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Linkage disequilibrium (LD) across the genome provides information to identify the genes
and variations related to quantitative traits in genome-wide association studies (GWAS)
and for the implementation of genomic selection (GS). LD can also be used to evaluate
genetic diversity and population structure and reveal genomic regions affected by
selection. LD structure and Ne were assessed in a set of 83 water buffaloes,
comprising Azeri (AZI), Khuzestani (KHU), and Mazandarani (MAZ) breeds from Iran,
Kundi (KUN) and Nili-Ravi (NIL) from Pakistan, Anatolian (ANA) buffalo from Turkey, and
buffalo from Egypt (EGY). The values of corrected r2 (defined as the correlation between
two loci) of adjacent SNPs for three pooled Iranian breeds (IRI), ANA, EGY, and two pooled
Pakistani breeds (PAK) populations were 0.24, 0.28, 0.27, and 0.22, respectively. The
corrected r2 between SNPs decreased with increasing physical distance from 100 Kb to
1Mb. The LD values for IRI, ANA, EGY, and PAK populations were 0.16, 0.23, 0.24, and
0.21 for less than 100Kb, respectively, which reduced rapidly to 0.018, 0.042, 0.059, and
0.024, for a distance of 1 Mb. In all the populations, the decay rate was low for distances
greater than 2Mb, up to the longest studied distance (15 Mb). The r2 values for adjacent
SNPs in unrelated samples indicated that the Affymetrix Axiom 90 K SNP genomic array
was suitable for GWAS and GS in these populations. The persistency of LD phase (PLDP)
between populations was assessed, and results showed that PLPD values between the
populations were more than 0.9 for distances of less than 100 Kb. The Ne in the recent
generations has declined to the extent that breeding plans are urgently required to ensure
that these buffalo populations are not at risk of being lost. We found that results are
affected by sample size, which could be partially corrected for; however, additional data
should be obtained to be confident of the results.
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INTRODUCTION

Recognizing and protecting the genetic diversity of domestic
species is important in the development of breeding strategies
(Al-Mamun et al., 2015; Wultsch et al., 2016). Recent progress in
the field of genome sequencing has increased the availability of
genomic data, which has facilitated the assessment of the genetic
diversity and population structure (Vonholdt et al., 2010; Decker
et al., 2014) using parameters such as population admixture,
linkage disequilibrium (LD), and effective population size (Ne)
(Al-Mamun et al., 2015).

The non-random association between alleles at different loci is
referred to as LD or gametic phase disequilibrium. Knowledge of
the pattern of LD in a population is an important prerequisite for
GWAS, exploring population structures, and implementing
genomic selection (GS) (Niu et al., 2016). The pattern of LD
can be used to estimate the rate of genetic drift, level of
inbreeding, and the effects of evolutionary forces such as
mutation, selection, and migration (Shin et al., 2013). There
have been studies of LD in several livestock species, including
cattle (McKay et al., 2007; Karimi et al., 2015; Biegelmeyer et al.,
2016; Jemaa et al., 2019), buffalo (Mokhber et al., 2019a; Deng
et al., 2019; Lu et al., 2020), pig (Badke et al., 2012; Wang et al.,
2013), sheep (Meadows et al., 2008), goat (Brito et al., 2015),
chicken (Qanbari et al., 2010; Fu et al., 2015), horse (Corbin et al.,
2010), dog (Pfahler & Distl., 2015), and cat (Alhaddad et al.,
2013).

Several statistics have been suggested to measure LD (Hill and
Weir, 1994; Terwilliger, 1995; Zhao et al., 2005; Gianola et al.,
2013). Evaluation of these methods has shown that r2 is less
affected by allelic frequency and sample size than D’ (Pritchard &
Przeworski, 2001; Sved, 2009; Bohmanova et al., 2010). Even
when the level of LD of populations is similar, this may still be the
result of different evolutionary histories. In this regard,
determining patterns of the persistency of LD phase (PLDP) is
useful for genetic studies (Pritchard et al., 2000). A SNP in LD
with quantitative trait loci may have one marker allele in phase
with the beneficial allele for the trait in one breed, while in
another breed, the phase may be different. Therefore, GS based on
marker information in one population may not lead to genetic
progress in another (De Roos et al., 2008). PLDP represents the
amount of LD that is maintained between populations and is
dependent on the divergence time of the breeds (Badke et al.,
2012; Wang et al., 2013). Higher values of PLDP between
populations indicate more ancestral LD in common, such that
the genomic information can be more reliably inferred between
them (Mokry et al., 2014). PLDP can also be used to evaluate the
relationships among populations, with those having a common
history showing higher PLDP (Wang et al., 2013).

