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Abstract: The discrete shearlet transformation accurately represents the discontinuities and edges
occurring in magnetic resonance imaging, providing an excellent option of a sparsifying transform.
In the present paper, we examine the use of discrete shearlets over other sparsifying transforms
in a low-rank plus sparse decomposition problem, denoted by L + S. The proposed algorithm is
evaluated on simulated dynamic contrast enhanced (DCE) and small bowel data. For the small
bowel, eight subjects were scanned; the sequence was run first on breath-holding and subsequently
on free-breathing, without changing the anatomical position of the subject. The reconstruction
performance of the proposed algorithm was evaluated against k-t FOCUSS. L + S decomposition,
using discrete shearlets as sparsifying transforms, successfully separated the low-rank (background
and periodic motion) from the sparse component (enhancement or bowel motility) for both DCE
and small bowel data. Motion estimated from low-rank of DCE data is closer to ground truth
deformations than motion estimated from L and S. Motility metrics derived from the S component
of free-breathing data were not significantly different from the ones from breath-holding data up to
four-fold undersampling, indicating that bowel (rapid /random) motility is isolated in S. Our work
strongly supports the use of discrete shearlets as a sparsifying transform in a L + S decomposition
for undersampled MR data.

Keywords: MRI; image reconstruction; robust principal component analysis (RPCA); discrete shearlet
transform; low-rank plus sparse decomposition; dynamic contrast enhanced (DCE); small bowel

imaging

1. Introduction

Robust principal component analysis (RPCA) techniques [1,2] have been proposed
to decompose dynamic MR images to a low-rank and a sparse component. The low-rank
should ideally contain the background and periodic motion, whereas the sparse component
should include rapid intensity changes including noise, signal enhancement, non-periodic
deformations, etc. Reconstruction algorithms from undersampled data based on RPCA
have been previously suggested in the literature [3-6], and were applied mainly to dynamic
contrast enhanced (DCE) and cardiac perfusion data [7]. Previous studies involving RPCA-
related medical imaging analysis were performed in order to isolate (i) noise from the
signal [6], (ii) enhancement in DCE imaging from the background respiratory motion [4,5,8],
and (iii) bowel motility from respiratory motion [9]. A potential benefit in DCE image
registration involves the fact that motion will be estimated from the low-rank, where
intensity changes due to enhancement are not present, leading to more accurate image
registration [8]. Furthermore, RPCA is well-poised for small bowel data, since breathing
is periodic (low-rank) and bowel motility is comparatively unperiodic (sparse), and the
estimated bowel motility from the sparse component, isolated from respiratory motion, has
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the potential to serve as a useful biomarker in a range of gastrointestinal disorders [8]. Small
bowel motility has already been shown to correlate with inflammatory activity [10,11]. If
the signal is composed from a low-rank and a sparse component, RPCA has been proven
to perform better on reconstruction from undersampled data than compressed sensing
(CS) [12,13] and joint low-rank and sparsity constraint methods [6]. Increasing temporal
resolution is crucial both in DCE imaging, for a better depiction of the pharmacokinetics,
and in small bowel imaging, in order to allow for the observation of high frequency
contractions. Alternatively, the aim of undersampling could be volumetric acquisitions that
require longer scan times. Volumetric acquisitions may prove helpful for the improvement
of physiological coherence [14].

This paper postulates that the use of discrete shearlets (DS) as a sparsifying transform
can benefit RPCA decomposition/reconstruction. Choosing the appropriate sparsifying
transform where our signal is sparse is expected to improve the reconstruction perfor-
mance, especially for high undersampling factors. Discrete shearlets were introduced by
Guo et al. [15] in order to accelerate and optimize the reconstruction process by applying
shear transformations in various directions in two-dimensional objects with edges. Based
on [15], Yi et al. [16] employed relevant algorithms for extracting and detecting details
about edges, including junctions with added noise on the image. Furthermore, the numeri-
cal implementation applied by Hauser et al. in [17] established the shearlet transformation
for several scales and directions. Recently, Yuan et al. [18] proposed a new reconstruc-
tion algorithm, utilizing the non-subsampled shearlet transform (NSST) sparsity prior in
undersampled data for brain MR images, to promote sparser representations and higher
directional sensitivity, thus eliminating artifacts and reconstructed errors. In addition,
the shearlet transform has been employed in several recent studies, including the hybrid
regularization method for CS MRI incorporating total variation [19], the CS algorithm for
fast 3D cardiac MR imaging using iterative reweighting [20], and the shearlet-based CS
technique combined with nonlocal total variation [21].

Our hypothesis is that discrete shearlets are the optimum sparsifying transform to
represent edges in multi-dimensional data, such as DCE and small bowel imaging. To
evaluate our hypothesis, we have compared different sparsifying transforms, including
no transform, temporal Fourier transform, and discrete shearlets, in terms of decompo-
sition/reconstruction performance. The developed RPCA reconstruction algorithm is
evaluated (i) on simulated DCE data, and (ii) on eight different small bowel MR datasets,
acquired during breath-holding and free-breathing modes (one after the other in a single
scan). The reconstruction performance of the suggested RPCA reconstruction algorithm,
using different sparsifying transforms, is compared to a widely used focal underdetermined
system solver, namely, k-t FOCUSS [22]. In terms of decomposition, it is examined whether
deriving deformations (i) from the low-rank of DCE data will be similar to the ground truth
respiratory motion, and (ii) from the sparse component of the free-breathing data will be
similar to the deformations from the sparse component of the breath-holding data, where
less respiratory motion is assumed.

