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Inferring neural signalling directionality from
undirected structural connectomes
Caio Seguin1, Adeel Razi2,3,4 & Andrew Zalesky1,5

Neural information flow is inherently directional. To date, investigation of directional com-

munication in the human structural connectome has been precluded by the inability of non-

invasive neuroimaging methods to resolve axonal directionality. Here, we demonstrate that

decentralized measures of network communication, applied to the undirected topology and

geometry of brain networks, can infer putative directions of large-scale neural signalling. We

propose the concept of send-receive communication asymmetry to characterize cortical

regions as senders, receivers or neutral, based on differences between their incoming and

outgoing communication efficiencies. Our results reveal a send-receive cortical hierarchy that

recapitulates established organizational gradients differentiating sensory-motor and multi-

modal areas. We find that send-receive asymmetries are significantly associated with the

directionality of effective connectivity derived from spectral dynamic causal modeling. Finally,

using fruit fly, mouse and macaque connectomes, we provide further evidence suggesting

that directionality of neural signalling is significantly encoded in the undirected architecture of

nervous systems.
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Understanding how the structural substrate of
connectomes1,2 gives rise to the rich functional dynamics
observed in nervous systems is a major goal in neu-

roscience3–6. Anatomical connectivity constrains and facilitates
neural information transfer, which in turn gives rise to syn-
chronization (i.e., functional connectivity) between neural ele-
ments. Therefore, knowledge of how neural signals are
communicated in nervous systems can establish a bridge between
structural and functional descriptions of brain networks7–10.

While information can be directly communicated between
anatomically connected neural elements, polysynaptic commu-
nication is needed for structurally unconnected elements. Net-
work communication models describe a propagation strategy that
delineates the signaling pathways utilized to transfer information
between network nodes. In turn, a network communication
measure quantifies the communication efficiency along the iden-
tified pathways from a graph-theoretic standpoint. Efficient
communication pathways are generally short, traverse few
synapses and comprise strong and reliable connections11.

Several network models of polysynaptic communication have
been proposed9. Shortest paths routing is the most ubiquitous
model12–14, which proposes that communication occurs via opti-
mally efficient routes. However, the identification of shortest paths
mandates global knowledge of network topology8,9,15,16. This
requirement is unlikely to be met in biological systems, in which
individual elements (e.g., neurons or brain regions) do not possess
information on all connections comprising the network. This has
motivated research on decentralized models that capitalize on local
knowledge of network properties to facilitate signaling. Examples
include navigation15,17,18, spreading dynamics19,20, and diffusion
processes21–24.

Many decentralized communication models are
asymmetric8,15,16,19, meaning that sending information from
region i to region j can be performed more efficiently than
sending information from region j to region i. We coin the term
send-receive communication asymmetry, or simply send-receive

asymmetry to describe this property. Importantly, the interplay
between decentralized communication, network topology and
possibly geometry can result in communication asymmetry in
undirected networks (Fig. 1). This provides an opportunity to
infer putative directions of information flow from current
descriptions of the human structural connectome, for which
knowledge about the directionality of individual connections is
unknown due to inherent limitations of in vivo diffusion imaging.
Therefore, decentralized network communication measures may
help bridge the gap between our symmetric understanding of
human connectome structure and the ample evidence for its
asymmetric functional dynamics25–27.