LD provides information to identify the genes and variations
affecting quantitative traits in genome-wide association studies
(GWAS) by inferring the distribution of recombination events.
LD can also be used to evaluate diversity and population structure
and to identify genomic regions affected by selection (Mokry
et al., 2014). The pattern of LD can reveal the genetic history and
the previous demography of a population and can be used to infer
the effective population size (Ne) (Qanbari, 2020). Effective

population size, Ne, is considered to be one of the most
important parameters in population genetics and reflects the
amount of genetic diversity, inbreeding, and genetic drift in
the population (Frankham, 2005; Tenesa et al., 2007). A low
value of Ne indicates limited genetic diversity in a population and
affects the amount of genetic progress that can be made in
breeding programs (Hayes et al., 2003). Ne can be determined
by assessing the amount of LD at various distances along the
genome (Sved, 1971; Hayes et al., 2003). High LD at long
recombination distances reflects low Ne in recent generations
(Hayes et al., 2003).

Buffaloes were introduced into Egypt from India, Iran, and
Iraq during the seventh B.C. (Minervino et al., 2020). The three
breeds from Iran are reared in three different geographical areas
with completely different climatic conditions. The Azeri breed is
mainly reared in the north-west and north of Iran (West
Azerbaijan, East Azerbaijan province, Ardebil, and eastern
parts of Gilan provinces), which have cold, sub-zero winters
with heavy snowfall and hot, dry summers with temperatures
reaching 35 C, the Khuzestani breed is found in the southwest
(mainly in Khuzestan province), which has very hot and
occasionally humid summers, with temperatures routinely
exceeding 45°C degrees, while in the winter, it can drop
below freezing, and the Mazandarani breed is reared along
the coast of the Caspian Sea in the Mazandaran and
Golestan provinces, which have a moderate climate with
occasional humidity all around the year (Mokhber et al.,
2019a). The Anatolian water buffalo is widespread in
Northwestern Turkey, especially along the coast of the Black
Sea, the middle of Anatolia, and also in Eastern Anatolia (Soysal
et al., 2007). The Egyptian buffaloes are spread along the River
Nile, in the Delta Region, and at the Fayum Oasis. With more
than three million head, buffalo is the most important livestock
species for milk production in Egypt. The Nili-Ravi breed is the
most important livestock breed in Pakistan with more than 10
million head in Punjab, while the Kundi, with more than five
million head, is the second most important breed in Pakistan
(Minervino et al., 2020).

The present study describes genetic diversity, LD between
adjacent SNPs, the trend of LD with increasing distance, and the
patterns of PLDP and Ne using genomic data from buffalo breeds
of Turkey, Egypt, Pakistan, and Iran, which are genetically closer
together than other water buffaloes across the world (Colli et al.,
2018).

MATERIALS AND METHOD

Genotype Determination and Data Edition
The present study used data for 83 water buffaloes, including 14
Azeri (AZI), 11 Khuzestani (KHU), and eight Mazandarani
(MAZ) from Iran, 12 Anatolian buffalo (ANA) from Turkey,
nine Kundi (KUN), and 14 Nili-Ravi (NIL) from Pakistan, and 15
Egyptian buffalo (EGY) to assess LD structure and calculate Ne
(Table 1).

The samples were genotyped using the Axiom® Buffalo
Genotyping 90 K array (Affymetrix, Santa Clara, CA,
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United States) that were mapped to the bovine sequence
(UMD3.1 Bos Taurus) (Iamartino et al., 2017). Details on the
animals and the genomic data are presented in Table 1. The
genotype data were edited with Plink software (Purcell et al.,
2007), and animals and loci with more than 5% missing
genotypes (CRIND and CRSNP), monomorphic genotypes, and
genotypes with minor allele frequency (MAF) less than 5% were
eliminated. MAF and missing genotypes of individuals and SNPs
were filtered separately for each genotypic group. Then, the
genomic data of all genetic groups were integrated, and the
common genetic markers were identified. Finally, the SNPs
that were not in the Hardy-Weinberg equilibrium were
excluded, and the missing genotypes were imputed using
BEAGLE software (Browning & Browning, 2007).

Assessment of Population Structure
Discriminant analysis principal component (DAPC), principal
component analysis (PCA), Weir and Cockerham unbiased
fixation index (FST), and population admixture were used to
obtain a general overview of the structure of each population
and identify animals falling outside their breed group. DAPC,
PCA, and FST were performed using the adegenet package
(Jombart and Ahmed, 2011), GeneABEL software (Price
et al., 2006), and R scripts using R software (http://www.
rproject.org/), respectively. Additionally, the genetic structure
of the populations was evaluated using ADMIXTURE software
(Alexander et al., 2009).

