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ABSTRACT

Networks have been an excellent framework for
modeling complex biological information, but the
methodological details of network-based tools are
often described for a technical audience. We have
developed GRAPHERY, an interactive tutorial web-
server that illustrates foundational graph concepts
frequently used in network-based methods. Each tu-
torial describes a graph concept along with exe-
cutable Python code that can be interactively run
on a graph. Users navigate each tutorial using their
choice of real-world biological networks that high-
light the diverse applications of network algorithms.
GRAPHERY also allows users to modify the code within
each tutorial or write new programs, which all can
be executed without requiring an account. GRAPHERY

accepts ideas for new tutorials and datasets that
will be shaped by both computational and biological
researchers, growing into a community-contributed
learning platform. GRAPHERY is available at https:
//graphery.reedcompbio.org/.

GRAPHICAL ABSTRACT

INTRODUCTION

Computational biologists have long used networks, or
graphs, to model complex relationships that range in scale
from molecular interactions to population and community
dynamics. The popularity of graphs for bioinformatics and
computational biology is marked by a wealth of review ar-
ticles dedicated to the topic. For example, graphs have been
extensively used to model molecular interactions such as
protein interactions, metabolic signaling, and gene regu-
latory relationships (1–4). Network algorithms have also
been developed to study the molecular systems biology of
complex diseases, including identifying disease genes and
pathways and predicting potential drug targets (5,6). Be-
yond molecular systems, graphs have been used to model
neuron connections in the brain (7), social dynamics in
animals (8,9) and energy flux in populations (e.g. food
webs) (10,11).

Alongside this development of network-based methods,
the amount of available network data (e.g. constructed
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from experiments or by carefully curating existing litera-
ture) has exploded. Graph databases and repositories have
been developed to store, query and visualize biological net-
works (12–18), and biological network visualization is a
subfield in its own right (19,20). Web-based network visu-
alization has enabled a lightweight and interactive means
for users to explore graphs without downloading a stand-
alone application (21–23). Many graph algorithms that
were designed for biological networks offer their own web-
based tools, for example, GeneMANIA (24) and Steiner-
Net (25), or have plugins for existing platforms such as Cy-
toscape (26).

Recent growth in biological network data has inspired
novel graph algorithms that, for example, uncover impor-
tant components of or identify higher-order organization
within complex networks. Many of these methods are ex-
tensions of classic and well-studied graph algorithms, such
as clustering and community detection, random walks and
belief propagation, and finding paths and trees. With the
wealth of online datasets, web-based tools, and network
graph visualization platforms, researchers can run these
graph algorithms on their own data. However, when it
comes to interpreting the outputs of these algorithms, bio-
logical researchers often face a major obstacle: How can you
interpret the outputs of an algorithm if you do not know
how the algorithm works?

There has been growing recognition that it is important
for biological researchers to understand the concepts that
underpin current computational methodologies (27–29).
While review articles offer a broad view of an application
or methodology, they tend to cite original work that may be
dense for a non-computational audience. Primers and work-
shops have been developed to give biologists a deeper un-
derstanding of mathematical concepts, including machine
learning (30), Bayesian network modeling (31), and deep
learning (32). There are also a few network-based primers
and textbook chapters dedicated to giving biologists more
insight into graph statistics and algorithms (33–36). While
these are rich with examples and principles of graph algo-
rithms, they do not tend to be interactive or designed for
researchers who want a high-level understanding of graphs.

We present GRAPHERY, a web-based platform that of-
fers graph tutorials, example code, and interactive graphs,
all in one place. GRAPHERY is aimed at helping biologi-
cal researchers understand the core concepts upon which
many state-of-the-art graph algorithms are built. The cen-
tral idea behind GRAPHERY is that users can read tutorials
and run the associated Python code on real-world biologi-
cal networks that may be relevant to their field (Supplemen-
tary Figure S1). GRAPHERY’s power is in the user’s ability
to select a specific graph to use when working through the
tutorials and run that tutorial’s Python code on the graph
using a step-through debugger-style interface.

AUDIENCE

The majority of GRAPHERY users will be visitors who nav-
igate the tutorials. Visitors can interact with graphs, read
through the tutorials, run code, and even edit the code with-
out logging in. We expect most visitors to be trainees and
researchers from the biological sciences who commonly use

bioinformatic tools to analyze their data. GRAPHERY tuto-
rials provide written descriptions of the fundamental con-
cepts behind common graph algorithms and enable visitors
to interact with real-world networks. There is also a click-
through interface that steps through Python code line-by-
line highlighting important variables.

