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Abstract 

The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis 

Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut 

across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with 

psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk 

Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of 

multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to 

show superior portability and comparable prediction accuracy as compared with the Ge method. 

The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic 

analysis of Biotypes, 12 genes and isoforms showed significant genomic associations with 

specific Biotypes in Transcriptome-Wide Association Study (TWAS) of genetically regulated 

expression (GReX) in adult brain and fetal brain. TWAS inflation was addressed by inclusion of 

genotype principal components in the association analyses. Seven of these 12 genes/isoforms 

satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes 

TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, 

ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways 

of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) 

interactions, and NCAM signaling for neurite out-growth. The specific associations with 

Biotypes suggest that pharmacological clinical trials and biological investigations might benefit 

from analyzing Biotypes separately. 
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Introduction 

Among the psychosis disorders, Schizophrenia (SCZ), Schizoaffective Disorder (SAD) and 

Bipolar Disorder (BD), there is a considerable overlap in symptoms, illness course, cognition, 

psychophysiology, neurobiology1-8, genetic susceptibility9-12, and transcriptome pattern13. The 

psychosis disorders show a large genetic overlap with each other and with Autism Spectrum 

Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and Major Depressive 

Disorder (MDD), where the genetic correlation is ~0.7 among these common psychiatric 

disorders14. Recently (2022), Bigdeli et al. found similar overlap of Polygenic Risk Scores 

(PRSs) for SCZ and BD, demonstrating that the PRS for each disorder predicts the other15, as 

confirmed elsewhere16. Historically, the first publication to introduce a PRS into genetics in 

200917 was on the applicability of SCZ PRS to BD. 

 

The three psychosis Biotypes of the Bipolar-Schizophrenia Network for Intermediate Phenotypes 

(B-SNIP) represent a unique categorization of psychosis disorders based on shared 

neurobiological variation within each Biotype category, a categorization that is distinct from 

conventional DSM diagnostic categories18, 19. The Biotype categories19 were generated in 

persons with psychosis disorders by K-means clustering analysis of a series of neurobiological 

measurements including cognition20-24, eye-tracking metrics25-28, and electroencephalogram 

(EEG) measurements29-33 including auditory Event-Related Potentials (ERPs)34. The psychosis 

Biotypes are thus biologically distinct categories of persons with psychosis disorders, and it is 

hypothesized that this categorization may lead to better personalized medical care35. 
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Until now, there has not been a comparative analysis of genetic risk of illness across the 

Biotypes and across the several ancestries in B-SNIP participants. For genetic analysis of the 

three Biotypes, a Genome-Wide Association Study (GWAS) approach lacks sufficient power for 

the existing sample sizes36. PRS, however, can be applied and tested. Polygenic inheritance, a 

hallmark of psychosis disorders, involves the cumulative influence of numerous common Single 

Nucleotide Polymorphisms (SNPs) with modest effect sizes on the development of illness37-40. 

PRS summarizes individual SNP effect sizes from GWAS on the risk of illness41, 42, and is 

widely used to estimate the polygenic liability to illness at an individual level43.  

 

Non-portability of PRS among genetic ancestries is well-known, attributable to differences in 

demographic relationships, allele frequencies, and local linkage disequilibrium (LD) patterns44-50. 

Various statistical calculation methods have been developed for PRS, to integrate GWAS 

summary statistics from diverse populations, in order to improve the prediction accuracy of case-

control status in each ancestry and across ancestries50. PRS-CSx is a recently developed PRS 

method that combines GWAS discovery data from different populations, thereby leveraging the 

correlation of genetic effects and LD diversity across ancestries, and accounting for ancestry-

specific allele frequency, LD patterns, and sample sizes in the discovery datasets. It outperforms 

single-population discovery methods and improves polygenic risk prediction accuracy for 

disease in single ancestry samples51. However, PRS-CSx does not generate a portable PRS for a 

mixed ancestry sample (see Results below). For personal medicine and for assessing health care 

risks across diverse populations, a score that is portable among ancestries would be desirable. 
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Ancestry-Adjusted PRS (AAPRS) refers to PRS that are portable across genetic ancestries, and 

applicable to mixed ancestry samples. Two methods for generating AAPRS, based on post hoc 

ancestry adjustment of PRS have recently become available, using genetic ancestry to calibrate 

PRS mean and variance52-54. The Khera52 method trains a linear regression model of PRS using 

genotype principal components (PCs) in the healthy control individuals within the sample as 

independent variables and PRS as the dependent variable. This model is then applied to the entire 

dataset, and the obtained residuals are the AAPRS. A related method by Ge et al.53 takes the 

1000 Genomes (1KG) Project samples as the reference dataset to train two linear regression 

models on genotype PCs, and then applies the models to the target dataset to get the AAPRS. No 

previous study has done comparative quantitative evaluation of these methods, on their accuracy 

(Nagelkerke’s pseudo-R2 and area under the curve (AUC)), and portability (overlap among PRS 

density kernels of different ancestries and minimal contribution of ancestry to the AAPRSs). 

 

Genomic measures: Transcriptome-Wide Association Study (TWAS) incorporates information 

on gene regulation from summary data on a set of markers. In comparison with SNP-based 

GWAS under a broad range of genetic architectures, it may enhance detection of gene 

associations55. Currently, there are emerging TWAS studies of genomic (gene-based) variation in 

multiple types of molecular traits, including quantitative trait loci (QTLs) for gene expression 

(eQTLs), isoform expression (isoQTLs), protein expression (pQTLs), histone modification 

(hQTL), alternative splicing (sQTL), DNA methylation (meQTL), metabolite (mQTL), and 

H3K27 histone acetylation (haQTLs) in multiple adult and fetal tissues56, 57, which are abundant 

resources for the prediction of a range of genetically regulated genomic events (multi-omics).  
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Two neurodevelopmental models of psychosis disorders have been proposed over the past thirty 

years58. First, excessive synaptic elimination or pruning in the cerebral cortex during late brain 

development, i.e. adolescence, is hypothesized as a cause of major psychoses, including SCZ59-

61. Second, genetic studies indicate that early brain development, including neuronal 

proliferation, migration, or synapse formation is affected in SCZ. SCZ is then re-conceptualized 

as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the 

illness62, 63. By leveraging the developmental brain, 2-fold improvement in colocalizations was 

observed for ~60% of GWAS loci across five neuropsychiatric disorders, compared with larger 

adult brain functional genomic reference panels64. A recent review of the neurodevelopmental 

model of SCZ with insights from genetics, transcriptomics, and epigenomics indicates that SCZ 

genetic risk is dynamic and context-dependent, varying spatiotemporally throughout 

neurodevelopment. It might be more effective to address the early-stage perturbations in SCZ 

through prediction and prophylaxis in the pre-, peri-, and neonatal stages rather than during 

adolescence or adulthood65. 