LD Analysis
After determining the population structure of each genetic group,
the patterns of LD were estimated. The values of LD between
adjacent SNP as well as paired bases at distances of 0–15 Mb were
obtained in each population and evaluated using the statistics r2

(Hill and Robertson, 1968) and D′, which were calculated as
follows:

r2 � (D)2
(freqApfreq apfreq Bpfrq b),

where

D � freqAB − freqApfreq B

and

D′ �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D

min(freqApfreq b, freq Bpfreq a) ifD> 0

D

min(freqApfreq Bpfreq apfreq b) ifD< 0
,

where SNP pairs had alleles A and a at the first locus and B and b
at the second locus, freq A, freq a, freq B, and freq b denote
frequencies of alleles A, a, B, and b, respectively, and freq AB
denotes frequency of the haplotype AB in the population.

The r2 statistic represents the correlation between alleles at two
loci and is less dependent on allele frequencies in finite
population sizes compared with other LD measures (Lewontin,
1988; Abecasis et al., 2001; Mueller, 2004) and is the preferred
measure for biallelic markers (Zhao et al., 2007). Therefore, r2 was
used in the Ne, LD decay, and PLDP analyses. The r2 statistic is
biased by sample size, and this bias is higher for a smaller sample
size. Correction methods discussed by Hui and Burt (2020),
Waples et al. (2016), Villa-Angulo et al. (2009), Weir and Hill
(1980), and Sved (1971) were applied to the estimate of r2 in this
study. Due to the small sample size for each population, the
information was corrected for the sample number and
uncertainty of the gametic phase using the following equation
(Weir and Hill, 1980; Corbin et al., 2012), which was
implemented in SNeP software (Barbato et al., 2015).

r2adj � r2 − (βn)−1,
where n is the number of individuals sampled, β � 2 when the
gametic phase is known, and β � 1 if instead the phase is not
known (Weir and Hill, 1980).

To determine LD decay, paired markers that were common to
all populations were grouped at distances between 0 and 15 Mb at
100 Kb intervals, and the mean r2 was calculated for each group.
The PLDP between populations was expressed as the correlation
between the roots of the r2 calculated for adjacent markers using
the formula provided by Badke et al. (2012).

rij �
∑
(i,j)

(rij(A) − �rA)(rij(B) − �rB)
SASB

,

where rij is the correlation of phase between rij(A) in population A
and rij(B) in population B, SA and SB are the standard deviation of

TABLE 1 | Descriptive statistics for the studied buffalo populations.

Row Population
name

Population
label

Country Region N
before QC

Number
after QC

SNP number
after

separating
QC

SNP
number
after

mergence

1 Azeri AZI Iran Urmia, West Azerbaijan Province 14 14 66,989 57,455
2 Khuzestani KHU Iran Ahvaz, Khuzestan Province 11 11 66,145 57,455
3 Mazandarani MAZ Iran Miankaleh peninsula, Mazandaran Province 8 8 67,900 57,455
4 Anatolian ANA Turkey Istanbul, Afyonkarahisar (western Anatolia) and Tokat

(central Anatolia) Provinces
15 12 66,692 57,455

5 Egyptian EGY Egypt - 16 15 66,145 57,455
6 Kundhi KUN Pakistan - 10 9 69,451 57,455
7 Nili-Ravi NIR Pakistan - 15 14 69,820 57,455
Total 89 83 82,043 57,455
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rij(A) and rij(B), respectively, and rA and rB are the average rij across
all SNP i and j within the common set of markers.

Effective Population Size (Ne)
The corrected LD for each population was used to calculate Ne by
applying the formula of Ne � ( 1

4c)( 1
r2 − 1) (Sved, 1971), where Ne

represents the effective population size of generation T, r2 indicates
the mean of LD for a given distance, and c is the distance between
markers in Morgan (1 centimorgan was considered to be
approximately equal to one megabase pair, Tenesa et al., 2007;
Villa-Angulo et al., 2009). Generation was calculated to determine
Ne (T) based genomic distance using the formula of T � 1/2c
(Hayes et al., 2003).