2. Theory
2.1. Focal Underdetermined System Solver (k-t FOCUSS)

Tsao et al. [23] suggested the broad-use linear acquisition speed-up technique, known
as k-t BLAST, that employs a training low-resolution dataset to obtain signal correlations;
then, k-t BLAST utilizes these signal correlations as prior information in order to recover
spatio-frequency (x-f) images p without aliasing artifacts, namely:

-1
p = po+CE(RCF! + ML) (vatias — Fipo), M
where pg is a complex value baseline image, C = W - WH is the covariance matrix of the

signal deviation from the baseline pg, superscript H denotes Hermitian transpose, W is a
weighting matrix, F; is the Fourier transform along the spatio-frequency direction, A is a



J. Imaging 2022, 8, 29

3of 14

Lagrangian multiplier, and v, is the aliased signal, initially denoted by x, from the low
resolution dataset, i.e.,

Yalias = Fix. (2)

Gorodnitsky et al. [24] suggested a novel sparse reconstruction method based on k-t
BLAST, called “focal underdetermined system solver” (k-t FOCUSS) [25]. k-t BLAST is
considered the first iteration of k-t FOCUSS. The main novelty of k-t FOCUSS entails the
fact that it updates the weighting matrix W iteratively. Jung et al. [22,25] modified k-t
FOCUSS and made it suitable for dynamic MRI applications.

2.2. Robust Principal Component Analysis (RPCA)

The low-rank and sparse constraints can be applied simultaneously to promote sparsity
and time coherence (such as in k-t SLR [26]), i.e.,

o1
min 5| FuM = y3 + ALl|M]], + As|[@M]y, &)

where M is the recovered image, considered as an approximately low-rank Casorati matrix,
with spatio-temporal dimensions denoted by M,, My, M;; F, denotes the undersampled
Fourier transform, ||-||, is the L2-norm, |||, is the L'-norm, |||, is the nuclear norm, ®(-)
is a sparsifying transform, and Ay, Ag are trade-off parameters between the consistency
term, and the nuclear-norm and L!-norm, respectively. The choice of sparsifying transform
@ is crucial to ensure S is not low-rank and that F, Ty is incoherent to S.

The idea behind RPCA algorithms is to apply low-rank and sparsity constraints “se-
quentially”, aiming to decompose the low-rank L from the sparse component S of the
reconstructed image M. By separating the background (L) from the sparse component (S),
S will become sparser than M = L + S; this will benefit the reconstructions compared to
other schemes that use solely or simultaneously the low-rank and sparse constraints [12,26].
RPCA reconstruction (L + S) can be performed via the following unconstrained optimiza-
tion problem:

.1
min 2 {|Fu(L +S) = y3 + AL||LI|. + As[| S]], )

Equation (4) can be solved using split Bregman alternating direction methods [3-5,27].
To achieve separation between L and S, they need to be incoherent, whereas to reconstruct
unbiased images from undersampled data, F, Ty needs to be incoherent with L and S. The
RPCA decomposition implemented in this work was the one suggested by Otazo et al. [6],
where singular value thresholding for the low-rank, and a shrinkage for the sparsity
constrain, are applied sequentially. The algorithm is summarized in Table 1 and Figure 1.
Specifically, in Table 1, we use D+(X) = U - Shrink.(X) - VT, where & denotes the singular
values, following a singular value decomposition of the form X = U - X - V1. Furthermore,
we employ Shrink.(X) = X - max (|X| — 7,0)/|X]. If, instead of F,,, we apply the identity
matrix I, and instead of y the scanner reconstructed image, the above becomes an image
decomposition problem.

2.3. Sparsifying Transforms

Two of the most common transforms used in CS and RPCA to promote sparsity are
wavelets [28-33] and temporal Fourier [34]. Wavelets project a signal of finite energy on
a frequency subband. This subband is generated by scaling and translating a function
¢ € L?(R?), the so-called mother wavelet, i.e.,

1 t—a
Yap = ﬁ#’ (b) %)
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Table 1. Synopsis of L + S decomposition and reconstruction algorithm, as in [6].

L + ®(S) decomposition and reconstruction algorithm

Input: (k, t)-space samples y, decomposition parameters A, Ag
Initialize: M! = FuT y and Sl =0, iteration k=1;
while stopping criterion is not met, do

Singular value thresholding

Lk+1 — DAL(Mk _ Sk)
Shrinkage operator

Sk+1 = ®=1(Shrink, (P(MF — LF)))
Subtract aliasing artifacts from M = L+ S
Mk+1 — Lk+1 + Sk+1 _ Fg(Fu(Lk+1 + Sk+1) _ ]/)

Stopping criterion

k > 50 or |
1M

end while
Output: L = L**1, 5 = gk+1

‘Mk+1 _ MkH

Input
(k,t)-space samples y, A, Ag

v

Initialize
M' = F,Ty and 8'=0, iteration k=1

v

Singular value thresholding
LK+ = DAL(Mk_Sk)

!

Shrinkage operator
sk = o~ 1(Shrinkyg(@(MK - LK)))

{

Subtract aliasing artifacts M =L + S
MEHT = K1 4 gk#T

Ful(Fy(Lk*T + 854T) - y)

k > 50

or
(IMKHT = MK 7 (MKl < 1073
?

Yes
Output
L=k g=gkt

End

Figure 1. Flowchart of L + S decomposition and reconstruction algorithm, as in [6].

Temporal Fourier is a case of wavelet transform with e

acting as a mother wavelet.

Discontinuities and edges in multidimensional data require a large number of wavelet
coefficients to be accurately represented; hence, wavelet representations are not sparse.
Shearlets [15,16,18,35,36] utilize the framework of affine systems and are non-isotropic
versions of the wavelet transformations that may provide an optimal sparse representation
of images. Shearlets, € L?(R?), are directional representation systems with composite

dilations generated by:

lpa,s,b = | MH,S

(t—b)), and Ma,s:(

(6)
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where s represents the shear parameter, as in [19]. The shearlet transform of any given image
x € L*(R?) can be defined as Sh,,(x) = (x, ;). To reduce the computational time,
discrete shearlet transforms were computed by the fast Fourier transform, as suggested by
Hauser et al. [17].