 

In this paper, we calculated SCZ PRS for B-SNIP individuals, based on multi-ancestry data, 

from PGC 3 SCZ (Schizophrenia and Schizoaffective Disorder) GWAS summary statistics37, and 

BD PRS based on PGC BD GWAS summary statistics. Next, the two post hoc ancestry 

adjustment methods described above were evaluated for case-control prediction performance and 

portability among ancestries, and the preferred adjustment method was applied (as AAPRS) to 

further analyses of our multi-ancestry data. We then tested AAPRS association with Biotypes. 

We also imputed genomic variables from PsychENCODE eQTL and isoQTL databases of 

adult66, 67 and fetal brains64, and GTEx version 8 elastic net model-based sQTL results in frontal 
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cortex55, 68, 69. We then tested for gene-level, isoform-level, and splicing-level expression 

association with Biotypes. Biological pathway enrichment and causal (mediation) analyses based 

on Mendelian Randomization (MR) were further performed for the significantly associated 

genes. 

 

The overall study workflow is shown in Figure 1. In our results, we found the Khera AAPRS 

method to be preferable to the Ge method, based on superior portability and marginally 

equivalent accuracy. We found no significant psychosis AAPRS differences among the three 

Biotypes. For the multi-omics TWAS analysis in adult and fetal brains, we found twelve genes 

and isoforms with expression associations that differed among specific Biotypes and healthy 

controls, and seven of them were found to be putative causal contributors to psychosis Biotypes 

by MR. 

Materials and methods  

B-SNIP dataset. 

There are 2505 unrelated individuals who have genotypes in the B-SNIP dataset. The diagnoses 

are SCZ, SAD, BD, and Healthy Control (HC). Biotypes of psychosis disorders (SCZ, SAD, BD 

with psychosis) were obtained from our previous study19. Not all genotyped individuals have 

Biotype status or diagnosis, for reasons of incomplete phenotyping. Multiple ancestries exist in 

this dataset based on genotype principal component (PC) assignment of ancestry. Only 

previously collected data in this dataset was studied. An earlier publication documented the 

informed consent70.   

 

Imputation and quality control (QC) of the B-SNIP genotypes.  
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Genotype imputation for all unrelated individuals was done using Minimac4 on the Michigan 

Imputation Server, taking 1KG phase 3 v5 (hg19) mixed population as the reference panel with 

Eagle as the phasing algorithm71. There are two batches (B-SNIP1 and B-SNIP2) in the B-SNIP 

dataset. The two batches were merged into a single dataset and QC was performed after merging. 

 

Genetic markers were retained to have imputation quality metric R2 > 0.3 (which removes > 70% 

of poorly imputed SNPs at the cost of < 0.5% well-imputed SNPs)72, missingness < 0.001%, 

MAF > 1%, and HWE P < 1E-5. Individuals with genotype missingness > 0.05 or with Cryptic 

Relatedness of 2nd degree or closer were filtered out using the KING program73. LD pruning was 

not done, because of the several ancestries. Genotype-based sex and heterozygosity rates were 

also checked for quality control. There were 10,321,126 total variants after QC.  

 

Ancestry assignment for the B-SNIP samples.  

We merged all B-SNIP unrelated samples (N = 2,505) with the 1KG phase 3 data (N = 2,504)74 

and retained shared common variants between the two datasets. We then calculated PCs based on 

the LD-pruned variants (PLINK --indep-pairwise 200 100 0.1) in the merged dataset. A 

Random-Forest (RF) method was used, based on the first 10 genotype PCs, to assign each person 

in the B-SNIP dataset to one of the five 1KG super populations – European (EUR), African 

(AFR), Admixed American (AMR), East Asian (EAS), and South Asian (SAS).  

 

Five ancestral groups – EUR (N = 1234), AFR (N = 908), AMR (N = 237), EAS (N = 73), and 

SAS (N = 53) were assigned (Figure S1). The concordance rates of RF-inferred ancestry with 

self-reported race in EUR, AFR, ASN (Asian: EAS + SAS), and AMR were 87%, 97%, 94%, 
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and 16%, respectively (Table S1). The individuals (N = 2178) with both Genotype and Biotype 

data included 495 with Biotype 1, 483 with Biotype 2, 515 with Biotype 3, and 685 healthy 

controls. The detailed sample information for Biotypes on each ancestry was shown in Table S2.  

 

Construction of ancestry-specific PRSs. 

PRS-CSx was used to calculate initial (unadjusted) SCZ PRSs of each of the five ancestries 

(EUR, AFR, AMR, EAS, and SAS). EUR, AFR, and ASN SCZ GWAS summary statistics were 

used as input to generate posterior ancestry-specific SNP weights for SCZ PRSs. 

 

PRS-CS75 (not PRS-CSx) was used to calculate initial (unadjusted) BD PRS due to the lack of 

BD GWAS summary statistics from ancestries other than EUR. EUR BD GWAS summary 

statistics are used as input to generate posterior EUR SNP weights for BD PRSs.  

 

Psychosis disorder PRSs incorporating both EUR SCZ GWAS and EUR BD GWAS summary 

statistics were calculated using PRS-CSx --meta option for all EUR individuals in the B-SNIP 

dataset. 

 

Ancestry-specific SCZ GWAS summary statistics were downloaded from the Psychiatric 

Genomics Consortium (PGC) website (https://figshare.com/articles/dataset/scz2022/19426775).  

EUR BD GWAS summary statistics were downloaded from the PGC website 

(https://figshare.com/ndownloader/articles/14102594/versions/2). The website does not make 

other ancestral BD GWAS summary statistics available at this time. More detailed information 

about the GWAS summary statistics is shown in Table S3. 
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LD reference panels for each ancestry were based on 1KG Project phase 3 samples and are 

available at https://github.com/getian107/PRScsx. 

 

Polymorphic variants present in all five ancestries in both B-SNIP and PGC3 SCZ GWAS 

datasets were used for SNP weights and PRS calculations. The parameters --seed and --phi in the 

PRS-CSx program were set to 1e3 and 1e-2, respectively. The posterior META SNP weights 

obtained from PRS-CSx program using the --meta option were used for PRS calculations. 

Individual risk scores for each person in the B-SNIP dataset were then calculated based on the 

posterior META SNP weights and genotypes of B-SNIP individuals using PLINK 2.0 --score.  

 

Post hoc ancestry adjustment of PRS to generate Ancestry-Adjusted PRS (AAPRS).  

PRS methods that can include diverse ancestries within a single dataset would increase sample 

size for power of detecting associations and would improve portability of PRS across ancestries. 