RESULTS AND DISCUSSION

Quality of Data
Before frequency and genotyping pruning, there were 89,988 SNPs
and 89 individuals. In the first step, six individuals were removed for
low genotyping success (MIND >0.05), 637 markers were excluded
based on HWE (p≤5.7e-007), and 7,618 SNPs for missing
information (GENO >0.05). A total of 83 individuals with 82,043
SNPs passed the first step of QC; the total genotyping rate of these
remaining individuals was 0.985. In the second step, MAF was
assessed in each population separately, and SNPs with MAF>0.05

were removed (Table 1). Then, the populations were merged to
create a common dataset of 57,426 SNP markers with MAF higher
than 0.05 for each population that passed all the filters. These were
used in subsequent analyses in snppLD software (Sargolzaei M,
University of Guelph, Canada). These markers covered 2,646.07Mb
of the bovine genome. The mean distance between these markers
was 46.07 Kb, and minimum and maximum distances were 42.4 Kb
on chromosome BTA 24 and 68.2 Kb on the BTA X, respectively.

Assessment of Population Structure
Understanding of population genetic structure is important to
assess population stratification for GWAS, breeding program
design, and developing strategies for genetic resources
preservation. DAPC, PCA, and admixture analysis results were
used to assess population structure. Both PCA and DAPC
methods gave similar results. In both methods, genotype data
formed three distinct clusters in the first two PCs. The ANA
population from Turkey was partially separated from the Iranian
cluster, which includes AZI, KHU, and MAZ (Figure 1 and
Supplementary Figure S1). The first two PCs in the DAPC
accounted for 7.16% of the total variance, 4.12% in the first, and
3.04% in the second dimension (Figure 1). The first 10 PCs of
DAPC only accounted for about 24% of the total variance
(Supplementary Figure S2). In the PCA analysis, the first and
second PCs explained 4% and 2% of the variance, respectively
(Supplementary Figure S1). The ANA along with AZI, KHU,

FIGURE 1 | A two first PCs and B first PC only of the DAPC analysis of the water buffalo populations studied. Clusters are indicated by different colors (blue, gray,
and green), and populations are identified by their abbreviations AZI, KHU, MAZ, ANA, EGY, KUN, and NIL.
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and MAZ formed overlapping groups with the AZI buffalo being
interspersed among the KHU, MAZ, and ANA populations
(Figure 1A,B). The EGY and populations from Pakistan
(KUN and NIL) formed two additional distinct clusters
(Figure 1). The geographic proximity of Iranian populations
with the ANA in Turkey makes gene flow between these two
populations likely, which would reduce the differentiation
between them. In the analysis of Colli et al. (2018), the
populations assessed in the present study belonged to one
cluster, which is because these populations are genetically
similar when compared with other more genetically distinct
breeds worldwide. The results presented here are consistent
with other studies focused on Iranian buffaloes where no
differences (Strillacci et al., 2021) or very small genetic
differentiation was observed (Rahmaninia et al., 2015; Azizi
et al., 2016; Mokhber et al., 2018; Ghoreishifar et al., 2020).

There were small differences in FST among the studied
populations (Supplementary Table 1); in most cases, the
difference between pairs of populations was less than 0.05,
indicating low genetic differentiation according to Wright’s
classification. The reason for this is because there was high
within, compared with between-population variance. However,
the FST results confirmed the DPCA and PCA analyses by
separating the populations into three genetic groups. The mean
FST value across populations was 0.045 and varied from0.011 for AZI
from Iran and ANA from Turkey to 0.077 for MAZ from Iran and
KUN from Pakistani. The smallest genetic distance was between the
Iranian buffaloes and ANA from Turkey, while the largest distance
was between the Iranian buffalo and KUN and NIL from Pakistani.

Population structures were investigated using ADMIXTURE
software, assuming K as ancestral populations ranging from one
to seven. Based on cross-validation error criteria, K � 2 and three
had suitable resolution (Figure 2). The first subdivision at K � 2

distinguished between Pakistani (KUN and NIL) and the others
populations (AZI, KHU,MAZ,ANA, and EGY) (Figure 2). At K� 3,
the EGY population becomes genetically distinct, giving three groups
that coincide with DAPC and PCA clusters. The ADMIXTURE
analysis shows that there are genetic components shared among all
the populations explaining the overlap between clusters.