2.4. Image Registration—Motility Metric

Following RPCA reconstruction and decomposition, images were registered with
an intensity-based algorithm [10] that minimizes a joint cost function (CF) of the sum of
squared differences (SSD) between a reference image x,.r and the transformed images
T4x,dy¥, including a transformation model of all intensity changes ¢ = X,y — Tqy,qyx and
a regularization term R that ensures that the deformation fields dx,dy are adequately
smooth [10], namely:

CF(dx,dy,c) = SSD(dx, dy,c) + R(dx, dy, c). (7)

The regularization term R is based on the second-order spatial derivatives of the
displacements dx, dy, and c¢. The chosen algorithm was shown to be able to accurately
estimate local displacements that occur during bowel motion.

To assess the motility, as suggested in the corresponding literature [10,11], we em-
ployed the Jacobian determinants (J) of the displacement fields obtained after registration.
In this direction, the motility map, denoted by ¢}, was calculated as the standard deviation
over time of the following Jacobian determinant:

71j) = o (1001 ), ®)

where i, j are the spatial coordinates, summed over time t. The motility map o has been
validated as a measure of local small bowel motion, and it is claimed to be insensitive to
rigid transformation [10,37]. However, respiratory motion is non-rigid and is measured
within the motility map. The mean of ¢y, denoted by 1(c7), is used to provide a sense of
magnitude of the bowel motility, referred to as the motility score. The motility score was
calculated from appropriate regions of interest (ROI), drawn around the small bowel [38].

3. Materials and Methods
3.1. Small Bowel MR Acquisition

Eight subjects were scanned using a Philips Achieva 3T (Philips Healthcare, Eindhoven,
The Netherlands) using the manufacturer’s torso coil (XL-TORSO). Subjects were healthy
volunteers, 2 males and 6 females, with an age range of 19—42 years and a mean age of
28 years. Patients were imaged using a multi-slice balanced Turbo Field Echo (bTFE)
motility sequence, coronal 2.5 x 2.5 x 5 mm?® voxel size, FOV 420 x 420 x 30 mm?,
FA =20 degrees, TE = 1.85 ms, TR = 3.7 ms, with a temporal resolution of 1 volume per
second. The first twenty (20) images were acquired on breath-holding; following a 10-s
recovery period, the subject was instructed to “gently free-breathe” for a total of 60 images.

3.2. Simulated Abdominal DCE Data

A normal volunteer underwent a fast gradient echo DCE-MRI protocol (flip angle
10°, repetition time 2.3 ms). T1-weighted images were acquired in multiple time frames
without contrast injection. The first time frame was manually segmented into: liver, bowel,
right and left heart, aorta, and portal vein. This specific segmentation was used as a map to
simulate contrast enhancement, using the extended Tofts model and a population arterial
input function. T1 values and pharmacokinetic parameters for each organ were chosen in
agreement with a previous study [39]. Fifty DCE images were generated from the ground
truth kinetic parameters with temporal resolution of 3 s. More details about the DCE digital
phantom can be found in [40].
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3.3. Simulated Undersampled Acquisition

Original simulated DCE and scanner small bowel images were transformed to (k, t)-
space with fast Fourier transformation, where normally distributed noise was added. The
level of noise was decided so that the signal-to-noise ratio (SNR) was close to the SNR of
DCE. For the undersampling pattern, phase encoding lines were randomly selected per
volume and per time frame. The centre of k-space was more densely sampled. Cartesian
undersampling patterns for 4- and 8-fold acceleration were generated using a Monte Carlo
algorithm to generate a sampling pattern with minimum peak interference [12].

3.4. Quantitative Evaluation

The techniques described were implemented in MATLAB® R2019b (The Mathworks
Inc., Natick, MA, USA). The proposed image processing procedures were conducted on a
desktop personal computer with a 2.50 GHz Intel® Core™ i7-4710HQ CPU processor and
16 GB RAM operating memory, running Windows 10 Professional Edition.

The parameter settings for k-t FOCUSS [22] were selected at 40 inner iterations, 2 outer
iterations, weighting matrix power factor 0.5, and initial estimate corresponding to low
frequency values. The RPCA reconstruction/decomposition used consistently the fol-
lowing parameter settings: A; = 0.0025, Ag = 0.00125 for separation of bowel motility
from respiration, and A; = 0.01, Ag = 0.01 for separation of contrast enhancement from
background. Similarly to Otazo et al. [6], the regularization parameters with the lowest
root mean square error were selected.

3.5. Implementation Details

The RPCA reconstruction is evaluated based on the relative reconstruction error,
denoted by re, namely:

o 2
re — Hy ylsz, (9)

lyll2

where y, is the estimated (k, t)-space for each method [10]. To evaluate how RPCA could
enhance the registration of DCE and small bowel data, deformation fields and Jacobian
determinants were estimated by the optical-flow registration algorithm [10]. The L, M =
L 4 S of the DCE were registered to derive the deformation fields, and were compared
to examine which was closer to the ground truth deformation fields. For the small bowel
dataset, a previously validated approach for evaluating the deformation fields was used,
namely, the motility score y(o7) [10]. In this work, motility scores, j(07), were derived
from the S component of the free-breathing data, and were compared to the ones from
the breath-holding data. The assumption is that motility scores, j(0) estimated from
the breath-holding data will be less biased from respiratory motion. Consequently, if the
motility scores between the S component of the breath-holding and free-breathing data
match, then there is a clear indication that we successfully isolated bowel motility in the
sparse component.