A regression-based post hoc ancestry adjustment method initially developed by Khera et al.52 

was later modified by Ge et al.53. Both methods calculate an adjusted PRS from initial PRS as 

dependent variable and genotype PCs as independent variables. These linear regression models 

are trained on healthy control samples in the target dataset in Khera et al.52, and trained on 1KG 

data in Ge et al.53. The coefficients of those regressions are used in the final equations on the 

target dataset. These final equations normalize the PRS scores in the target dataset to generate 

AAPRS. These procedures can be understood as projecting the PRSs of the target dataset onto a 

shared space that is based on the PCs of the training dataset. For implementing the Ge AAPRS, 
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the B-SNIP samples were projected into the 1KG phase 3 genotype PC space, and the first five 

genotype PCs were used for the AAPRS calculations. 

 

To generate AAPRS for the five ancestries, we separately applied each of the two post hoc 

ancestry adjustment methods (the Khera method and the Ge method)52, 53 to the calculated PRS-

CSx (--meta option) of all individuals in the B-SNIP dataset.  

 

Performance evaluation of the post hoc ancestry adjustment methods for accuracy and 

portability.  

Prediction accuracy for case-control status was evaluated by 1) the Area Under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC), and 2) Nagelkerke’s pseudo-R-squared76, 77. 

Portability metrics were 1) Overlap of the AAPRS density kernels across ancestries, and 2) 

Percentage of AAPRS variance attributable to ancestry. 

 

An implicit assumption of the post hoc ancestry adjustment methods is that ancestry variation is 

a “nuisance variable” so that a complete overlap of ancestries would generate a valid portable 

PRS for each person. The overlapping area among the kernel density estimates of AAPRS for the 

five ancestries was calculated by the boot.overlap() function in the ‘overlapping’ package 

(version 2.1) in R 4.2.178, 79. 

 

The percentage of PRS variance attributable to ancestry and to Biotype, with and without 

ancestry adjustment, was assessed by two-way Analysis of Variance (ANOVA) with interaction 

effect estimated, using the aov() function in R 4.2.1. 
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An “overfitting” question applies to the Khera method52, where the healthy control individuals in 

the target dataset are used to train the linear regression model in the first step of the adjustment. 

This might generate overfitting when applying the model to the entire target dataset. To test for 

overfitting, two-fold cross-validation was used to recompute the AAPRS and overlap statistics 

between the five ancestries. Specifically, we began by randomly dividing the B-SNIP dataset 

into two equal splits: split 1 serves as the training set and split 2 as the test set. We then reversed 

the roles of the two splits in a second analysis. To calculate the Khera AAPRS, we trained the 

Khera model on the training set and then applied it to the test set. The calculated Khera AAPRSs 

in two splits were then combined to calculate the overlap statistic. We compared this overlap 

statistic with the initial overlap statistic of Khera AAPRS to determine whether the overfitting 

exists. 

 

Comparison of PRSs and AAPRSs among Biotypes.  

To have uniform scales for PRSs across ancestries, percentile transformation was performed on 

the PRSs and AAPRSs. Wilcoxon tests were then performed on the percentile transformed PRSs 

or AAPRSs to assess whether there are significant PRS differences between healthy controls and 

Biotypes, as well as among the three different Biotypes. Bonferroni correction for six tests (N = 

6) was set for statistical significance (P < 8.33e-03). 

 

Gene expression, mRNA isoform and splicing TWASs in adult and fetal brains. 

TWAS was performed for Biotypes both within and across ancestries. The PsychENCODE 

multi-ancestry-based adult brain66, 67 and fetal brain64 eQTL model results were used for gene-
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level TWAS. The isoform prediction database for isoform-level TWAS was obtained from Arjun 

Bhattacharya, et al.80. The data used to construct this prediction model were adult brain cortex 

tissue from 2,365 individuals compiled and processed from the PsychENCODE Consortium66 

and the Accelerating Medicines Partnership Program for Alzheimer’s Disease (AMP-AD)81. 

GTEx version 8 elastic net model-based sQTL results in frontal cortex55, 68, 69 in adult brains were 

used for splicing-level TWAS. Detailed information about the PredictDB databases used in this 

study was shown in Table S4. 

 

Using MetaXcan55, 68, we first imputed transcriptome, isoform and spliceome data for B-SNIP 

individuals. Next, the genetically regulated expression (GReX) of 14,188 genes in adult brain, 

7,024 genes in fetal brain, 34,169 isoforms in adult brain, and 7,425 splicing events in adult brain 

were imputed for each person. Each gene/isoform/splicing in adult or fetal brain imputed GReX 

component was then tested for association with case (including all the three Biotypes) vs. 

control, SCZ (including SCZ and SAD) vs. control, BD vs. control, SCZ vs. SAD, SCZ vs. BD, 

SAD vs. BD, Biotype vs. control, Biotype vs. Biotype, and within and across ancestries, using a 

logistic regression model with the first five genotype PCs as covariates. Multiple testing 

significance thresholds for TWAS associations were Benjamini & Hochberg (BH)82 FDR 

correction (FDR < 0.05). 

 

To consider possible inflation in the different TWAS models83-85, we used two methods to 

evaluate our TWAS results: 1) Genomic inflation factor lambda, and 2) Bayesian method-based 

estimated inflation using the empirical null distribution83. The calculations were implemented by 

‘QCEWAS’ and ‘bacon’ packages in R 4.2.1. The first five genotype PCs of B-SNIP individuals 
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were used as covariates in our main TWAS association analysis. Inflation was tested for the 

association analysis results under the different TWAS models with and without genotype PCs as 

covariates. Quantile-Quantile (Q-Q) plots and the two inflation statistics were used for 

visualizing and analyzing the inflation based on the observed P values in TWAS results. 

 

Causal analysis of candidate risk genes for psychosis Biotypes and psychosis disorders. 

We applied the Mendelian Randomization - Joint Tissue Imputation (MR-JTI)86 approach to test 

for putatively causal genes of psychosis Biotypes and diagnoses from TWAS results. Although 

MR analysis of disease is a test of causality, it is calculated as a test of the relative strength of 

direct and indirect associations between an event (G in Figure S2) and a [disease] outcome (D in 

Figure S2). The alternative to a direct association is an indirect association of G on disease 

outcome D, detected by a stronger association of G to another event (such as an IP) that itself is 

strongly associated with D.  That is, the effect of G on D is indirect when the G association with 

the other event is stronger than the association of G with the disease (D).  The relative strengths 

of the associations are measured as in the diagram. Bonferroni corrections are used for multiple 

testing of genes. 