We provide multiple lines of evidence suggesting that decen-
tralized communication measures, applied to undirected brain
networks, can provide new insight into the directionality of
neural information flow. We begin by classifying individual
cortical regions and subsystems as senders (biased towards the
efficiency of outgoing paths), neutral (symmetric communication
efficiency) and receivers (biased towards the efficiency of
incoming paths). We demonstrate that regional variation in send-
receive asymmetry recapitulates established hierarchies of cortical
organization. Next, we analyze pairwise send-receive asymmetries
between cortical subsystems, providing multi-scale maps of
communication directionality in the human cortex. Crucially, we
validate these maps by showing a significant association between
send-receive asymmetry and directionality of effective con-
nectivity derived from dynamic causal modeling (DCM) applied
to resting-state functional magnetic resonance imaging (fMRI).
These results suggest that the undirected topology of the human
connectome imposes constraints on neural signaling direction-
ality. We further investigate this notion by examining fly, mouse
and macaque connectomes. We leverage the presence of directed
connections in these brain networks to provide additional evi-
dence that neural signaling directionality is not exclusively con-
tingent on directed axonal projections, being partially shaped by
the undirected organization of nervous systems.
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Fig. 1 Illustrative examples of send-receive communication asymmetry. The toy network is spatially embedded, unweighted and undirected. Communication
efficiency from node i to j under measure x∈ {sp, nav, si, dif} is denoted Ex(i, j). Shortest path and navigation efficiencies are computed as the inverse of the
number of connections comprising shortest and navigation paths, respectively. Diffusion efficiency relates to how quickly, on average, a random walker can
travel between two nodes, while search information relates to the probability that a random walker will travel between two nodes via the shortest path linking
them. The path identified under each communication model is designated with green (i→ j) and mauve (j→ i) arrows. Send-receive communication asymmetry
refers to Ex(i, j)≠ Ex(j, i). a Shortest path efficiency is always symmetric in undirected networks, and thus Esp(i, j)= Esp(j, i). b Navigation routes information by
progressing to the next directly connected node that is closest in distance to the target node. This results in the i-c-b-j and j-b-i navigation paths, with respective
efficiency Enav(i, j)=0.33 and Enav(j, i)=0.5. Hence, navigation is more efficient from node j to node i. c Arrows denote the symmetric shortest paths between
i and j. Arrows are annotated with the probabilities that a random walker will traverse their respective connections based on node degree (e.g., each of
the 3 connections of node i has approximately 0.33 probability to be traversed by a random walker leaving i). We have Esi(i, j)∝0.33 × 0.25=0.0825 and
Esi(j,i)∝ 1 × 0.25=0.25. Hence, a random walker has higher probability of traveling via the shortest path in the j→ i direction, characterizing search information
asymmetry between i and j. Similarly, on average, a random walker is expected to visit fewer nodes traveling from i to j than from j to i. Hence, Edif(j, i) > Edif(i, j),
characterizing diffusion efficiency asymmetry
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Results
Measures of send-receive communication asymmetry. We
investigated three asymmetric network communication measures:
(i) navigation efficiency, (ii) diffusion efficiency, and (iii) search
information (Methods section, and Network communication
measures). Briefly, navigation efficiency15 relates to the length of
paths identified by navigation or greedy routing17,28, with higher
values of efficiency indicating faster and more reliable commu-
nication between nodes. Diffusion efficiency23 quantifies how
many intermediate regions (synapses), on average, a naive ran-
dom walker needs to traverse to reach a desired destination
region. Finally, search information is related to the probability
that a random walker will travel from one region to another via
the shortest path between them8,29, quantifying the extent to
which efficient routes are hidden in the network topology.
Together, these measures are representative of different con-
ceptualizations of decentralized network communication9,16,
from single-path routing via geometric navigation to diffusive
signaling unfolding along multiple network fronts.

Communication asymmetry is introduced by the decentralized
character of certain network communication models (Fig. 1).
Consider the flow of information from one region, termed the
source node, to another region, termed the target node. If this
source-target pair is not directly connected, information must
flow via a polysynaptic path that traverses one or more
intermediate nodes. Decisions on how signals are propagated
through the connectome depend on the local topology around
each node. Since source and target nodes occupy potentially
different vicinities, communication may happen through distinct
paths, and thus with different efficiency, depending on the
direction of information flow. In contrast, centralized commu-
nication models such as shortest path routing always yield
symmetric paths in undirected networks.

We use C ∈ ℝ N ×N ×K to denote a set of communication
matrices for K individuals, where C(i, j, k) denotes the commu-
nication efficiency from node i to node j for individual k, under an
arbitrary communication measure (Fig. 2a). The difference in
communication efficiency for opposing directions of information
flow between i and j is given by Δ(i, j, k)=C(i, j, k)−C(j, i, k). We
perform a one-sample t-test to determine whether the mean of the
distribution Δ(i, j, k= 1…K) is significantly different to 0 (Fig. 2c).
This yields a t-statistic, termed A(i, j), which quantifies the extent of
communication asymmetry between i and j. In particular, if A(i, j)
is significant and greater than zero, we conclude that communica-
tion can occur more efficiently from node i to node j, rather than
from node j to node i. Note that A(i, j)=−A(j, i), and thus if A(j, i)
is significantly less than zero, we reach the same conclusion.
Repeating this test independently for all pairs of nodes yields the
communication asymmetry matrix A, for which values are
symmetric about the main diagonal, but with opposite signs.

The above measure is specific to pairs of nodes. We use a
variation of this test to compute regional send-receive commu-
nication asymmetry by taking into account all outgoing and
incoming communication paths of a given node (Methods
section, Communication asymmetry test, and Supplementary
Fig. 1). Regions that show a significantly higher efficiency of
outgoing (incoming) communication are classified as putative
senders (receivers), while nodes that do not favor a direction of
information flow are classified as neutral.