4. Results
4.1. Low-Rank Plus Sparse Image Decomposition

In Figure 2, we compare different sparsifying transforms, i.e., the unity matrix I,
the Fourier transformation along time (TF), and discrete shearlets. Discrete shearlets
demonstrated increased sparsity over the other two transforms, for both small bowel
and abdominal DCE images. To quantify the increased sparsity achieved with DS, the
L%norms of S, TF(S), and DS(S) were estimated. For the abdominal DCE images, the
L%-norm of S, TE(S), and DS(S) was 1.69 x 10°, 0.88 x 10°, and 0.85 x 10°, respectively;
similarly, for the small bowel images, the L%norm was 1.2 x 10°,0.93 x 10°, and 0.89 x 10°,
respectively. The application of L 4 S using DS as a sparsifying transform in small bowel
and abdominal DCE images is shown in Figures 3 and 4, respectively. In both cases, L + S
decomposition using DS resulted in low-rank L (rank = 2). The sparse component is not
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low-rank, capturing rapid intensity changes due to bowel motility or contrast enhancement,

respectively.
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Figure 2. L + S decomposition of: (a) 2D abdominal DCE images, and (b) 2D small bowel images.
Temporal (x — t) profiles along the dotted direction aim to capture the dynamic intensity changes.
The low-rank (L) in both (a) and (b) includes the background (and periodic motion), whereas the
sparse component captures rapid intensity changes either because of contrast enhancement (a), or
because of bowel motility (b). Increased sparsity can be achieved using Fourier transformation along
time (TF) and discrete shearlets. Histograms of the transformed S components with TF and DS are
shown to illustrate the increased sparsity.
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Figure 3. L + S using DS as sparsifying transform decomposition using shearlets as sparsifying
transform on small bowel images. Following decomposition, the rank of L was 2, whereas the rank of
S equalled 50. It is clear from the L, S images and histograms that S is sparser than L. Consequently,
L includes background, periodic motion, while S captures bowel motility (rapid intensity changes).
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Figure 4. L + S using DS as sparsifying transform decomposition using shearlets as sparsifying
transform on abdominal DCE images. Following decomposition, the rank of L was 1, whereas
S is not low-rank. It is clear from the L and S images and histograms that S is far more sparse
than L. Consequently, L includes static background, while S captures contrast enhancement (rapid

intensity changes).

4.2. Low-Rank Plus Sparse Image Decomposition from Undersampled (k, t)-Space Data

In Tables 2 and 3, we compare different reconstruction techniques, namely, k-t FO-
CUSS, L + S using the identity matrix, TF, wavelet transform (WT), and DS as sparsifying
transforms, in terms of relative reconstruction error (re) of the simulated DCE dataset and
of the eight different small bowel datasets for both four- and eight-fold undersampled
(k, t)-space data. For the methods presented in Table 2, namely, k-t FOCUSS, L + S using I,
L + S using TE, L + S using WT, and L + S using DS as sparsifying transforms, the average
CPU time was 192 s, 450 s, 495 s, 487 s and 1123 s, respectively.

L + S using DS as sparsifying transform showed reduced median re in the simulated
DCE dataset and across the eight small bowel datasets compared to the other reconstruc-
tions. It is worth mentioning that in Table 3, the asterisk (*) appears when the median
values between the L + S reconstructions and k-t FOCUSS are significantly different. In
this direction, we employed the Mann-Whitney U-test, which compared if there was any
difference between the independent samples when normality was violated [41]. The Mann—
Whitney U-test was utilized in order to evaluate the differences between data samples, and
the corresponding p-values were calculated.

Figure 5 illustrates the L + S using DS as sparsifying transform decomposition from
four-fold and eight-fold undersampled (k, t)-space data. The magnitudes and the y-t pro-
files of the recovered components are presented to qualitatively show that high acceleration
factors were achieved while preserving image quality.

Table 2. Relative reconstruction error (re) of the L + S reconstructions, using the identity matrix I, TF,
WT, and DS as sparsifying transforms and k-t FOCUSS for the simulated DCE datasets.

Unders. Factor 4 Unders. Factor 8
k-t FOCUSS 0.162 0.203
L + S using I as sparsifying transform 0.149 0.194
L + S using TF as sparsifying transform 0.147 0.189
L + S using WT as sparsifying transform 0.147 0.188

L + S using DS as sparsifying transform 0.144 0.187
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Table 3. Median and interquartile range (iQR) of relative reconstruction error (re) of the reconstruc-
tions k-t FOCUSS, L + S reconstructions (using identity matrix I, TF, WT, and DS as sparsifying
transforms), across the 8 small bowel datasets.

Undersampling Factor 4 Median iQR
k-t FOCUSS 0.077 0.013
L + S using I as sparsifying transform 0.080 0.012
L + S using TF as sparsifying transform 0.079 0.012
L + S using WT as sparsifying transform 0.075 0.011
L + S using DS as sparsifying transform 0.064 * 0.006
Undersampling Factor 8 Median iQR
k-t FOCUSS 0.120 0.025
L + S using I as sparsifying transform 0.119 0.018
L + S using TF as sparsifying transform 0.115 0.017
L + S using WT as sparsifying transform 0.112 0.021
L + S using DS as sparsifying transform 0.106 0.029

Undersampling factor 4 Undersampling factor 8

Figure 5. L + S reconstruction using discrete shearlets as sparsifying transforms from small bowel 4-
fold and 8-fold undersampled (k, t)-data. L, S, L + S recovered images, and time-cut representations,
as in Figure 2, are illustrated for each undersampling.