We hope that visitors will gain an intuition about the gen-
eral control flow of a piece of code by stepping through
it line-by-line. A smaller number of visitors may be more
familiar with programming, and GRAPHERY provides fea-
tures for modifying or writing code alongside the exist-
ing tutorials and networks. However, teaching Python pro-
gramming is outside the scope of our webserver.

In this paper, we describe GRAPHERY from a visitor per-
spective. We first present tutorials and graphs as a visitor
would interact with them. We then provide details about
other user roles (such as authors, translators, and admin-
istrators), GRAPHERY’s implementation, and the potential
of GRAPHERY for education and training.

GRAPHERY TUTORIALS

Tutorials are the heart of GRAPHERY, as they are the view
where all features come together (Figure 1). The right-hand
pane of the tutorial view contains the tutorial’s content, in-
cluding text, images, and hyperlinks (Figure 1C). Tutorials
are ordered in increasing complexity, beginning with tuto-
rials that orient users, moving on to simple definitions and
characteristics of graphs, and then delving into the main
concepts behind graph algorithms (Table 1). We intention-
ally made these tutorials short and brief, with the goal that
they build upon each other. In some cases, later tutorials
use code that is described in earlier tutorials. Many of our
tutorials are written in English, Chinese, and Spanish (Ta-
ble 1 and inset of Figure 1C), with a goal to add more lan-
guages that reach a broader audience of network biology
researchers.

GRAPHERY currently supports undirected, unweighted
graphs. The tutorials cover a number of fundamental con-
cepts about undirected graphs, including graph definitions
(such as nodes, edges, node degree, paths and trees), graph
statistics and properties (such as degree distribution, clus-
tering coefficient, and acyclicity), simple graph algorithms
(such as shortest paths and spanning trees), and more ad-
vanced graph concepts (such as random walks and commu-
nity detection). These tutorials serve as a foundation for de-
scribing more complicated concepts, such as label propaga-
tion (e.g. used in GeneMania (24)), Steiner trees (e.g. used
in SteinerNet (25)), and k-shortest paths (e.g. used in Path-
Linker (37)). We are actively developing new GRAPHERY
tutorials, and we welcome suggestions and contributions.

GRAPHERY contains an interactive graph visualization
panel (Figure 1B) that is built upon Cytoscape.js (21). Vis-
itors can manually rearrange nodes in the graph and use
the pan and zoom features. The drop-down in Figure 1A
allows a visitor to select among a list of available biologi-
cal networks for this tutorial; the networks themselves are
described in more detail in the next section.

Visitors can click through each tutorial’s Python code
in the code editor, which employs a debugger-style format
(Figure 1D and Supplementary Figure S2). The tool bar al-
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Figure 1. Tutorial view. This page includes (A) a drop-down to visualize different graphs, (B) an interactive graph visualization, (C) tutorial content (which
can be switched to Spanish or Chinese translations), (D) a debugger-style editor and (E) a list of traced variables.

Table 1. Tutorials available in GRAPHERY, along with their available Spanish and Chinese translations (last updated 18 April 2021)

Number Name Description EN-US ES ZH-CN

001-1 Get Started Website structure and how to navigate tutorials � � �
001-2 Graph Primer Introduction to graphs in Graphery � � �
001-3 Python Primer Introduction to Python programming � � �
001-4 Programming in Graphery Overview of the advanced program editor features � � �
101-1 Counting Elements Introduction to graphs, nodes, and edges � � �
101-2 Depth First Search Introduction to depth first search traversal �
102-1 Degree Distribution Degree distribution and network global structure � � �
102-2 Degree Distribution 2 Calculating the degree distribution, faster � � �
103-1 Shortest Paths Computing the shortest path between two nodes � � �
103-2 Shortest Paths 2 Calculating the average shortest path length of a graph � � �
103-3 Betweenness Centrality Calculating the betweenness centrality for all nodes �
104-1 Trees & Acyclic Graphs Introduction to trees and checking for graph acyclicity � � �
104-2 Spanning Trees Spanning trees on unweighted graphs � �
105-1 Clustering Coefficient Calculating a network’s global clustering coefficient �
105-2 Clustering Coefficient 2 Calculating the local clustering coefficient of nodes �
201-1 Modularity Community structure and network modularity �
201-2 Modularity 2 Greedy community detection by maximizing modularity �
202-1 Random Walks Introduction to random walks �
202-2 Random Walks 2 Random walks with restarts �
203-1 Label Propagation Introduction to label propagation �

lows visitors to slide the step-counter or take one- or five-
step jumps with the next/reverse buttons. Importantly, the
code contains traced variables, which appear in a variable
list (Figure 1E) and are also highlighted in the graph itself.
Figure 2 shows the result after running the code in the Get
Started tutorial, which selects a random node and a random
edge in the graph.

