

Coding-Complete Genome Sequence of SARS-CoV-2 Isolate from Bangladesh by Sanger Sequencing

M. Moniruzzaman,^a

Mohammad Uzzal Hossain,^b M. Nazrul Islam,^c M. Hadisur Rahman,^a Irfan Ahmed,^a

Tahia Anan Rahman,^a Arittra Bhattacharjee,^{b,d} M. Ruhul Amin,^e Asif Rashed,^f Chaman Ara Keya,^d Keshob Chandra Das,^a

M. Salimullah^a

^aMolecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh

ABSTRACT A coding-complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate was revealed. The sample for the virus was isolated from a female patient from Dhaka, Bangladesh, suffering from coronavirus disease-2019 (COVID-19).

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the *Coronaviridae* family and *Betacoronavirus* genus, is the causative agent of pandemic coronavirus disease-2019 (COVID-19). In Bangladesh, the rate of positive cases and the death toll from COVID-19 are increasing at an alarming rate (https://corona.gov.bd/). To understand the genomic characteristics of SARS-CoV-2 in Bangladesh, several isolates have been sequenced and deposited in GISAID (https://www.gisaid.org/). However, those isolates have been sequenced using a next-generation sequencing platform, except for the one we are reporting. In this study, we sequenced the viral genome by Sanger sequencing technology, which is a gold standard method and is necessary for thorough genomic analysis (1).

The isolate (SARS-CoV-2/human/BGD/NIB_01/2020) was collected from an oropharyngeal specimen on 11 May 2020. The patient was a 28-year-old saleswoman who tested positive (via reverse transcriptase PCR [RT-PCR]) for COVID-19 with symptoms of cough, mild fever, and throat congestion. (all applicable international, national, and/or institutional guidelines for the care and use of animals were followed; ethical approval number NIBREC2020-01). The viral RNA was extracted directly from the patient's specimen using the PureLink viral RNA/DNA minikit (Invitrogen). The viral RNA was then converted into cDNA using a SuperScript VILO cDNA synthesis kit (Invitrogen).

To cover the whole genome of the virus, 48 pairs of primers were designed by following two conditions: (i) their sequence is conserved among all the available SARS-CoV-2 isolates, and (ii) the terminal of the amplicons will overlap the adjacent amplicon (Table 1). These primers underwent PCR and generated 96 amplicons, which were visualized using 1.5% agarose gel electrophoresis. The PCR products were then purified using the PureLink PCR purification kit (Thermo Fisher Scientific, USA). These purified amplicons were finally sequenced with $2\times$ coverage using the Sanger dideoxy method by "ABI 3500" with a BigDye Terminator version 3.1 cycle sequencing kit (Applied Biosystems, USA).

The raw reads were assembled using DNA Sequence Assembler version 4 (2013)

Citation Moniruzzaman M, Hossain MU, Islam MN, Rahman MH, Ahmed I, Rahman TA, Bhattacharjee A, Amin MR, Rashed A, Keya CA, Das KC, Salimullah M. 2020. Coding-complete genome sequence of SARS-CoV-2 isolate from Bangladesh by Sanger sequencing. Microbiol Resour Announc 9:e00626-20. https://doi.org/10.1128/MRA.00626-20.

Editor John J. Dennehy, Queens College

Copyright © 2020 Moniruzzaman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to M. Salimullah, salim2969@gmail.com.

Received 29 May 2020 Accepted 19 June 2020 Published 9 July 2020

^bBioinformatics Division, National Institute of Biotechnology, Savar, Dhaka, Bangladesh

^cPlant Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka, Bangladesh

^dDepartment of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, Bangladesh

^eCenter for Medical Biotechnology, MIS, Directorate General of Health Services, Dhaka, Bangladesh