Senders and receivers of the human connectome. Whole-brain
white matter tractography was applied to high-resolution diffu-
sion MRI data acquired for K= 200 healthy adults (age 21–36,
48.5% female) participating in the Human Connectome Project30.
Structural brain networks were mapped at several spatial

resolutions (N= 256,360,512 regions; Methods section, Con-
nectivity data. For each individual, the resulting weighted adja-
cency matrix was thresholded at 10%, 15%, and 20% connection
density to eliminate potentially spurious connections31, and
subsequent analyses were carried out on the obtained weighted
connectomes. Communication matrices quantifying the com-
munication efficiency between every pair of regions were com-
puted (Fig. 2a, Methods section, Network communication
models) and used to derive measures of send-receive commu-
nication asymmetry (Methods section, Communication asym-
metry test). We focus on describing the results for N= 360,
corresponding to a state-of-the-art cortical atlas derived from
high-quality multi-modal data from the HCP32, and 15% con-
nection density. Results for other connection densities and par-
cellation resolutions can be found in the Supplementary
Information.

Significant asymmetries in the efficiency of sending versus
receiving information were evident for most cortical regions
(Fig. 3a, d, g). Regional values of send-receive asymmetry were
significantly correlated across regions among the communication
measures investigated (navigation and diffusion: r= 0.29, naviga-
tion and search information: r= 0.31, diffusion and search
information: r= 0.85; all P < 10−7). Based on these send-receive
asymmetries, we classified all regions as senders, receivers or
neutral. As expected from the strong correlation between them,
diffusion and search information asymmetries led to similar
classifications, likely due to their mutual dependence on random
walk processes. While communication under navigation is guided
by different mechanisms, classification consistency across mea-
sures was greater than expected by chance (Supplementary
Note 1).

Primary sensory and motor regions were identified as senders
(A1, S1, and M1 across all communication measures and V1 for
navigation and diffusion). This is consistent with the notion that
early auditory, visual and sensory-motor areas constitute the
three main input streams to the cortex, being the first cortical
regions to process sensory stimuli transmitted from subcortical
structures32,33. In contrast, expanses of the orbital and polar
frontal cortices, the medial and dorsolateral prefrontal cortices,
and the precuneus were classified as receivers. These regions have
been proposed as putative functional hubs, supporting abstract
and high-order cognitive processes by integrating multiple
modalities of information34–36. Other regions consistently
identified as senders included portions of the superior temporal,
medial temporal and posterior cingulate cortices, while parts of
intraparietal sulcus cortex, dorsal, and ventral streams consis-
tently ranked amongst receivers. The MT+ complex was also a
prominent receiver, potentially reflecting the role of higher order
sensory regions as integrators of signals transmitted from
primary/earlier cortices. Certain regions were classified as senders
under one communication measure but receivers under another
measure, possibly reflecting how the three communication
measures uniquely interact with connectome topology. Incon-
sistently classified regions included portions of the paracentral,
cingulate, middle temporal, and inferior temporal cortices. Details
on how to access complete send-receive asymmetry tables and
cortical maps are provided in Methods section and Data
availability.

Despite significant asymmetries in the efficiency of sending
versus receiving information within individual regions, these send-
receive asymmetries were superposed atop a strong correlation
across regions between send and receive efficiency (navigation: r
= 0.95, search information: r= 0.79; both P < 10−15; Fig. 3b, e). In
other words, efficient senders were also typically efficient receivers,
and vice versa. Therefore, while all senders were by definition
significantly more efficient at sending than receiving, some
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senders were in fact less efficient at sending than some receivers. In
contrast, send and receive efficiencies were not correlated under
diffusion (r=−0.1, P= 0.1). In addition, send efficiency was
relatively uniform across regions under diffusion, while receive
efficiency showed markedly higher regional diversity.

Node degree and participation (Supplementary Note 2) were
associated with send-receive asymmetries under diffusion and
search information (degree: r=−0.54, −0.70, participation: r=
−0.29, −0.32, respectively. All P < 10−7), with senders and
receivers characterized by low and high degree/participation,
respectively. We regressed out the influence of degree on send-
receive asymmetry and found that primary cortices remained
senders while frontal and prefrontal regions remained receivers.
We also noticed that sensory-motor and auditory cortices
displayed a significantly higher propensity towards outgoing
communication than expected based on their degree alone
(Supplementary Fig. 2). Send-receive asymmetry under naviga-
tion was not correlated with degree or participation (both P >
0.05), with senders and receivers uniformly distributed across the
degree distribution.