 

When concluding there is a causal association between events G and D, there is no conclusion on 

the relative strength of this causal event vs. other causal events that are not measured or reported, 

such as trauma or societal stresses. Nor is there a biological mechanism proven by the 

association, although one might be implied by the nature of the genetic association.  

 

Biological pathway enrichment analysis. 
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We did biological pathway enrichment analysis for candidate genes using Reactome87 

(https://reactome.org/).  

 

Resampling for robustness. 

Resampling was used to test the robustness of the findings from PRS and TWAS analyses of 

psychosis Biotypes, due to the lack of external psychosis Biotype data. Specifically, we 

randomly selected 80% of the whole sample for 10 times, and each time we performed all the 

PRS and TWAS analyses. We then evaluated the robustness of our findings by comparing the 

results from resampling and from our main analyses. 

Results 

1. Polygenic Risk Scores 

Similar prediction accuracy for case-control status from both AAPRS methods. 

In the combined multi-ancestry sample, the unadjusted PRS gave 0.606 (95% CI: 0.580, 0.631) 

for AUC and 0.043 (95% CI: 0.021, 0.062) for Nagelkerke’s pseudo-R2 on case-control status. 

The Ge method gave 0.619 (95% CI: 0.594, 0.644) for AUC and 0.053 (95% CI: 0.028, 0.075) 

for Nagelkerke’s pseudo-R2, and the Khera method gave 0.607 (95% CI: 0.582, 0.632) and 0.044 

(95% CI: 0.021, 0.063) respectively. Thus, these two AAPRS methods performed comparably to 

the unadjusted PRS on both AUC and Nagelkerke’s pseudo-R2 for case-control status in the 

combined multi-ancestry sample and in each of the five ancestries separately (Figure 2, Table 

S5).  

 

On PRS overlap across ancestries, the Khera AAPRS gives greater improvement.   
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Overlap of PRS density kernels across different ancestries is one of the portability metrics for the 

AAPRS evaluation. The unstated assumption in reducing overlap is that there are no true 

differences between ancestry PRSs, and they should overlap completely.  

 

The estimated overlap of unadjusted PRSs among the five ancestries was 0.914 (95% CI: 0.902, 

0.926). The estimated overlap of the Ge AAPRS and the Khera AAPRS was 0.962 (95% CI: 

0.955, 0.969) and 0.974 (95% CI: 0.966, 0.982) respectively. Both AAPRS methods improved 

overlap compared to that of unadjusted PRS, and the improvement was greater with the Khera 

adjustment than with the Ge adjustment, while complete overlap was not observed in our data 

(Figure 3). 

 

The Khera method shows smaller ancestry contribution than the Ge method to the 

variance of AAPRS.  

Two-way analyses of variance (ANOVA) of the combined sample were performed to assess PRS 

variance contributions of Biotype, Ancestry, and residuals. As expected, the method that yielded 

the greatest PRS density kernel overlap among five ancestries (Khera) showed the smallest 

contribution of ancestry to AAPRS (Figure 4, Table S6). Even there, we found ancestry 

contributions to AAPRS. With the Khera method, ancestry accounted for 1% (P = 4.37e-04) of 

AAPRS variance versus 14% (P = 3.03e-70) for Ge. There were no significant interactions 

between Biotype and ancestry in either Ge AAPRS or Khera AAPRS (Figure 4, Table S6). The 

Khera result thus more closely fits the unstated assumption of ancestry as a nuisance variable 

(this assumption is discussed below).  
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No overfitting observed with the Khera ancestry adjustment method.  

The question of overfitting in the Khera method is raised by its use of its own healthy controls 

for training its linear regression model. To address this question, we determined whether it 

matters if the training group is inside the total sample or not. For this question, we did two-fold 

cross-validation, where the data was randomly divided into two equal parts, called “folds”, and 

used for training and testing separately. 

 

With two-fold cross-validation, the estimated overlap of the Khera AAPRS density kernels 

among the five ancestries was 0.969 (95% CI: 0.960, 0.978). No significant overfitting was 

observed compared to the initial overlap statistic of Khera AAPRS 0.974 (95% CI: 0.966, 0.982). 

 

The three Biotypes show no significant differences in SCZ AAPRSs.  

Wilcoxon tests showed significant differences between each Biotype and healthy controls in SCZ 

AAPRSs in the combined multi-ancestry sample, but no significant differences among the three 

Biotypes (Figure 5, Table S7). 

 

SCZ- and BD- GWAS summary statistics give similar AAPRSs across Biotypes within 

EUR ancestry. 

To see whether these three psychosis Biotypes share a polygenic risk for both SCZ and BD, we 

calculated PRS and AAPRS for EUR individuals in B-SNIP dataset using PGC EUR GWAS 

summary statistics from two different diagnoses, SCZ and BD. We studied only EUR ancestry 

B-SNIP participants because ancestry-specific BD GWAS summary statistics are currently 

available only for EUR ancestry.  
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Cross-diagnosis and within-diagnosis case-control prediction accuracy of unadjusted PRS and 

AAPRS was first evaluated by AUC and Nagelkerke’s pseudo-R2, as described in Materials and 

methods. The SCZ AAPRS performed slightly better than BD AAPRS on both Nagelkerke’s 

Pseudo-R2 and AUC in the combined diagnosis sample. SCZ AAPRS had good prediction 

accuracy for cross-diagnosis case-control status (that is, for BD persons). However, BD AAPRS 

had less cross-diagnosis prediction accuracy (that is, for SCZ persons). Integrating the two sets 

of GWAS summary statistics (EUR SCZ and EUR BD) into a combined psychosis AAPRS gave 

better prediction accuracy of case-control status for BD persons and the most consistently 

improved prediction accuracy for the combined diagnoses (BD and SCZ persons) (Figure 6). 

 

Two-sample Wilcoxon tests were used to determine whether there are differences among the 

three distinct Biotypes on both SCZ AAPRSs and BD AAPRSs within EUR ancestry. Results 

showed no significant differences among the three Biotypes, but each of the three Biotypes 

exhibited significant differences from healthy controls (Wilcoxon test, Bonferroni-corrected P < 

8.33e-03) in the combined diagnostic persons in SCZ AAPRSs (Figure S3a), BD AAPRSs 

(Figure S3b), or psychosis AAPRSs (Figure S3c). In other words, the three psychosis Biotypes 

shared a polygenic risk based on both SCZ and BD GWAS summary statistics. 

 

2. Molecular Associations 

TWASs on imputed adult and fetal brain gene expression, mRNA isoforms, and RNA 

splicing identify 12 associations with Biotypes. 
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We first evaluated overall case-control, SCZ-control, BD-control, SCZ-SAD, SCZ-BD, and 

SAD-BD associations in TWASs (gene-expression in both adult and fetal brain, isoforms in adult 

brain, and splicing events in adult brain), which would be broader than specific Biotype 

associations. However, no significant associations were detected.  