LD Analysis
We calculated both r2 and D′ for adjacent SNPs in the
populations for each chromosome (see S1 Supplementary
Table S1). Because of the small sample size, uncorrected LD
values were similar among breeds within clusters, in particular
the Iranian breeds, AZI, KHU, and MAZ and Pakistani breeds,
KUN and NIL. Results were also corrected for sample size. The
values of corrected r2 for the pooled Iranian breeds (IRI), ANA,
EGY, and PAK populations were 0.24, 0.28, 0.27, and 0.22,
respectively (Table 2). At the chromosome level, chromosomes
25 of the PAK population and chromosomes X of the ANA had
the maximum corrected r2 values, respectively (Table 2 and
Supplementary Table S2). Previous studies reported that a
small sample size (less than 25) leads to an overestimate of r2

(Khatkar et al., 2008; Deng et al., 2019), while Bohmanova et al.
(2010) reported that at least 55 and 444 individuals were required
for accurate estimation of r2 and D′, respectively. Other studies
have found that D′ statistics are more affected by population size
than r2 (Ardlie et al., 2002; Jemaa et al., 2019). Therefore,
estimated r2 values in the present study are more reliable than
the D’ statistics. Comparing uncorrected and corrected r2 for
sample size revealed that the differences in smaller populations
are greater. The corrected vs. uncorrected r2 values changed from
0.27 to 0.24 (around 0.02 units) in the pooled IRI, which has 33
individuals, but from 0.35 to 0.28 (around 0.07 units) in ANA
with 12 individuals, 0.34 to 0.27 (around 0.07 units) in EGY with

FIGURE 2 |Genetic composition of buffalo breeds revealed with ADMIXTURE software at K � 2 (top) and K � 3 (bottom). Individuals are represented with vertical
colored bars. Genomic components are assigned different colors.
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15 individuals, and 0.27 to 0.22 (around 0.05 units) in PAK with
23 individuals (Supplementary Table S2). If Iranian and
Pakistani populations were considered individually, the bias in
r2 estimates increased because of the smaller sample size in the
individual populations. These results show that correction of r2

for sample size is necessary.
The corrected average r2 values for individual populations from

Iran, including AZI, KHU, and MAZ, were consistent and slightly
lower than the values reported by Mokhber et al. (2019a) for AZI
andKHUbut not forMAZ. They found an r2 of 0.27, 0.29, and 0.32
for AZI, KHU, and MAZ, respectively, using a larger dataset for
AZI and KHU, but notMAZ. The difference in r2 forMAZwas due
to the correction method for average r2 values.

Much lower values that obtaining in the present study were
obtained r2 values were obtained using the 90 K Buffalo SNP
genotyping array in a study of 430 pure Mediterranean buffaloes
and 65 Chinese crossbred buffalo, which gave an r2 of 0.13 and
0.09, respectively (Deng et al., 2019). The mean value r2 for
adjacent SNPs in a study of 384 Brazilian Murrah buffaloes using
the Bovine HD array in buffalo (Borquis et al., 2014), which
provided 16,580 polymorphic loci from the 688,593 markers on
the array, obtained and r2 of 0.29. When the 90 K Buffalo Axiom
array was used with a sample of 452 Brazilian Murrah buffaloes,
58,585 SNPs were polymorphic, and the same genome-wide r2 of
0.29 was obtained, while the r2 and |D|’ for each chromosome
were between 0.17 and 0.33 and 0.41 and 0.80, respectively

(Cardoso et al., 2015). Using genomic information for 70
Iranian native cattle belonging to seven breeds (10 samples for
each breed), Karimi et al. (2015) obtained average r2 for the
adjacent SNP markers of between 0.321 and 0.393.

The percentages of adjacent markers in IRI, ANA, EGY, and
PAK populations with corrected r2 greater than 0.2 (0.12) were
46, 52, 51, and 47% (Supplementary Table S3). The mean r2 for
adjacent markers can be used to assess their suitability for GWAS
and the estimation of breeding values. An r2 higher than 0.3 is
recommended for GWAS (Ardlie et al., 2002), while an LD of
more than 0.2 is considered essential for estimating genomic
breeding values (Meuwissen et al., 2001).

The mean and standard deviation of D′, which represents the
frequency of recombination events between adjacent SNPs, was 0.74,
0.67, 0.64, and 0.72 for IRI, ANA, EGY, and PAK, respectively (see
Supplementary Table S2). A D′ value close to one implies that
ancestral haplotypes have not been separated by recombination over
time. In general, D′ is more affected by sample size than r2 but less
influenced by allele frequency. The pooled Iranian (IRI) population
had the highest D’ (0.74), while the EGY had the lowest (0.64).

Population history, includingmutation, selection, recombination,
and migration, affects the genome structure and will be reflected in
the value of r2. Factors such as sample size, the threshold for the
frequency of rare alleles, the density of SNP, and the distances
between markers will also affect the results. Further, the way that
samples are selected may distort the diversity estimated for a

TABLE 2 | Distance and linkage disequilibrium (corrected r2) between adjacent polymorphic SNPs for IRI, ANA, EGY, and PAK water buffalo populations.