Some visitors may be interested in learning more about
how the Python code carries out the specified tasks. The
code editor offers additional features for visitors to gain
familiarity with programming in the context of the dis-
played tutorial. After unlocking the editor (by clicking the

lock button on the toolbar or changing GRAPHERY’s set-
tings), visitors can change the variables being traced, change
hard-coded parameters to observe their effects, or write
completely new functions within the editor. Whenever the
code is changed, visitors just need to execute the code with
a one-button click and the new modifications will be ap-
plied. GRAPHERY provides remote execution capabilities
(the cloud button with an up arrow), or local execution ca-
pabilities on the user’s machine if a back-end server is run-
ning (the cloud button with a down arrow). Through these
features, GRAPHERY visitors with different programming
experience levels can learn from each tutorial.
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Figure 2. Example of the code after execution (panels D and E from Fig-
ure 1). The list of traced variables is now populated and graph variables
are highlighted in the interactive panel.

GRAPHERY GRAPHS

If tutorials are the heart of GRAPHERY, biological networks
are the cardiovascular system. The tutorials would not be
useful on their own without the ability for visitors to walk
through the code using graphs. Further, these graphs are
not only examples, but come from real-world datasets and
applications. Each graph contains a description of the un-
derlying dataset (Supplementary Figures S1 and S2). The
drop-down allows users to specify other graphs on which
the Python code can be executed (Figure 1A). GRAPHERY
also offers a playground feature where users can open a bi-
ological network with a code editor and interact with the
graph independent of any specific tutorial (Supplementary
Figure S3).

The biological networks in GRAPHERY span different
scales of biology, from molecular interactions to population
dynamics (Table 2). Further, they also capture networks rel-
evant to different diseases (such as tuberculosis spread in
a badger population, tumor cell evolution, and dysregu-
lated protein networks). There is a current focus on protein-
protein interactions and signaling pathways due to the au-
thors’ research areas, and we are continuing to expand the
selection of biological networks to other domains and net-
work topologies. Just like tutorials, we are actively posting
new GRAPHERY graphs, and we welcome both suggestions
and contributions.

OTHER ROLES IN GRAPHERY

While visitors are the most common type of users, GRA-
PHERY provides other roles that support the develop-
ment and maintenance of the webserver. Authors are users

who contribute new tutorials and/or graphs. Authors have
control over which graphs are utilized in their tutorial,
tutorial/network graph categories and whether their con-
tent is published (viewable by visitors). Translators are users
who write translations of the existing tutorials. Translators
have flexibility in their translated content, for example by
including references to additional or alternate sources that
are more readily accessible in some countries. Administra-
tors have control over all content published on GRAPHERY,
including those published by other authors and translators.
These user roles require an account, which is maintained by
an administrator.

Authors, translators, and administrators add content to
GRAPHERY through a user-friendly control panel (Supple-
mentary Section S2 and Supplementary Figure S4). The
control panel supports image upload, Markdown-style edit-
ing with a live-update preview mode, and summaries of the
posted tutorials and graphs. Authors and translators receive
attribution on the content they contribute, as seen by the
author tag in Figure 1.

Any user, including contributors such as
authors/translators or visitors who interact with tu-
torials, can run Python code locally instead of in the
cloud. Running the code locally gives users more con-
trol over the execution process, for example working
with local files and using external Python modules.
Supplementary Section S3 and Supplementary Table S1
provides more implementation details and instructions
for local execution. The code is available on GitHub at
https://github.com/Reed-CompBio/Graphery.

GRAPHERY FOR EDUCATION AND TRAINING

GRAPHERY has potential to be adapted for computational
biology education and training at multiple levels, from high
school students to bioinformaticians new to systems biol-
ogy. In its current state, we believe that the majority of
GRAPHERY visitors will be (a) trainees in the biological
sciences who may commonly use tools with graph algo-
rithms (b) undergraduate science majors without substan-
tial programming experience. With these groups of trainees
in mind, we considered core competencies described by
two overlapping but distinct societies: the Curriculum Task
Force of the International Society for Computational Biol-
ogy (ISCB) Education Committee (29) and The Network
for Integrating Bioinformatics into Life Sciences Educa-
tion (NIBLSE) (47). ISCB’s competencies are focused on
bioinformatics training, whereas NIBLSE focuses on com-
putational competencies designed for trainees in the life sci-
ences. We mapped common GRAPHERY tasks (reading tu-
torials, interacting with graphs and code, modifying code,
and writing code) with core competencies laid out by ISMB
and NIBLSE (Supplementary Figure S5). All visitors will
be able to evaluate graph algorithms in the context of sys-
tems biology and use bioinformatics tools to explore bio-
logical interactions and networks. As visitors engage more
with the tutorials by learning about the code, they will begin
to understand the algorithms and try adapting them with
minor changes to the code. More experienced visitors who
write new programs will learn about computing require-
ments needed to solve a problem. We note that there is no