 

We proceeded to perform separate TWAS analyses of each Biotype, comparing them with each 

other and with healthy controls. Twelve gene and isoform associations with Biotypes in adult or 

fetal brain were detected with multiple testing corrections (BH FDR < 0.05) applied (Table 1). 

No significant splicing event associations with Biotypes were detected. 

  

Mendelian Randomization (MR) detected seven putatively causal genes of Biotypes. 

Based on the twelve significantly Biotype-associated genes and transcripts (nine unique genes), 

we did a causal (mediation) exploration using MR-JTI. With Bonferroni correction, seven unique 

genes (four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts 

ENSG00000272941, ENSG00000257176, ENSG00000287733) showed significant potential 

causal relationships with psychosis Biotypes (Table 2). 

 

The seven putatively causal genes of psychosis Biotypes are enriched (P < 0.05) in the biological 

pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 

(NCAM1) interactions, and NCAM signaling for neurite out-growth (Figure 7).  

Discussion 

Non-portability of PRSs across different ancestries is well-known44-50, 52-54, 88. To be useful for 

multi-ancestry medical care, an AAPRS must satisfy requirements of accuracy and portability. 
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Post-hoc ancestry adjustments in multi-ancestry samples have recently been proposed to satisfy 

these requirements, as an alternative to meta-analysis by ancestry. We evaluated two methods of 

post hoc ancestry adjustment of PRS52, 53. In our comparative analysis in the B-SNIP dataset, the 

Khera method52 adjustment had better portability among ancestries, and the two methods had 

comparable accuracy. We also examined possible overfitting in the Khera method since part of 

the target data is used to fit the model to the entire target dataset and found no overfitting by 

cross-validation analysis. The Khera method was then chosen for analysis of the B-SNIP data, a 

multi-ancestry dataset which is the only existing dataset with psychosis Biotypes and genotypes. 

 

The Biotypes are an innovation in diagnosis of psychosis disorders, as they are based on 

neurobiological measures as opposed to reported symptoms35, 89. In a previous study35, 89, 

Biotypes 1 and 2 had poorer scores on cognition and two other Biofactors (Intermediate 

Phenotypes) than Biotype 3 and healthy controls. On other Biofactors, Biotype 1 or Biotype 2 

were more different from healthy controls than Biotype 3. We hypothesized that similar 

differences might exist in the overall polygenic risk of SCZ, with Biotype 3 closer to controls. 

However, we found no significant differences in AAPRSs among the three Biotypes, although 

each Biotype had higher AAPRS than healthy control, as expected. The PRS and AAPRS for the 

above analysis incorporated SCZ GWAS summary statistics from multiple ancestries using the 

PRS-CSx program. We also found that the Biotype AAPRS results were preserved in the 

polygenic risk of BD in EUR ancestry using EUR BD GWAS summary statistics. BD GWAS 

summary statistics from other ancestries were not available.  
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Interestingly, we found that in EUR ancestry, AAPRS based on SCZ GWAS summary statistics 

had comparable prediction accuracy for case-control status for BD persons, while AAPRS based 

on BD GWAS summary statistics had comparable (although smaller) prediction accuracy of 

case-control status for SCZ persons. Integrating the two sets of GWAS summary statistics (EUR 

SCZ and EUR BD) improved the prediction accuracy of case-control status for BD persons and 

for the combined diagnoses. 

 

By projecting B-SNIP samples onto the 1KG PC space and using Random Forest (RF) to classify 

individuals into the five super populations, more genetically homogeneous groups can be 

identified for further analysis, while still retaining typically underrepresented groups. However, 

this approach is limited by the populations in the reference panel, which may not adequately 

represent certain samples or admixtures in the target data90. Specifically, the 1KG reference 

panel underrepresents admixed ancestry, as its AMR group predominantly reflects Latin 

American individuals, whose genetic profiles may not align with those of the admixed 

individuals in B-SNIP. As a result, RF may misclassify admixed individuals by favoring larger 

or more distinct ancestry groups. 

 

In the data analyzed here, there is close correspondence between self-reported race and the three 

categories (EUR, AFR and ASN) derived by RF analysis, except for AMR ancestry, in which the 

concordance rate was only 16% (Table S1), due to the possible reasons mentioned above. The 

ancestry-specific TWAS results in this study are based on ancestry categories, where the AFR 

and EUR ancestry categories closely correspond to self-reported race. The number of EAS and 
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SAS individuals is much smaller and gave us less confidence in those TWAS associations. No 

significant TWAS associations were found in AMR ancestry. 

 

In the PRS analyses, since two alternative methods are available for PRS adjustment in multiple 

ancestries, we assessed the two methods. The Khera method is more successful than the Ge 

method in adjusting the PRS for effects of ancestry. Before adjustment, 40% of the PRS is 

attributable to ancestry by ANOVA analysis. After adjustment with the Ge method, there is still 

14% variance attributable, but after adjustment with the Khera method there is 1% variance 

(Table S6). This difference may be due to the target sample projection onto the 1KG PC space in 

the Ge method, whereas the Khera method uses only the PCs of the actual sample. This 

illustrates another limitation of using the 1KG ancestries as a reference and supports the use of 

Khera method for PRS adjustment. 

 

Additionally, PRS adjustment procedures did not completely erase the contributions of ancestry 

to AAPRS, although it was assumed that PRSs can be adjusted to have identical distributions 

across ancestries. Larger samples and optimized AAPRS methods to be developed may be 

needed to determine if ancestry effects can ever be eliminated. An alternative possibility exists, 

that ancestry-related differences exist in psychosis disorders that prevent identical PRS 

distributions across populations. For example, gene-environment interaction might limit PRS 

portability, which remains to be investigated. 

 

Comprehensively delineating environment and gene-environment interactions in the estimation 

of psychiatric disease risk is a hefty task and is beyond the scope of the present work. However, 
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it should be acknowledged that genetic ancestry differences are likely due to environmental 

influence. Environmental factors are numerous and themselves inter-related, and differentially so 

across ancestry groups. Ancestry groups overlap substantially with socially constructed racial 

group identities that tend to delineate disparities in how such factors are experienced. 

Specifically, the experience is generally one of the disadvantages for those identifying/identified 

as Black or African American. The B-SNIP sample is comprised of mostly individuals self-

identifying as White or Black/African American and living in the United States. It is likely these 

groups experienced differential healthcare system quality and access, stress associated with 

racism, intergenerational trauma, and even biases potentially contributing to diagnoses despite 

efforts at standardization, among many other interrelated factors. Socioeconomic status and other 

variables share substantial variance with racial group identity and delineate key impactful 

environmental experiences. 