4.3. Quantification of Motility in Low-Rank Plus Sparse Decomposition Using Discrete Shearlets
as Sparsifying Transforms

Figure 6 illustrates deformation fields after registering the low-rank (L) and the re-
covered image of the form M = L + S, following the decomposition of the simulated DCE
images. Table 4 shows that the relative error between the deformation fields estimated
by registering L are closer to ground truth deformation fields than the deformation fields
estimated by registering M = L 4 S. Registering M assigns intensity changes due to
enhancement as deformations, and overestimates the deformations.

Table 4. Relative error between the ground truth deformation fields and the ones obtained after
registration of the low-rank (L), and M = L + S following L + S using DS as sparsifying transform
decomposition of the simulated DCE images and reconstruction from the 4/8-fold undersampled
DCE (k, t)-space data (US4/USS).

L M=L+S
DCE images 0.016 0.031
Us4 0.021 0.025

uUss 0.024 0.029
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Ground truth L M=L+S

Figure 6. Ground truth deformation fields of the original T1-weighted images (without enhancement)
and deformation fields obtained after registration of the low-rank L, and M = L + S, following L + S,
using DS as sparsifying transform decomposition of the simulated DCE images.

Figure 7 (median, interquartile range) compares, in boxplot format, the motility scores
derived from the free-breathing versus the breath-holding data for scanner images, four-fold
undersampled (k, t)-space data, and eight-fold undersampled (k, t)-space data, respectively,
following L + S using DS as sparsifying transform decomposition/reconstruction. Motility
scores were estimated for each component, namely, low-rank L, sparse S, and low-rank
plus sparse M = L + S.

Scannerimages 4-fold undersampling 8-fold undersampling
0.1 T

0.08

- 8p 98 55 28 gg S0
O'OZQ & s & z O |

'BH-L BH-S BH-M FB-L FB-5 FB-MBH-L BH-S BH-M FB-L FB-S FB-MBH-L BH-5 BH-M FE-L FB-5 FB-M

0

Figure 7. Boxplots of the motility scores across the 8 subjects with range (line), interquartile range
(box), and median (horizontal line) for breath-holding (BH) and free-breathing (FB) data. Motility
scores were derived with L 4+ S using DS as sparsifying transform decomposition/reconstruction of
scanner images/undersampled data. The L, S, M = L + S components derived from the BH data
were compared with the ones from the FB data.

For the scanner images, the median motility scores derived from the sparse component
(S) were not significantly different between the breath-holding and the free-breathing
(median (o) equal to 0.044 and 0.049, respectively, p = 0.20). If the median motility
scores are calculated from both L and S, then they are significantly different between the
breath-holding and the free-breathing (median () equal to 0.036 and 0.047, respectively,
p = 0.02).

For the four-fold undersampled data, the median motility scores derived from the
sparse component (S) were not significantly different between the breath-holding and
the free-breathing (median y(oy) equal to 0.039 and 0.045, respectively, p = 0.08). If the
median motility scores are calculated from both L and S, then they are significantly differ-
ent between the breath-holding and the free-breathing (median y(07) equal to 0.034 and
0.043, respectively, p = 0.02). For the eight-fold undersampled data, the median motility
scores derived from the sparse component (S) were significantly different between the
breath-holding and the free-breathing (median (o) equal to 0.039 and 0.047, respectively,
p =0.04). Similarly, when the median motility scores were calculated from both L and
S they were once again significantly different between the breath-holding and the free-
breathing (median y(0}) equal to 0.035 and 0.043, respectively, p = 0.01). All calculations
described above are summarized in Table 5. To evaluate the effect of undersampling in the
value of the motility score, the median motility scores calculated from L, S and M of the
free-breathing scanner images were compared to the ones from the four-fold undersampled
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data (L: p=0.1, S: p =0.27, M: p = 0.35) and from the eight-fold undersampled data (L:
p=0.01, S: p =045, M: p = 0.49); for details, see Table 6.

Table 5. Median motility scores ji(0y) for S and L + S in the breath-holding and free-breathing data.

Scanner images BH FB p-value
S 0.044 0.049 0.20
L+S 0.036 0.047 0.02
Four-fold BH FB p-value
S 0.039 0.045 0.08
L+S 0.034 0.043 0.02
Eight-fold BH FB p-value
S 0.039 0.047 0.04
L+S§ 0.035 0.043 0.01

Table 6. p-values measuring the effect of undersampling in the value of the motility score: median
motility scores calculated from L, S, and M of the free-breathing scanner images, compared to the
ones from the four-fold and eight-fold undersampled data, respectively.

L S M=L+S
Four-fold 0.10 0.27 0.35
Eight-fold 0.01 0.45 0.49

5. Discussion

In this paper, we evaluated the benefits of L + S decomposition/reconstruction in
deriving accurate deformation fields. RPCA, using discrete shearlets as sparsifying trans-
form, attained less relative reconstruction errors than using other sparsifying transforms
(identity matrix or TF) and k-t FOCUSS, see Tables 2 and 3. This can be explained given
that DS(S) was sparser than S and TF(S) themselves; hence, they were more incoherent
with Fly, see Figure 2. L + S using DS as sparsifying transform successfully separated the
low-rank (background and periodic motion) from the sparse component (enhancement or
bowel motility) for both DCE and small bowel data. This is clearly shown in the histograms
and singular values in Figures 3 and 4, and the temporal profiles of Figure 5.

For the simulated DCE dataset, it was shown that deformation fields estimated after
registering the low-rank are closer to ground truth than the ones after registering M = L + S.
The low-rank plus sparse reconstructed images incorporate the enhancement (sparse
component) within themselves; hence, intensity changes due to enhancement are perceived
as motility by the registration algorithm.

