://dx.doi.org/10.1083/jcb.9.2.493
http://www.ncbi.nlm.nih.gov/pubmed/15059650?dopt=Abstract
http://dx.doi.org/10.1016/j.ctrv.2003.11.001
http://www.ncbi.nlm.nih.gov/pubmed/6672411?dopt=Abstract
http://dx.doi.org/10.1292/jvms1939.45.837
http://www.ncbi.nlm.nih.gov/pubmed/3773991?dopt=Abstract
http://dx.doi.org/10.1038/323646a0
http://www.ncbi.nlm.nih.gov/pubmed/32066552?dopt=Abstract
http://dx.doi.org/10.1242/dmm.042192
http://www.ncbi.nlm.nih.gov/pubmed/22566887?dopt=Abstract
http://dx.doi.org/10.3389/fimmu.2011.00098
http://www.ncbi.nlm.nih.gov/pubmed/25005781?dopt=Abstract
http://dx.doi.org/10.1038/srep05635
http://www.ncbi.nlm.nih.gov/pubmed/26504053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090187?dopt=Abstract
http://dx.doi.org/10.5858/2006-130-1454-RIAACA
http://www.ncbi.nlm.nih.gov/pubmed/1710539?dopt=Abstract
http://dx.doi.org/10.1002/1097-0142(19910615)67:12<3072::AID-CNCR2820671223>3.0.CO;2-Z
http://www.ncbi.nlm.nih.gov/pubmed/9848105?dopt=Abstract
http://dx.doi.org/10.1093/toxsci/45.1.1
http://www.ncbi.nlm.nih.gov/pubmed/4748432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9012842?dopt=Abstract
http://dx.doi.org/10.1073/pnas.94.2.669
http://www.ncbi.nlm.nih.gov/pubmed/9823374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21316601?dopt=Abstract
http://dx.doi.org/10.1016/j.ccr.2010.12.023
http://www.ncbi.nlm.nih.gov/pubmed/21828093?dopt=Abstract
http://dx.doi.org/10.1242/dev.067587
http://www.ncbi.nlm.nih.gov/pubmed/21533183?dopt=Abstract
http://dx.doi.org/10.1371/journal.pgen.1002042
http://www.ncbi.nlm.nih.gov/pubmed/11030621?dopt=Abstract
http://dx.doi.org/10.1016/S0092-8674(00)00066-0
http://www.ncbi.nlm.nih.gov/pubmed/12783965?dopt=Abstract
http://dx.doi.org/10.1136/jcp.56.6.412
http://www.ncbi.nlm.nih.gov/pubmed/14724566?dopt=Abstract
http://dx.doi.org/10.1038/sj.onc.1207074
http://www.ncbi.nlm.nih.gov/pubmed/11544531?dopt=Abstract
http://dx.doi.org/10.1038/35092592
http://www.ncbi.nlm.nih.gov/pubmed/21853140?dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0023498
http://www.ncbi.nlm.nih.gov/pubmed/33046751?dopt=Abstract
http://dx.doi.org/10.1038/s41598-020-73315-6
http://www.ncbi.nlm.nih.gov/pubmed/1830433?dopt=Abstract
http://dx.doi.org/10.1177/030098589102800303
http://www.ncbi.nlm.nih.gov/pubmed/7341847?dopt=Abstract
http://dx.doi.org/10.1258/002367781780952889
http://www.ncbi.nlm.nih.gov/pubmed/15098008?dopt=Abstract
http://dx.doi.org/10.1038/modpathol.3800101
http://www.ncbi.nlm.nih.gov/pubmed/22102468?dopt=Abstract
http://dx.doi.org/10.1002/mus.22224
http://www.ncbi.nlm.nih.gov/pubmed/8383879?dopt=Abstract
http://dx.doi.org/10.1126/science.8383879
http://www.ncbi.nlm.nih.gov/pubmed/12865925?dopt=Abstract
http://dx.doi.org/10.1038/sj.bjc.6601040
http://www.ncbi.nlm.nih.gov/pubmed/23040480?dopt=Abstract
http://dx.doi.org/10.1016/j.stem.2012.05.025
http://www.ncbi.nlm.nih.gov/pubmed/16785989?dopt=Abstract
http://dx.doi.org/10.1038/sj.onc.1209749
http://www.ncbi.nlm.nih.gov/pubmed/31147635?dopt=Abstract
http://dx.doi.org/10.1038/s41582-019-0203-3
http://www.ncbi.nlm.nih.gov/pubmed/24793134?dopt=Abstract
http://dx.doi.org/10.1038/ng.2974
http://www.ncbi.nlm.nih.gov/pubmed/22225829?dopt=Abstract
http://dx.doi.org/10.1111/j.1582-4934.2011.01518.x