https://github.com/Reed-CompBio/Graphery
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Table 2. Biological networks available as GRAPHERY graphs (last updated 18 April 2021)

Name Network type Refs EN-US ES ZH-CN

Badger Social Network disease; social network (38) � �
Colorectal Cancer Evolution Tree disease; evolution (39) � �
Competition Graph of Yellowstone Food Web ecology; food web (40) � �
Fog Signaling Pathway (fly) protein interactions; signaling pathway (41,42) � � �
Food Web of Intertidal Species in WA ecology; food web (43) � � �
Interleukin-9 Signaling Pathway (human) protein interactions; signaling pathway (44) � �
Pan-Cancer Network disease; protein interactions (45) � �
Protein Transport Complex (fly) protein interactions (46) �
Tutorial Network base network for tutorials � � �

assessment in place for GRAPHERY tutorials, so carefully
designed user studies are needed to fully determine GRA-
PHERY’s potential in education and training.

DISCUSSION

GRAPHERY provides an interactive environment to learn
about concepts in graph algorithms that form the founda-
tion of many state-of-the-art methods. The combination of
tutorials, code, and real-world graphs encourages learning
in a more engaging way than the tutorials alone. We believe
that GRAPHERY has the potential to become a mainstay
learning tool for biological researchers at any career stage,
from students to principal investigators.

We have come across some limitations in implement-
ing our first tutorials and graphs. First, GRAPHERY visu-
alizes undirected, unweighted graphs, which we acknowl-
edge is only a subset of the type of graphs used in biologi-
cal applications. We plan to extend GRAPHERY to support
directed graphs, weighted graphs, and multigraphs (all of
which Cytoscape.js supports). Second, we have found that
even classic graph algorithms require a fair amount of back-
ground knowledge. While the tutorial content can describe
this knowledge, the associated code must not incur an un-
reasonable number of steps for the code editor. For example,
while graph clustering is intuitive to describe at a high level,
the code to cluster graphs (and trace the relevant variables)
may end up taking hundreds of thousands of steps, even for
the smallest graphs. Our approach to this challenge is to en-
sure that the tutorials describe small, modular components
of algorithms that can be combined for later tutorials. We
also plan to implement additional useful step jumping tools
to the execution set to help navigate code with many steps.
Finally, we believe that the real-world biological networks in
GRAPHERY are a fantastic way for biologists to better un-
derstand graph algorithms, but finding small and relevant
graphs that describe real biological systems has been more
difficult than we initially expected. Some of our networks
have been suggested by biological experts which has proved
to be a successful way to add graphs to GRAPHERY.

In addition to adding new graphs and tutorials, our team
has plans for larger updates to help users better understand
the provided code. The current graph API was originally
developed for GRAPHERY tutorials, and users who wish
to modify or write code must have a basic understanding
of object-oriented programming and some knowledge of
the underlying graph objects. While this information is de-
scribed in the Programming in Graphery tutorial and on our
documentation webpage (Supplementary Section S3), we

plan to swap our custom API with a graph package such
as networkx (48). This will help users already familiar
with networkx to be able to modify code easily, and there
will be a large amount of existing resources for program-
ming support. While GRAPHERY is not explicitly designed
to teach users how to program in Python, this modification
will help users understand the programs provided in the tu-
torials.

Lastly, GRAPHERY will become a better webserver with
more involvement from the network biology community.
In addition to suggesting new tutorials and graphs, future
versions will provide citations for current papers that use
the concepts in each tutorial. We welcome anyone who
wishes to contribute new content for the website; they will
be acknowledged as an author on the networks and tuto-
rials. GRAPHERY has potential to reach a broad audience
through the translated pages, and we are actively seeking
more translators to help us with this task (especially for lan-
guages that are not yet in place). With these goals in mind,
GRAPHERY will help bridge the computational and biolog-
ical worlds of systems biology.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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