Chromosome SNP number Distance (Kb) IRI ANA EGY PAK

1 3,583 44.1 0.24 ± 0.25 0.27 ± 0.26 0.28 ± 0.27 0.23 ± 0.24
2 3,024 45.1 0.24 ± 0.26 0.3 ± 0.28 0.27 ± 0.27 0.24 ± 0.24
3 2,708 44.8 0.23 ± 0.25 0.27 ± 0.27 0.28 ± 0.27 0.22 ± 0.23
4 2,731 44.1 0.23 ± 0.24 0.28 ± 0.27 0.28 ± 0.27 0.22 ± 0.22
5 2,601 46.3 0.24 ± 0.26 0.29 ± 0.27 0.29 ± 0.27 0.24 ± 0.24
6 2,649 45 0.23 ± 0.25 0.29 ± 0.28 0.26 ± 0.26 0.21 ± 0.22
7 2,505 44.9 0.22 ± 0.24 0.26 ± 0.27 0.25 ± 0.26 0.22 ± 0.23
8 2,416 46.8 0.24 ± 0.26 0.28 ± 0.27 0.28 ± 0.27 0.23 ± 0.23
9 2,268 46.4 0.22 ± 0.24 0.3 ± 0.28 0.26 ± 0.26 0.23 ± 0.23
10 2,307 45 0.22 ± 0.24 0.28 ± 0.26 0.28 ± 0.27 0.22 ± 0.23
11 2,368 45.2 0.23 ± 0.25 0.31 ± 0.28 0.27 ± 0.26 0.23 ± 0.23
12 1,933 47.1 0.22 ± 0.25 0.27 ± 0.26 0.26 ± 0.26 0.22 ± 0.23
13 1,872 44.7 0.21 ± 0.23 0.23 ± 0.24 0.26 ± 0.26 0.2 ± 0.22
14 1,945 42.7 0.22 ± 0.24 0.25 ± 0.25 0.26 ± 0.26 0.21 ± 0.22
15 1,798 47.2 0.19 ± 0.24 0.29 ± 0.28 0.27 ± 0.27 0.2 ± 0.21
16 1,742 46.6 0.23 ± 0.26 0.27 ± 0.26 0.26 ± 0.27 0.24 ± 0.24
17 1,658 45.1 0.23 ± 0.26 0.29 ± 0.28 0.25 ± 0.25 0.22 ± 0.23
18 1,397 47 0.2 ± 0.23 0.25 ± 0.26 0.24 ± 0.26 0.19 ± 0.21
19 1,384 45.9 0.22 ± 0.25 0.27 ± 0.26 0.25 ± 0.25 0.22 ± 0.23
20 1,584 45.3 0.2 ± 0.25 0.28 ± 0.27 0.28 ± 0.28 0.22 ± 0.23
21 1,510 45.7 0.22 ± 0.24 0.29 ± 0.28 0.22 ± 0.24 0.21 ± 0.22
22 1,379 44.4 0.22 ± 0.24 0.23 ± 0.24 0.25 ± 0.26 0.21 ± 0.23
23 1,115 46.7 0.22 ± 0.25 0.28 ± 0.28 0.27 ± 0.27 0.21 ± 0.22
24 1,462 42.4 0.21 ± 0.22 0.28 ± 0.27 0.26 ± 0.26 0.21 ± 0.22
25 991 43.1 0.2 ± 0.24 0.26 ± 0.26 0.24 ± 0.26 0.18 ± 0.21
26 1,178 43.5 0.2 ± 0.23 0.26 ± 0.26 0.24 ± 0.26 0.19 ± 0.21
27 1,017 44.6 0.2 ± 0.22 0.25 ± 0.25 0.24 ± 0.26 0.21 ± 0.22
28 1,043 44.1 0.22 ± 0.24 0.24 ± 0.25 0.27 ± 0.27 0.22 ± 0.23
29 1,076 47.2 0.2 ± 0.23 0.25 ± 0.26 0.24 ± 0.25 0.19 ± 0.21
30 2,181 68.2 0.29 ± 0.3 0.59 ± 0.32 0.39 ± 0.31 0.3 ± 0.3
Average 1914 46.7 0.24 ± 0.24 0.28 ± 0.27 0.27 ± 0.26 0.22 ± 0.29
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population. A study on pig breeds using a 50 K SNP array and a large
number of samples in each genetic group identified high selection
pressure and low diversity in populations as the reasons for the high
LD found (Badke et al., 2012). In the present study, we pooled some
populations because of the small sample size; in addition, we
corrected LD estimates for sample size, and only SNPs with
reasonable MAF (>0.05) were included. Because D’ is more
sensitive to sample size, we used the corrected r2 values for
subsequent analysis of LD decay, PLDP, and Ne.