For the small bowel datasets, following the comparison between breath-holding and
free-breathing data (scanner images and four-fold undersampled k-space data), it was
shown that the motility scores calculated from the sparse component were not significantly
different (p > 0.05), whereas motility scores calculated from the low-rank plus sparse were
significantly different (p < 0.05), see Figure 7. This, in essence, means that when motility
scores are calculated from the sparse component (that excludes low-rank periodic motion),
the breath-holding motility scores are similar to the free-breathing ones. Furthermore, in
terms of the effect of undersampling in the calculation of the motility scores, there were
no significant differences between the ones calculated from the scanner images and the
four-/eight-fold undersampled data.

This work suggests the use of discrete shearlets as the sparsifying transform of choice
for low-rank plus sparse reconstruction/decomposition. Discrete shearlets accurately repre-
sent the discontinuities and edges occurring in MR imaging and, hence, will be sparser than
other transforms. RPCA reconstructions are expected to reduce the bias due to undersam-
pling, and to separate small bowel motility from respiration. The improved reconstruction
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performance of the proposed L + S using DS as sparsifying transform over other undersam-
pling schemes, such as k-t FOCUSS, will allow us to either improve the temporal resolution
or keep the same temporal resolution and improve the spatial resolution, thus separating
the respiratory motion, corresponding to the low-rank component, from the enhancement
or bowel motility, corresponding to the sparse component.

6. Conclusions

The choice of sparsifying transform in an RPCA decomposition/reconstruction al-
gorithm is important to reconstruct unbiased images from undersampled data. Discrete
shearlets provide an excellent representation of multi-dimensional MR data. In this pa-
per, we utilized discrete shearlets as sparsifying transforms in low-rank rank plus sparse
decomposition/reconstruction. In this direction, discrete shearlets were shown to reduce
relative reconstruction errors, compared to other sparsifying transforms. Low-rank plus
sparse decomposition using discrete shearlets was evaluated in DCE and small bowel data.
Registering low-rank reconstructed DCE images accurately quantifies respiratory motion.
Motility scores of small bowel images are not significantly affected by undersampling.
When estimated from the sparse components, motility scores are not significantly different
between the breath-holding and free-breathing data, thus indicating that the proposed
algorithm was able to isolate respiratory motion in the low-rank component. In future
studies, we intend to include learned priors and sparsifying operators, as well as machine-
learning methods in the low-rank plus sparse decomposition approach. This study focused
on dynamic 2D MRI acquisitions; hence, only 2D shearlets were applicable. However, we
expect that, for 3D MRI acquisitions, the benefit of 3D shearlets would be more significant,
compared to other 3D transformations, such as wavelets and Fourier.

Author Contributions: Conceptualization: N.D., N.E.P.,, E.T. and G.A K.; methodology: N.D. and
N.E.P; software and validation: N.D. and E.T.; writing—original draft preparation: N.E.P. and E.T.;
writing—review and editing: N.D. and G.A.K ; visualization: N.E.P., N.D. and E.T.; supervision: N.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the research programme No. 200/977 of the
Research Committee of the Academy of Athens.

Institutional Review Board Statement: A local ethics committee approved the retrospective use of
anonymized patient data.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The simulated data presented in this study are available on request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, Y; Liu, T; Liu, J.; Zhu, C. Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI.
Pattern Recognit. 2020, 102, 107252.

2. Candes, EJ; Li, X.;; Ma, Y.; Wright, ]. Robust principal component analysis? J]. ACM 2011, 58, 1-37. [CrossRef]

3. Gao, H,; Cai, ].E; Shen, Z.; Zhao, H. Robust principal component analysis-based four-dimensional computed tomography MRI.
Phys. Med. Biol. 2011, 56, 3181. [CrossRef] [PubMed]

4. Trémoulhéac, B.; Atkinson, D.; Arridge, S.R. Motion and contrast enhancement separation model reconstruction from partial
measurements in dynamic MRI. In Proceedings of the MICCAI Workshop on Sparsity Techniques in Medical Imaging, Nice,
France, 1-5 October 2012.

5. Trémoulhéac, B.; Dikaios, N.; Atkinson, D.; Arridge, S.R. Dynamic MR Image reconstruction—separation from undersampled
(k, t)-space via low-rank plus sparse prior. IEEE Trans. Med. Imaging 2014, 33, 1689-1701. [CrossRef] [PubMed]

6. Otazo, R; Candes, E.; Sodickson, D.K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation
of background and dynamic components. Magn. Reson. Med. 2015, 73, 1125-1136. [CrossRef] [PubMed]

7. Mahapatra, D.; Li, Z.; Vos, F.; Buhmann, J. Joint segmentation and groupwise registration of cardiac DCE MRI using sparse data

representations. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY,
USA, 16-19 April 2015; pp. 1312-1315. [CrossRef]


http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.1088/0031-9155/56/11/002
http://www.ncbi.nlm.nih.gov/pubmed/21540490
http://dx.doi.org/10.1109/TMI.2014.2321190
http://www.ncbi.nlm.nih.gov/pubmed/24802294
http://dx.doi.org/10.1002/mrm.25240
http://www.ncbi.nlm.nih.gov/pubmed/24760724
http://dx.doi.org/10.1109/ISBI.2015.7164116

J. Imaging 2022, 8, 29 13 of 14

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Hamy, V.; Dikaios, N.; Punwani, S.; Melbourne, A.; Latifoltojar, A.; Makanyanga, J.; Chouhan, M.; Helbren, E.; Menys, A.;
Taylor, S.; et al. Respiratory motion correction in dynamic MRI using robust data decomposition registration—Application to
DCE-MRI. Med. Image Anal. 2014, 18, 301-313. [CrossRef] [PubMed]