^fDepartment of Microbiology, Mugda Medical College, Dhaka, Bangladesh

TABLE 1 Information about primers, amplicon size, and overlapping length

Amplicon	Primer	Sequence	Product size (bp)	Overlapping length (bp)
1	Forward	AGGTTTATACCTTCCCAGG	765	
1	Reverse	CACCACTGCTATGTTTAGTG	703	131
2	Forward	CGCAAGGTTCTTCGTA	797	
2	Reverse	AGACTATGCTCAGGTCCTAC		100
3	Forward	AAGAAGGTGCCACTACTTG	794	
3	Reverse	GTTAGTTAGCCACTGCGAA		114
4 4	Forward Reverse	ACTGAGACTCATTGATGCTA TCACACTCTTGTAACCTTGC	788	
5	Forward	AGAAAAGTACTGTGCCCTTG		130
5	Reverse	ACCACTGTTGGTTTTACCTT	783	
6	Forward	GATGGAACTTACACCAGTTG		131
6	Reverse	GTCACTAACAAGAGTGGCAG	781	
7	Forward	GAAGAAGTTACAACAACTCTGG	710	110
7	Reverse	AAACTGTAGCTGGCACTTTG	718	126
8	Forward	TGTAGCGTCACTTATCAACA	746	136
8	Reverse	CAGTGGCAAGATAACAGTTG	746	158
9	Forward	CTCTACGTGTTGAGGCTTTT	720	130
9	Reverse	CATCCGTAATAGGACCTTTGT	720	130
10	Forward	TTGTGCTAGTGAGTACACTG	760	150
10	Reverse	AATGTCTCCTACAACTTCGG	700	150
11	Forward	TGATGTACTGAAGTCAGAGG	737	150
11	Reverse	AATAGCCTTCTCTGTAACCAG	, 3,	90
12	Forward	TTCTTTAATCTACTCAACCGC	706	
12	Reverse	CTGTAGTGACAAGTCTCTCG		118
13	Forward	ATGCTAATGGAGGTAAAGGC	701	
13	Reverse	ACAACTATCGCCAGTAACTTC		115
14 14	Forward	CTTTTATTTCAGCAGCTCGG	714	
15	Reverse Forward	GTGCGTAATATCGTGCCA GCTGATTTTGACACATGGTT		133
15	Reverse	GGTAAGAATGAGTAAACTGGTG	812	
16	Forward	CCTATTGGTGCTTTGGACATA		196
16	Reverse	AACCCTCAACTTTACCAGATG	727	
17	Forward	CTTGTTGTCATCTCGCAAAG		146
17	Reverse	TCGATTGAGAAACCACCTGT	767	
18	Forward	TTGTTGACAGGCAAACAGC	770	112
18	Reverse	ACCATCATCATACACAGTTCT	770	121
19	Forward	TGACATGGTTGGATATGGTTG	794	121
19	Reverse	GTTTATGTCTACAGCACCCT	794	172
20	Forward	AATTGTGGGCTCAATGTGT	787	172
20	Reverse	GCAACAGGACTAAGCTCATTA	707	155
21	Forward	GGAAATCCAACAGGTTGTAGA	795	155
21	Reverse	ACAGGGTCATTAGCACAAGT	,,,,	90
22	Forward	GTTGCCACATAGATCATCCAA	790	
22	Reverse	AACAATACCAGCATTTCGC		233
23	Forward	GCAGGACCTCGTCTATGT	813	
23 24	Reverse Forward	GCACGTAGTGCGTTTATCT CCACTTCAGAGAGCTAGGTG		147
24	Reverse	GTGAGGGTTTTCTACATCACT	782	
25	Forward	ATTGAAATCAATAGCCGCCA		114
25	Reverse	ATCTGGGTAAGGAAGGTACA	775	
26	Forward	GTCTGAAGCAAAATGTTGGA		117
26	Reverse	GAGTCTTTCAGTACAGGTGTT	805	4.42
27	Forward	TGTGTGCTAATGGACAAGTT	704	142
27	Reverse	TCAAAACACTCTACACGAGC	784	122
28	Forward	CTTCTGCTCGCATAGTGTAT	760	132
28	Reverse	CAAGAGTGAGCTGTTTCAGT	769	191
29	Forward	AATAGGCGTGGTAAGAGAAT	790	171
29	Reverse	GTACATAAGTGGTATGAGGTGT	7 90	139
30	Forward	AGCTAGGTTTTTCTACAGGTG	756	137
30	Reverse	CTTTGTCACTACAAGGCTGT	, 55	152
31	Forward	GTAGAAAGGTTCAACACATGG	733	
31	Reverse	ATAGAAACTGGTACTTCACCC		144
32	Forward	GCTTTAGCTTGTGGGTTTAC	000	
32	Reverse	CCACCTAACTGACTATGACT	808	139

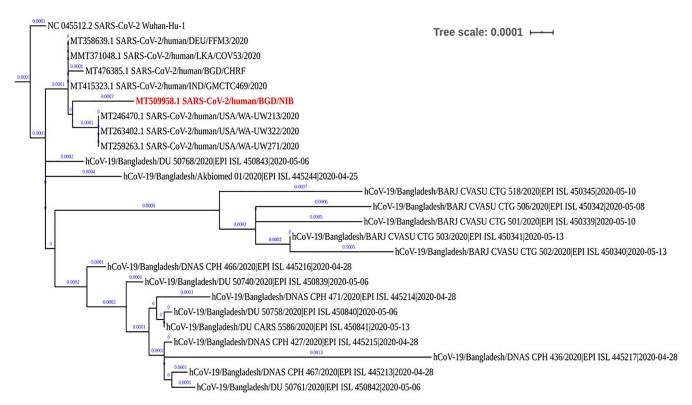
(Continued on next page)

Volume 9 Issue 28 e00626-20 mra.asm.org **2**

TABLE 1 (Continued)