 

Genomic and genetic associations with Biotypes might be influenced by the socially 

environmental components, either as confounding variables or by gene-environment interactions. 

We cannot conclude that the observed PRS association with Biotypes is purely genetically 

determined. Social environmental components or their interactions with the genetic factors might 

contribute to the variation of Biotypes. These interactions regarding case-control differences 

could be investigated in future studies by adding socio-environmental variables to the linear 

models for analysis of genetic, genomic, and ancestry variation among Biotypes. This type of 

analysis was recently reported for MDD in Nepal, where demographic variables and 

environmental exposures explained a far greater proportion of variance in liability to lifetime 

MDD, while the depression PRS was not strongly associated with MDD91. 
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Inflation can exist in TWAS analysis mainly due to the polygenicity of the target trait, especially 

with a large sample size, as discussed recently83-85. We found some obvious inflation in TWAS 

results (lambda: 1.19 ~ 3.6 in gene-level TWAS in adult brain, 1.08 ~ 4.07 in gene-level TWAS 

in fetal brain, 1.16 ~ 4.18 in isoform-level TWAS in adult brain, and 1.24 ~ 5.16 in splicing-level 

TWAS in adult brain) in the combined multi-ancestry sample when we did not include genotype 

PCs in the association analysis. The inflation was successfully addressed (all lambdas close to 1) 

by including the first five genotype PCs as covariates in a logistic regression model. No inflation 

existed in the various ancestry-specific and combined multi-ancestry genotype PC-corrected 

TWAS results (Tables S8-S11). A representative Q-Q plot illustrated the inflation effect in the 

association analysis results with and without genotype PC correction (Figure 8). We applied 

genotype PC correction to all the TWAS results. 

 

Twelve TWAS gene/isoform associations were found in Biotypes versus healthy control (Table 

1). No significant associations were found in case-control, SCZ-control, BD-control, SCZ-SAD, 

SCZ-BD, or SAD-BD omics comparisons. This implies that association signals might be buried 

when using only traditional diagnosis, because there is genomic heterogeneity among Biotypes. 

Molecular, pharmacological, and genetic studies of Biotypes, as well as environmental factors, 

may be useful for disentangling at least part of the etiological and pathophysiological 

heterogeneity of psychosis. 

 

Several Biotype-associated genes found in our study have been reported to be associated with 

psychosis disorders or neuropsychiatric disorders by previous genetic or genomic studies. 
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C1orf115 was found to be differentially expressed when comparing SCZ, MDD, and ASD 

patients to healthy controls in multiple brain regions92, 93. C1orf115 was also in GWAS 

associated (P = 3e-6) with response to antipsychotic therapy94. DNAAF2 was found to be 

differentially expressed in BD and MDD frontal cortex92. TMEM140 was reported as a down-

regulated (logFC = -0.15, FDR q-value = 0.004) gene in first-episode psychosis patients in 

blood95. TMEM140 is also associated with the prognosis of glioma by promoting cell viability 

and invasion96. CYREN, as known as C7orf49, was reported to be associated with Alzheimer's 

disease (AD) and Parkinson's disease (PD)97. TMEM140 and C7orf49 were reported to be 

associated with ADHD on the epigenomics98. ARTN was reported to be significantly associated 

(P = 1.6e-09) with SCZ and ADHD by meta-analyzing the common variant associations with 

SCZ and ADHD using Multi-marker Analysis of GenoMic Annotation (MAGMA)99. ARTN was 

reported to be down-regulated in patients with MDD in a current depressive state in blood100. 

 

Seven of the twelve associated genes and isoforms are putative causal genes of Biotypes based 

on MR analysis, although causality here has the limitations associated with MR analyses, which 

do not account for complex interactions with other factors contributing to psychosis illnesses. 

Nonetheless, these observations are relevant. These seven genes are enriched in psychosis and 

neuropsychiatric disorder-related biological pathways via RET signaling, NCAM1 interactions, 

and NCAM signaling for neurite out-growth (Figure 7). RET signaling is activated by glial cell 

line–derived neurotrophic factor (GDNF) ligands101. RET signaling was reported to function in 

motor neurons102, including dopaminergic (DA) neurons103, and associated with various diseases, 

such as PD104. It was also reported to be associated with vitamin D deficiency which increases 

the risk of SCZ105. The NCAM was reported to play important roles in neurite outgrowth, long-
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term potentiation in the hippocampus and synaptic plasticity106 in both the developing and adult 

brains107. As a synaptic plasticity marker, NCAM1 was reported to be differentially altered in 

SCZ108, 109 and BD110 patients, and the SNPs within NCAM1 contribute to the risk of both SCZ 

and BD possibly through alternative splicing of the gene110. The NCAM1 gene set was also 

reported to be linked to depressive symptoms111. 

 

To validate the three biological pathways in Figure 7 and suggest additional pathways, we 

relaxed the TWAS significance threshold to Benjamini & Hochberg (BH) FDR < 0.1, thus 

including 11 additional suggestive gene/transcript/splicing associations with Biotypes (Table 

S12), besides the 12 significant associations in Table 1. We then did the causal analysis for all 

the 23 associations (19 unique genes) using MR-JTI program, and 14 unique genes are 

suggestively causal genes (because of the relaxed TWAS significance threshold) of Biotypes or 

psychosis disorders. These 14 suggestively causal genes are enriched in 31 additional biological 

pathways using a threshold BH FDR < 0.1 (Table S13), and in the three biological pathways 

shown in the Main text Figure 7. Some of these additional biological pathways, such as 

Nonsense Mediated Decay (NMD) related pathways112, 113, response of EIF2AK4 (GCN2) to 

amino acid deficiency114, signaling by NTRK3 (TRKC)115-117, axon guidance118, and nervous 

system development119, are reported to be therapeutic targets or play important roles in psychosis 

disorders. 

 

To interrogate the robustness of PRS and TWAS findings, we performed analyses based on 

resampling ten times, since no other data of Biotypes can be used for replication. Resampling 

results are consistent showing that the Khera method provided better portability and comparative 
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accuracy in SCZ AAPRS, and the three Biotypes share a polygenic risk of psychosis disorders. 

Resampling also showed the TWAS results of eleven genes and transcripts (except for 

ENSG00000287733) replicated 1 to 4 times (Table S14). 

 

Despite the resampling results, we note that gene associations with psychosis Biotypes found in 

samples of Asian (EAS or SAS) ancestry have a much smaller sample size than the other 

ancestries. These results, although statistically significant, are offered as tentative conclusions. 

The three associated genes found in SAS ancestry would require further support. We did not find 

any genes that are significantly associated with EAS ancestry. In short, the genes associated with 

Biotypes in Asian ancestry should be viewed with caution.  