Menys, A.; Hamy, V.; Makanyanga, J.; Hoad, C.; Gowland, P.; Odille, E; Taylor, S.; Atkinson, D. Dual registration of abdominal
motion for motility assessment in free-breathing data sets acquired using dynamic MRI. Phys. Med. Biol. 2014, 59, 4603. [CrossRef]
Odille, E; Menys, A.; Ahmed, A.; Punwani, S.; Taylor, S.A.; Atkinson, D. Quantitative assessment of small bowel motility by
nonrigid registration of dynamic MR images. Magn. Reson. Med. 2012, 68, 783-793. [CrossRef]

Menys, A.; Taylor, S.A.; Emmanuel, A.; Ahmed, A.; Plumb, A.A.; Odille, F.; Alam, A.; Halligan, S.; Atkinson, D. Global small
bowel motility: Assessment with dynamic MR imaging. Radiology 2013, 269, 443-450. [CrossRef]

Lustig, M.; Donoho, D.; Pauly, ] M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.
2007, 58, 1182-1195. [CrossRef]

Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289-1306. [CrossRef]

Huizinga, ].D.; Chen, ]. H.; Zhu, Y.E; Pawelka, A.; McGinn, R.J.; Bardakjian, B.L.; Parsons, S.P.; Kunze, W.A.; Wu, R.Y.; Bercik, P;
et al. The origin of segmentation motor activity in the intestine. Nat. Commun. 2014, 5, 1-11. [CrossRef] [PubMed]

Guo, K,; Kutyniok, G.; Labate, D. Sparse multidimensional representations using anisotropic dilation and shear operators. In
Wavelets and Splines; Chen, G., Lai, M., Eds.; Nashboro Press: Nashville, TN, USA, 2006; pp. 189-201.

Yi, S.; Labate, D.; Easley, G.R.; Krim, H. A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 2009,
18, 929-941. [CrossRef] [PubMed]

Hauser, S.; Steidl, G. Fast Finite Shearlet Transform. arXiv 2014, arXiv:1202.1773.

Yuan, M.; Yang, B.; Ma, Y.; Zhang, J.; Zhang, R.; Zhang, C. Compressed sensing MRI reconstruction from highly undersampled-
space data using nonsubsampled shearlet transform sparsity prior. Math. Probl. Eng. 2015, 2015. [CrossRef]

Liu, R.W,; Shi, L.; Simon, C.; Wang, D. Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and
group-sparsity total variation. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an,
China, 10-13 July 2017; pp. 1-8. [CrossRef]

Ma, J.; Miérz, M.; Funk, S.; Schulz-Menger, J.; Kutyniok, G.; Schaeffter, T.; Kolbitsch, C. Shearlet-based compressed sensing for fast
3D cardiac MR imaging using iterative reweighting. Phys. Med. Biol. 2018, 63, 235004. [CrossRef] [PubMed]

Yazdanpanah, A.P,; Regentova, E.E. Compressed sensing magnetic resonance imaging based on shearlet sparsity and nonlocal
total variation. J. Med. Imaging 2017, 4, 026003. [CrossRef]

Jung, H; Ye, ].C.; Kim, E.Y. Improved k-t BLAST and k-t SENSE using FOCUSS. Phys. Med. Biol. 2007, 52, 3201-3226. [CrossRef]
Tsao, J.; Boesiger, P.; Pruessmann, K.P. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal
correlations. Magn. Reson. Med. 2003, 50, 1031-1042. [CrossRef]

Gorodnitsky, LE; George, ].S.; Rao, B.D. Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm
algorithm. Electroencephalogr. Clin. Neurophysiol. 1995, 95, 231-251. [CrossRef]

Jung, H.; Sung, K.; Nayak, K.S.; Kim, E.Y;; Ye, ].C. k-t FOCUSS: A general compressed sensing framework for high resolution
dynamic MRI. Magn. Reson. Med. 2009, 61, 103-116. [CrossRef] [PubMed]

Lingala, S.G.; Hu, Y.; DiBella, E.; Jacob, M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE
Trans. Med. Imag. 2011, 30, 1042-1054. [CrossRef] [PubMed]

Dikaios, N.; Tremoulheac, B.; Menys, A.; Hamy, V.; Arridge, S.; Atkinson, D. Joint reconstruction of low-rank and sparse
components from undersampled (k, t)-space small bowel data. In Proceedings of the 2013 IEEE Nuclear Science Symposium and
Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea, 27 October—2 November 2013; pp. 1-5. [CrossRef]

Qu, X.; Guo, D.; Ning, B.; Hou, Y,; Lin, Y,; Cai, S.; Chen, Z. Undersampled MRI reconstruction with patch-based directional
wavelets. Magn. Reson. Med. 2012, 30, 964-977. [CrossRef] [PubMed]

Lai, Z.; Qu, X,; Liu, Y;; Guo, D.; Ye, J.; Zhan, Z.; Chen, Z. Image reconstruction of compressed sensing MRI using graph-based
redundant wavelet transform. Med. Image Anal. 2016, 27, 93-104. [CrossRef] [PubMed]

Deka, B.; Datta, S.; Handique, S. Wavelet tree support detection for compressed sensing MRI reconstruction. IEEE Signal Process.
Lett. 2018, 25, 730-734. [CrossRef]

Liu, RW.; Ma, Q.; Yu, S.C.H.; Chui, K.T.; Xiong, N. Variational regularized tree-structured wavelet sparsity for CS-SENSE parallel
imaging. IEEE Access 2018, 6, 61050-61064. [CrossRef]

Islam, M.S.; Islam, R. Multiscale wavelet-based regularized reconstruction algorithm for three-dimensional compressed sensing
magnetic resonance imaging. Signal Image Video Process. 2021, 1-9. [CrossRef]

Chen, Y.; Firmin, D.; Yang, G. Wavelet improved GAN for MRI reconstruction. Medical Imaging 2021: Physics of Medical
Imaging. Int. Soc. Opt. Photonics 2021, 11595, 1159513. [CrossRef]