LD Decay
As expected, the average r2 values decreased with increasing
distance between pairwise SNPs for all the studied populations
(Figure 3 and Supplementary Table S4). The values for IRI,
ANA, EGY, and PAK were 0.367, 0.441, 0.411, and 0.432,
respectively, for distances less than 10 Kb and 0.16, 0.24, 0.24,
and 0.21, respectively, for distances less than 100Kb, which
reduced rapidly to 0.018, 0.042, 0.059 and 0.024 (respectively)
for a distance between markers of 1 Mb (Figure 3 and
Supplementary Table S4). In all the populations, the LD then
remained constant for distances greater than 2 Mb to the longest
distance considered (15 Mb) (Supplementary Table S4). The LD
decayed slowly in EGY and ANA and in individual Iranian and
Pakistani breeds. The highest LD, especially at longer distances,
was seen MAZ and KUN. This may be due to the rapid decline of
these populations in more recent generations. The effect of
correcting r2 was smaller (6–20 percent) for distances <10 kb
and increased to more than 50 percent for distances >1 Mb and to
70–80 percent for distances >10 Mb. This suggests that r2 values
are more affected at longer distances by population size
(Supplementary Table S4). Comparing the LD for individual
Iran populations (AZI, KHU, and MAZ) obtained here with
Mokhber et al. (2019a), which used a larger sample size (more
than 200), LD estimates at >100 Kb were similar, whereas at
greater distances, the results were significantly different.

Lu et al. (2020) calculated the rate of LD decay in Chinese river
and swamp buffaloes and found that the LD of river buffaloes was
higher than that of a swamp and that the rate of LD decay in
swamp buffaloes was higher than for river buffaloes for all marker
distances. These data reflect the stronger genetic selection in the
river buffalo breeds compared with the swamp breeds. The rate of
LD decay in Chinese crossbred buffaloes has been reported to be
higher than in pure Mediterranean buffalo at a distance of 600 Kb
(Deng et al., 2019), possibly as a result of recent cross-breeding.

A similar situation is seen for cattle where the LD is higher in
dairy cattle, which are under stronger selection than beef breeds
(Qanbari et al., 2010). The pattern of LD in German Holstein cattle
gave an r2 of about 0.3 for a distance less than 25Kb, which decreased
to 0.24 for distances of 50–75 Kb (Qanbari et al., 2010), whereas in
Australian Holstein bulls, r2 varied from 0.402 to 0.073 as the
distance increased from 20 to 500 Kb (Khatkar et al., 2008). For
beef cattle, where selection is less intense, the r2 for Angus, Charolais,
and crossbred beef breeds (Angus × Charolais) decreased from 0.23
to 0.19, 0.16 to 0.12, and 0.15 to 0.11, respectively, for distances 30 to
100Kb, respectively (Lu et al., 2012).

Persistency of LD Phase
PLDPwas calculated from the correlation between paired SNPs at
distances of 0–15 Mb. An increase in the distance led to a decrease
in PLDP between breeds (see Table 3 and Supplementary Table
S4). At distances less than 100Kb, PLPD in all the populations
was higher than 0.95 for buffalo populations from Iran, Turkey,
Egypt, and Pakistan, which decreased to between 0.7 and 0.97 at
200Kb and then reduced rapidly. However, from 500 Kb to 1 Mb,
the reduction in PLPDwas less than seen between 200 and 500 Kb
(Table 3 and Supplementary Table S5). The PLDP within breeds
from the same geographical area that formed pools was higher
than the other comparisons (Supplementary Table S5).

PLPD among individual populations from Iran was above 0.95
for a distance less than 100Kb, which is similar results ofMokhber

FIGURE 3 | LD decay for increasing distance (Mb) for IRI, ANA, EGY, and PAK water buffalo populations.
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et al. (2019a) who reported values of 0.99, 0.96, and 0.95 at
distances less than 100Kb, which reduced to 0.74, 0.25, and
0.12 at distances below than 1 Mb for AZI-KHU, AZI-MAZ,
and KHU-MAZ populations, respectively.

These high PLPD values suggest that there may have been
genetic exchange among these populations. The highest
correlations previously reported among other pure and
crossbred buffalo populations were 0.47 at the distance of
100 Kb (Deng et al., 2019), showing that the LD phase
between independent populations tends not to be maintained.
The value of PLDP among European, African, and African-
European cattle breeds has been reported as 0.77, 0.71,
and 0.65, respectively, at distances less than 10Kb and below
0.5 at distances greater than 50 Kb (Gautier et al., 2007). In
Australian Holstein and New Zealand Jersey breeds, the PLDP
correlation was 0.97 (De Roos et al., 2008), which is surprisingly
high for breeds with different genetic histories. For beef breeds,
PLDP between Charolais and Angus, Charolais and crossbred
cattle, and Angus and Crosses was 0.84, 0.81, and 0.77,
respectively, at distances less than 70 Kb (Lu et al., 2012), so
that exchange of information among these populations should
be treated with caution.