 

In the PRS analyses, including or excluding Asian ancestry did not significantly affect SCZ 

prediction accuracy, ancestry adjustments, or Biotype comparisons. There was no significant 

change in prediction performance or ancestry adjustment results with or without Asian SCZ 

GWAS data or Asian samples from the target dataset (B-SNIP) (Figures 2, S4). Additionally, no 

significant differences in SCZ AAPRSs were found among the three Biotypes, regardless of 

whether including or excluding Asian SCZ GWAS data or Asian samples from the target dataset 

data (B-SNIP) (Table S7). 

 

The eQTL, sQTL, and isoQTL models used for TWAS analyses in this study are mainly based 

on EUR samples. This might cause lowered prediction accuracy of GReX components for other 

ancestry individuals in the B-SNIP dataset, resulting in low power of detecting associations in 

other ancestries. 
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In conclusion, our results suggest that the three psychosis Biotypes share comparable polygenic 

risks based on PRS calculated from both SCZ and BD GWAS summary statistics. Furthermore, 

different Biotypes have specific psychosis risk genes, some of which are putatively causal genes 

with specific biological pathways. The molecular associations with Biotypes in this research 

suggest that pharmacological clinical trials and biological investigations might benefit from 

analyzing results separately by Biotypes as well as the usual analysis by diagnosis. That is, 

Biotypes may become a component of personalized diagnosis and treatment. 

Data availability 

B-SNIP data could be obtained from the NIMH Data Archive (https://nda.nih.gov; NDAR ID: 

2274, respectively). The 1000 Genomes phase 3 genotype data are available at https://www.cog-

genomics.org/plink/2.0/resources#phase3_1kg. Other data sources used in this study are 

provided in the Materials and methods section and Tables S3-S4. 

Code availability 

PRS-CSx implementation script is available at https://github.com/getian107/PRScsx. PRS-CS 

implementation script is available at https://github.com/getian107/PRScs. Ancestry assignment 

script is available at https://github.com/Annefeng/PBK-QC-pipeline. PLINK 2.0 is available at 

https://www.cog-genomics.org/plink/2.0/.  
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Figure 1. Overview of the study workflow. GWAS = Genome Wide Association Study, PRS = 

Polygenic Risk Score for SCZ, AAPRS = Ancestry-Adjusted Polygenic Risk Score for SCZ, TWAS = 

Transcriptome Wide Association Study. PGC = The Psychiatric Genomics Consortium, B-SNIP = The 

Bipolar and SCZ Network for Intermediate Phenotypes consortium, GTEx = The Genotype-Tissue 

Expression project. SCZ = Schizophrenia, SAD = Schizoaffective Disorder, BD = BD with psychotic 

features, HC = Healthy Control. BT1 = Biotype 1, BT2 = Biotype 2, BT3 = Biotype 3. EUR = European, 

AFR = African, AMR = Admixed American, EAS = East Asian, SAS = South Asian. GReX = 

Genetically Regulated eXpression. 
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Figure 2. Prediction accuracy of PRSs for case-control status before and after ancestry adjustment 

within and across 5 ancestries.  All the PRSs are calculated based on EUR, AFR and Asian SCZ GWAS 

summary statistics. (a) The area under the receiver operating characteristic (ROC) curve (AUC) of PRSs. 

(b) The proportion of the case-control variance (Nagelkerke’s pseudo-R2) explained by PRSs. Lines for 

Nagelkerke’s pseudo-R2 in (b) correspond to 95% confidence intervals calculated via 1000 bootstrapping. 

The five ancestries were assigned by Random Forest inferred method based on 1KG reference. EUR = 

European, AFR = African, AMR = Admixed American, EAS = East Asian, SAS = South Asian, ALL = 

Combined multi-ancestry individuals of all the five ancestries. “Unadjusted” risk scores are the --meta 

option results from PRS-CSx prior to post hoc ancestry adjustment, and “Adjusted” refers to AAPRS 

(Ancestry-Adjusted Polygenic Risk Score) with post hoc ancestry adjustment of Khera or Ge. We find no 

overall advantage in prediction accuracy of case-control status for either adjustment method.  
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Figure 3. Effects of post hoc ancestry adjustment on the overlap of PRS-CSx (meta option) 

distributions among 5 ancestries. Figure shows the overlaps of density kernels of PRSs between 

different ancestries before and after ancestry adjustment. ‘estOV’ = estimated overlapping area of risk 

scores between different ancestries. Standard error of estOV is calculated by 1000 bootstrap draws 

(meaning 1000 iterations with bootstrapping), and the labelled error bar of upper and lower values is 

estOV +/- SE. Between the two PRS post hoc ancestry adjustment methods, Khera adjustment gave 

greater PRS overlap (97% vs. 96%) between different ancestries, both significantly higher than the 

overlap (91%) of unadjusted PRSs. 
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Figure 4. Percentage of SCZ AAPRS variance explained by each factor in two-way Analysis of 

Variance (ANOVA). “Unadjusted” is PRS-CSx meta PRS before post hoc ancestry adjustment. 

“Adjusted” refers to Ancestry-Adjusted Polygenic Risk Scores (AAPRSs) with post hoc ancestry 

adjustment of Khera or Ge. Minimal ancestry variance is desirable for AAPRS in a combined multi-

ancestry sample. The residual variance would be the effect of SNPs on the PRS. Ideally, this would take 

up the largest share of the PRS variance, and the effects of the other variables would be minimized, as 

seen in the Khera AAPRS. With the Khera method, ancestry accounted for 1% of AAPRS variance (P = 

4.37e-04) and Biotypes significantly accounted for 4% (P = 2.20e-17) vs. 14% (P = 3.03e-70) and 3% (P 

= 3.08e-17) for Ge. There were no significant interactions between Biotype and ancestry in either 

adjustment method (Table S6).  

 

 

Figure 5. Biotype differences on SCZ AAPRS. AAPRS refers to Ancestry-Adjusted Polygenic Risk 

Score with post hoc ancestry adjustment of Khera. The differences of AAPRS among Biotypes in the 

combined multi-ancestry dataset are shown by violin plot. Wilcoxon tests were used for the comparison. 

Bonferroni-corrected significance threshold over 6 two-sample Wilcoxon tests is P-value < 8.33e-03. 

Only significant comparison results are labeled with asterisks. *** indicates P-value < 1.67e-04.  
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Figure 6. Prediction accuracy of EUR SCZ and BD GWAS-summary-statistics-based PRSs for 

case-control status for different diagnostic groups within EUR ancestry before and after ancestry 

adjustment. (a) The area under the receiver operating characteristic (ROC) curve (AUC) of PRSs. (b) 

The proportion of the case-control variance (Nagelkerke’s pseudo-R2) explained by PRSs. Lines for 

Nagelkerke’s pseudo-R2 in (b) correspond to 95% confidence intervals calculated via 1000 bootstrapping. 