Wang, D.; Arlinghaus, L.R.; Yankeelov, T.E.; Yang, X.; Smith, D.S. Quantitative evaluation of temporal regularizers in compressed
sensing dynamic contrast enhanced MRI of the breast. Int. |. Biomed. Imaging 2017, 2017. [CrossRef] [PubMed]

Wang, L.; Li, B.; Tian, L. Multimodal medical volumetric data fusion using 3-D discrete shearlet transform and global-to-local
rule. IEEE Trans. Biomed. Eng. 2013, 61, 197-206. [CrossRef]

Alinsaif, S.; Lang, J.; Alzheimer’s Disease Neuroimaging Initiative. 3D shearlet-based descriptors combined with deep features
for the classification of Alzheimer’s disease based on MRI data. Comput. Biol. Med. 2021, 138, 104879. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.media.2013.10.016
http://www.ncbi.nlm.nih.gov/pubmed/24322575
http://dx.doi.org/10.1088/0031-9155/59/16/4603
http://dx.doi.org/10.1002/mrm.23298
http://dx.doi.org/10.1148/radiol.13130151
http://dx.doi.org/10.1002/mrm.21391
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1038/ncomms4326
http://www.ncbi.nlm.nih.gov/pubmed/24561718
http://dx.doi.org/10.1109/TIP.2009.2013082
http://www.ncbi.nlm.nih.gov/pubmed/19336304
http://dx.doi.org/10.1155/2015/615439
http://dx.doi.org/10.23919/ICIF.2017.8009783
http://dx.doi.org/10.1088/1361-6560/aaea04
http://www.ncbi.nlm.nih.gov/pubmed/30465546
http://dx.doi.org/10.1117/1.JMI.4.2.026003
http://dx.doi.org/10.1088/0031-9155/52/11/018
http://dx.doi.org/10.1002/mrm.10611
http://dx.doi.org/10.1016/0013-4694(95)00107-A
http://dx.doi.org/10.1002/mrm.21757
http://www.ncbi.nlm.nih.gov/pubmed/19097216
http://dx.doi.org/10.1109/TMI.2010.2100850
http://www.ncbi.nlm.nih.gov/pubmed/21292593
http://dx.doi.org/10.1109/NSSMIC.2013.6829230
http://dx.doi.org/10.1016/j.mri.2012.02.019
http://www.ncbi.nlm.nih.gov/pubmed/22504040
http://dx.doi.org/10.1016/j.media.2015.05.012
http://www.ncbi.nlm.nih.gov/pubmed/26096982
http://dx.doi.org/10.1109/LSP.2018.2824251
http://dx.doi.org/10.1109/ACCESS.2018.2874382
http://dx.doi.org/10.1007/s11760-021-01881-x
http://dx.doi.org/10.1117/12.2581004
http://dx.doi.org/10.1155/2017/7835749
http://www.ncbi.nlm.nih.gov/pubmed/28932236
http://dx.doi.org/10.1109/TBME.2013.2279301
http://dx.doi.org/10.1016/j.compbiomed.2021.104879
http://www.ncbi.nlm.nih.gov/pubmed/34598071

J. Imaging 2022, 8, 29 14 of 14

37.

38.

39.

40.

41.

Gollifer, RM.; Menys, A.; Makanyanga, J.; Puylaert, C.A.; Vos, EM.; Stoker, J.; Atkinson, D.; Taylor, S.A. Relationship between
MRI quantified small bowel motility and abdominal symptoms in Crohn’s disease patients—A validation study. Br. J. Radiol.
2018, 91, 20170914. [CrossRef] [PubMed]

Menys, A.; Plumb, A.; Atkinson, D.; Taylor, S. The challenge of segmental small bowel motility quantitation using MR
enterography. Br. ]. Radiol. 2014, 87, 20140330. [CrossRef] [PubMed]

Dikaios, N.; Punwani, S.; Hamy, V.; Purpura, P.; Rice, S.; Forster, M.; Mendes, R.; Taylor, S.; Atkinson, D. Noise estimation from
averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation? Magn. Reson. Med.
2014, 71, 2105-2117. [CrossRef] [PubMed]

Dikaios, N.; Arridge, S.; Hamy, V.; Punwani, S.; Atkinson, D. Direct parametric reconstruction from undersampled (k, t)-space
data in dynamic contrast enhanced MRI. Med. Iimage Anal. 2014, 18, 989-1001. [CrossRef]

Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.
Stat. 1947, 18, 50-60. [CrossRef]


http://dx.doi.org/10.1259/bjr.20170914
http://www.ncbi.nlm.nih.gov/pubmed/29888980
http://dx.doi.org/10.1259/bjr.20140330
http://www.ncbi.nlm.nih.gov/pubmed/24919500
http://dx.doi.org/10.1002/mrm.24877
http://www.ncbi.nlm.nih.gov/pubmed/23913479
http://dx.doi.org/10.1016/j.media.2014.05.001
http://dx.doi.org/10.1214/aoms/1177730491

	Introduction
	Theory
	Focal Underdetermined System Solver (k-t FOCUSS)
	Robust Principal Component Analysis (RPCA)
	Sparsifying Transforms
	Image Registration—Motility Metric

	Materials and Methods
	Small Bowel MR Acquisition
	Simulated Abdominal DCE Data
	Simulated Undersampled Acquisition
	Quantitative Evaluation
	Implementation Details

	Results
	Low-Rank Plus Sparse Image Decomposition
	Low-Rank Plus Sparse Image Decomposition from Undersampled (k,t)-Space Data
	Quantification of Motility in Low-Rank Plus Sparse Decomposition Using Discrete Shearlets as Sparsifying Transforms

	Discussion
	Conclusions
	References