Ne
Ne was estimated from the last 500 to recent generations in the
present study. A trend of decreasing Ne was observed from more
distant to recent generations: from 1,570 to 212, 1,049 to 59, 1,025 to
43, and 1,165 to 131 for IRI, ANA, EGY, and PAK breeds,
respectively, from 500 generations ago to three last generations
(Figure 4 and Supplementary Table S6). Similar trends for a decline
in Ne from past to recent generations have been reported for buffalo
(Mokhber et al., 2019b) other species (Sargolzaei et al., 2008; Moradi
et al., 2012). The Ne of Canadian and American Holstein cattle
decreased from 1,400 to less than 100 from 500 generations ago to
recent generations (Sargolzaei et al., 2008). For sheep, the Ne of Zel
and Lori-Bakhtiari breeds reduced from 4,900 to 840 and 4,900 to
532 animals from 2000 generations ago to the 20 last generations,
respectively (Moradi et al., 2012). Ne for Sunite, German Mutton
Merino, and Dorper sheep breeds has decreased from 1,506 to 207,
1,678 to 74, and 1,506 to 67, respectively, from 2000 generations ago
to the seven last generations (Zhao et al., 2014).

The conservation of genetic and biological diversity is
dependent on Ne (Wang, 2005). According to the FAO (1992),
when Ne is equal to 25, 50, 125, 250, and 500, genetic diversity will
shrink 18, 10, 4, 1.6, and 0.8 percent over 10 next generations,
respectively. Evidence accumulated since 1980 shows that a Ne of
more than 100 is necessary to maintain fitness over the subsequent
10 generations. Meuwissen (2009) showed that, with Ne greater
than 100 individuals, the population would be sufficiently genetic
diverse to survive in the long term, while to conserve the
evolutionary potential of the population, it is better than Ne is
more than 1,000 individuals (Frankham et al., 2014).

The present study showed that Ne of Iranian and Pakistani
populations are greater than the population size threshold
necessary to be genetically viable (Meuwissen, 2009). The main
concern for all the studied populations is the rapid reduction in Ne
in recent generations. Therefore, controlling the decline in Ne and
increase in efficiency of economic production, e.g., by well-
designed breeding programs, is necessary to prevent increasing
inbreeding and eventually genetic extinction.

CONCLUSION

In the present study, the LD structure, PLDP, and Ne were
determined for seven buffalo populations and two populations
pooled based on country or origin. The level of LD found

TABLE 3 | Consistency of gametic phase at given distances between IRI, ANA, EGY, and PAK water buffalo populations.

Populations Distances between paired SNPs (kbp)

>100 100–200 200–300 300–400 400–500 500–600 600–700 700–800 800–900 900–1,000

IRI-ANA 0.956 0.876 0.773 0.463 0.407 0.229 0.296 0.011 0.140 0.216
IRI_EGY 0.969 0.905 0.715 0.287 0.271 0.203 0.099 0.391 0.173 0.208
IRI_PAK 0.958 0.848 0.620 0.292 0.324 0.180 0.195 0.176 0.060 0.141
ANA-EGY 0.956 0.876 0.773 0.463 0.407 0.229 0.296 0.011 0.140 0.216
ANA_PAK 0.969 0.905 0.715 0.287 0.271 0.203 0.099 0.391 0.173 0.208
EGY_PAK 0.966 0.923 0.713 0.423 0.282 0.149 0.204 0.184 -0.059 0.145

FIGURE 4 | Estimated Ne for IRI (pooled Iranian breeds including AZI,
KHU, and MAZ), ANA, EGY, and PAK (pooled Pakistani breeds including KHU
and NIL) water buffalo populations for past generations.
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indicated that it is appropriate to use theAffymetrix Axiom90 K SNP
genomic array for GWAS and GS in these populations. The
correlation between the LD information and PLDP between
geographically close populations was high, meaning that genomic
information from one population can be used efficiently to predict
genetic effects in another. We found that results are affected by
sample size, which could be partially corrected for; however,
additional data should be obtained to be confident of the results.
The Ne in recent generations has declined to the extent that breeding
plans are urgently required to ensure that these buffalo populations
are not at risk of being lost.
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