PGC EUR SCZ and EUR BD GWAS summary statistics were used for PRS construction. “based” refers 

to the diagnosis of the GWAS summary statistics used to generate the PRS. 
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Figure 7. Histogram of significantly (P < 0.05) enriched biological pathways for the seven Biotype 

causal genes in Table 2. Legend: RET = Rearranged during Transfection, NCAM = Neural Cell 

Adhesion Molecule. 

 

 

Figure 8. Representative Quantile-Quantile (Q-Q) plot of gene-level TWAS results in adult brain 

for Biotype 1 versus Healthy Control in the combined sample of the five ancestries. (a) QQ plot of 

TWAS results without covariates. (b) QQ plot of TWAS results with the first five genotype principal 

components (PCs) as covariates. Each blue dot represents for a gene. Results show that the inflation was 

successfully addressed by including the genotype PCs in the logistic regression model in the association 

test. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.05.24318404doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318404
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

 

 

Tables 

Table 1. Imputed gene expression and mRNA isoforms associated with Biotypes. 

Gene Id Gene Name Comparison Developmental 
Stage Transcriptome Ancestry Effect 

Size SE Z-score P-value FDR 

ENSG00000165506 DNAAF2 HC-BT2 adult gene-level SAS 5.72 0.89 6.46 3.32E-07 0.005 

ENST00000608819 ENSG00000272941, Novel 
Transcript, antisense to C7orf49 HC-BT3 adult isoform-level AFR -0.95 0.18 -5.28 2.40E-07 0.008 

ENST00000481410 CYREN HC-BT3 adult isoform-level AFR -0.89 0.18 -4.95 1.23E-06 0.016 

ENST00000487774 CYREN HC-BT3 adult isoform-level AFR -0.88 0.18 -4.83 2.12E-06 0.016 

ENST00000466307 TMEM140 HC-BT3 adult isoform-level AFR -1.08 0.22 -4.84 2.05E-06 0.016 

ENST00000275767 TMEM140 HC-BT3 adult isoform-level AFR -0.59 0.12 -4.82 2.28E-06 0.016 

ENST00000670978 ENSG00000287733, Novel 
Transcript HC-BT3 adult isoform-level AFR 0.29 0.06 4.71 3.64E-06 0.021 

ENSG00000257176 Novel Transcript, antisense to 
FAR2 HC-BT3 fetal gene-level AFR 0.74 0.16 4.75 3.08E-06 0.022 

ENSG00000162817 C1orf115 HC-BT1 adult gene-level SAS -4.04 0.72 -5.63 2.38E-06 0.034 

ENST00000414809 ARTN HC-BT2 adult isoform-level SAS 1.87 0.31 6.01 1.18E-06 0.04 

ENSG00000287733 Novel Transcript HC-BT3 fetal gene-level AFR 1.03 0.23 4.45 1.19E-05 0.042 

ENSG00000275476 Novel Transcript, antisense to 
FAR2 HC-BT3 fetal gene-level AFR 2.13 0.49 4.33 1.97E-05 0.046 

Legend: HC = Healthy Control, BT1 = Biotype 1, BT2 = Biotype 2, BT3 = Biotype 3. AFR = African 

American, SAS = South Asian. Multiple testing significance thresholds for TWAS associations were 

Benjamini & Hochberg (BH) FDR correction (FDR < 0.05). 

 

 

 

Table 2. MR-JTI significant (Bonferroni corrected) results of the candidate genes/transcripts in 

Table 1. 

Gene Id 
Gene 

Name 

Developmental 

Stage 
Transcriptome Comparison Ancestry beta beta_CI_lower beta_CI_upper CI_significance 
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ENSG00000272941 

Novel 

Transcript, 

antisense 

to C7orf49 

adult gene-level Case-HC EUR -0.21 -0.43 -0.03 sig 

ENSG00000257176 

Novel 

Transcript, 

antisense 

to FAR2 

adult gene-level BT1-BT2 EUR 0.16 0.04 0.43 sig 

ENSG00000146859 TMEM140 fetal gene-level Case-HC AFR 0.26 0.02 0.51 sig 

ENSG00000287733 
Novel 

Transcript 
fetal gene-level Case-HC AFR 0.15 0.04 0.39 sig 

ENSG00000117407 ARTN fetal gene-level BT1-HC AFR 0.18 0.01 0.36 sig 

ENSG00000146859 TMEM140 fetal gene-level BT1-HC AFR 0.33 0.16 0.50 sig 

ENSG00000272941 

Novel 

Transcript, 

antisense 

to C7orf49 

adult gene-level BT2-HC AFR 0.24 0.01 0.54 sig 

ENSG00000117407 ARTN fetal gene-level BT2-HC AFR 0.22 0.04 0.46 sig 

ENSG00000146859 TMEM140 adult gene-level BT3-HC AFR -0.22 -0.46 -0.02 sig 

ENSG00000146859 TMEM140 fetal gene-level BT3-HC AFR 0.34 0.08 0.55 sig 

ENSG00000162817 C1orf115 adult gene-level BT1-BT3 AFR 0.28 0.07 0.62 sig 

ENSG00000162817 C1orf115 fetal gene-level BT1-BT3 AFR -0.18 -0.42 -0.01 sig 

ENSG00000146859 TMEM140 fetal gene-level BT2-BT3 AFR 0.28 0.09 0.56 sig 

ENSG00000162817 C1orf115 fetal gene-level Case-HC ASN -0.29 -0.50 -0.04 sig 

ENSG00000162817 C1orf115 fetal gene-level BT1-HC ASN -0.38 -0.69 -0.09 sig 

ENSG00000122783 CYREN adult gene-level BT3-HC ASN -0.35 -0.70 -0.09 sig 

ENSG00000162817 C1orf115 fetal gene-level BT3-HC ASN -0.34 -0.67 -0.05 sig 

Legend: Case = all the three Biotypes included, HC = Healthy Control, BT1 = Biotype 1, BT2 = Biotype 

2, BT3 = Biotype 3. EUR = European ancestry, AFR = African American, ASN = Asian ancestry (East 

Asian + South Asian). beta: Point estimate of the effect size; beta_CI_lower: Bonferroni adjusted 

confidence interval (CI), lower; beta_CI_upper: Bonferroni adjusted CI, upper; CI_significance: 

Significant if the CI does not overlap the null hypothesis (i.e. 0); “sig” (Bonferroni correction for the nine 

unique genes tested) in “CI_significance” column suggests a potential causal effect from the gene to the 

trait. 
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