			Product	Overlapping
Amplicon	Primer	Sequence	size (bp)	length (bp)
33	Forward	CAAGAATTTAAACCCAGGAG	758	
33	Reverse	GCATCAGAGACAAAGTCATT	130	155
34	Forward	CACATTAACATTAGCTGTACCC	781	133
34	Reverse	TGACTAGAGACTAGTGGCA		182
35	Forward	AAGGGGTACTGCTGTTATGT	775	102
35	Reverse	TTAATAGGCGTGTGCTTAGA		116
36	Forward	TCAGCCTTTTCTTATGGACC	794	110
36	Reverse	TCCAAGCTATAACGCAGC		104
37	Forward	TTAGAGGTGATGAAGTCAGA	760	104
37	Reverse	TGTTCAGCCCCTATTAAACA		149
38	Forward	TAACCAGGTTGCTGTTCTTT	797	149
38	Reverse	CAATCATTTCATCTGTGAGCA		101
39	Forward	CAGATCCATCAAAACCAAGC	771	191
39	Reverse	GCAAGAAGACTACACCATGA		127
40	Forward	TCAGAGCTTCTGCTAATCTTG	759	137
40	Reverse	GTAATTTGACTCCTTTGAGC		127
41	Forward	TTGCCATAGTAATGGTGACA	798	137
41	Reverse	AGCTGGTAATAGTCTGAAGTG		120
42	Forward	GCACAACAAGTCCTATTTCT	784	120
42	Reverse	CCATAACAGCCAGAGGAAAA		470
43	Forward	GCAGATTCCAACGGTACT	707	170
43	Reverse	TAGTAACCTGAAAGTCAACG		
44	Forward	GCTACAGGATTGGCAACTAT	785	117
44	Reverse	TTTCATGTTCGTTTAGGCGT		
45	Forward	CACTTTGCTTCACACTCAAA	791	174
45	Reverse	TCTGGACTGCTATTGGTGTT		
46	Forward	CAGATTCAACTGGCAGTAAC	793	180
46	Reverse	TTTCCTTGGGTTTGTTCTGG		4.0=
47	Forward	CTGCTTGACAGATTGAACCA		187
47	Reverse	CTTGTGCTATGTAGTTACGAGA	698	
48	Forward	ATGAAACTCAAGCCTTACCG	518	242
48	Reverse	CCTTTCGTGCAGGTCAATA		

(Heracle BioSoft) and verified with SeqMan Pro version 14.1 (DNAStar, Madison, WI). After assembly, 48 contigs with 94 overlapping regions were obtained. These overlapping regions were visualized using CLC Genomics Workbench version 20.0.4 and merged with EMBOSS: merger (2).


The assembled viral genome consists of a single-stranded positive (+) RNA that is 29,724 nucleotides long. The NCBI BLASTN program (3) showed that the genome was mostly similar to SARS-CoV-2/human/BGD/CHRF_0001/2020 (GenBank accession number MT476385.1). From NCBI, the FASTA sequences of 7 mostly similar genomes from Bangladesh, India, Sri Lanka, and the United States were taken along with the reference genome. Another 16 genomes of SARS-CoV-2 that were isolated in Bangladesh were collected from GISAID (https://www.gisaid.org/). The genomes were aligned with MAFFT version 7 using default parameters (4). The phylogenetic tree was constructed using FastTree version 2.1.10 (5) through the Galaxy platform (6). Here, the tree was built by nucleotide alignment using the generalized time-reversable model (GTR) plus the CAT nucleotide evolution model (GTR+CAT). The tree was visualized using iTOL (7), where the tree structure was rerooted on the position of reference isolate SARS-CoV-2 Wuhan-Hu-1.

The genome has 8 nucleotide differences from the closest isolate. Interestingly, except for isolate SARS-CoV-2/human/BGD/CHRF0001/2020, the other strains of SARS-CoV-2 from Bangladesh showed separate clades and distant genetic relations. The tree also demonstrated that our viral genome and three isolates from the United States share an ancestor (Fig. 1).

Data availability. The complete nucleotide sequence of this SARS-CoV-2 isolate (SARS-CoV-2/human/BGD/NIB_01/2020) has been deposited in GenBank under the accession number MT509958.

Volume 9 Issue 28 e00626-20 mra.asm.org 3

Moniruzzaman et al.

FIG 1 Phylogenetic analysis of the SARS-CoV-2/human/BGD/NIB_01/2020 isolate. Nucleotide alignment and the GTR+CAT nucleotide evolution model was applied to construct the tree. The tree was visualized using i-TOL. Here, the *x* axis represents the tree scale. A scale bar with a 0.0001 value is given on the top. The genome (labeled in red) shares a common ancestor with some isolates from the United States.

ACKNOWLEDGMENTS

We are grateful to the Ministry of Science and Technology for its extensive support during this research work.

This study was funded by the National Institute of Biotechnology, Ministry of Science and Technology, government of the People's Republic of Bangladesh.

REFERENCES

- Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. 2018. Nextgeneration sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24:335–341. https://doi.org/10.1016/j.cmi.2017.10.013.
- Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277. https://doi.org/10.1016/ s0168-9525(00)02024-2.
- Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10 .1089/10665270050081478.
- Kazutaka K, John R, Kazunori DY. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108.
- Price MN, Dehal PS, Arkin AP. 2010. FastTree 2: approximately maximumlikelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/ 10.1371/journal.pone.0009490.
- Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. https://doi.org/10.1093/nar/gky379.
- Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi .org/10.1093/nar/gkz239.

Volume 9 lssue 28 e00626-20 mra.asm.org 4