Senders and receivers situated within cortical gradients. Next,
we aimed to test whether regional variation in send-receive
asymmetry would accord with established hierarchies of cortical
organization37. To this end, we investigated whether senders and
receivers would reside at opposing ends of a previously delineated
unimodal to multimodal gradient of functional connectivity35.

Under all three communication measures, senders were more
likely to be located at the unimodal end of the gradient, whereas
the multimodal end was occupied by receivers. More specifically,
send-receive asymmetry and the cortical gradient were sig-
nificantly correlated across regions (r=−0.20, −0.30, −0.29, for
navigation, diffusion and search information, respectively. All P <
10−4). These associations remained significant after accounting
for the influence of degree on send-receive asymmetries (all P <
2 × 10−4).

In further analyses, regions were classified as unimodal (U),
transitional (T), or multimodal (M) based only on the cortical
gradient (Methods section, Cortical gradient of functional
heterogeneity). We compared the send-receive asymmetry of
these groups and found that unimodal and transitional areas were
significantly more efficient at outgoing communication compared
to multimodal areas (Fig. 3c, f, i; PT >M= 0.01, 2 × 10−4, 2 × 10−4

and PU >M= 4 × 10−4, 3 × 10−6, 8 × 10−7, for navigation, search
information and diffusion, respectively). Send-receive asymmetry
did not differ between unimodal and transitional regions.

These results were generally robust to variations in cortical
parcellation and connection density thresholds (Supplementary
Figs. 3 and 4). Taken together, our findings demonstrate that
decentralized communication measures applied to the undirected
human connectome unveil regional distinctions between putative
senders and receivers. Furthermore, we show that knowledge
about the direction of information flow can elucidate novel
organizational structure within established cortical hierarchies,
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of the communication asymmetry test. First, for a pair of nodes i and j, the difference in communication efficiency between the i→ j and j← i directions was
computed. Performing this for K individuals yielded the distribution Δ(i, j, k= 1…K). Communication asymmetry was assessed by performing a one-sample
t-test to determine whether the mean of this distribution is significantly different to 0, with A(i, j) defined as the resulting matrix of t-statistics. d The
asymmetry test was applied to compute M ×M matrices of communication and effective connectivity send-receive asymmetries between modules. We
sought to test for correlations across the corresponding elements of these two matrices

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12201-w

4 NATURE COMMUNICATIONS |         (2019) 10:4289 | https://doi.org/10.1038/s41467-019-12201-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


such as the biases towards outgoing and incoming communica-
tion efficiency of unimodal and multimodal regions, respectively.

Senders and receivers of cortical subsystems. Next, we sought to
investigate pairwise send-receive asymmetries between large-scale
cortical subsystems (Supplementary Fig. 5). We assigned cortical
regions to distributed cognitive systems according to established
resting-state networks comprising M= 7 and 17 subsystems38. In
addition, we employed a multimodal partition of the cortex into
M= 22 spatially contiguous subsystems32. Regional commu-
nication matrices were downsampled to subsystem resolution and

send-receive asymmetries were computed at individual and
pairwise subsystem levels (Methods section, Cortical subsystems).

In keeping with the regional findings, pairwise send-receive
asymmetry values were significantly correlated across the
communication measures investigated (e.g., navigation and
diffusion: r= 0.60, navigation and search information: r= 0.66,
diffusion and search information: r= 0.96; all P < 10−15,M= 17).
Given the consistency of findings across communication
measures, we focus on navigation in this section (Fig. 4).
Complete results for navigation, diffusion and search information
are shown, respectively, in Supplementary Figs. 6–8).
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Fig. 3 Send-receive communication asymmetry in the human connectome (N= 360 at 15% connection density). a Cortical projection of send-receive
asymmetry values under navigation. Regions associated with significant send-receive asymmetry are classified as putative senders (orange) and receivers
(blue). Regions colored gray are neutral and do not show significant send-receive asymmetry. b Scatter plot showing correlation between send (vertical
axis) and receive (horizontal axis) efficiency across regions under navigation. Send and receive efficiency values were aggregated across all individuals for
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The distance between markers and the identity line provides a geometric interpretation of regional bias towards sending (x < y) or receiving (x > y)
efficiencies. c Top: Distribution of the cortical gradient eigenvectors used as a measure of functional heterogeneity35. Bottom: Violin plots showing
distribution of send-receive asymmetries for regions classified as unimodal (red), transitional, (beige) and multimodal (blue) regions. Horizontal bars and
white circles denote, respectively, the mean and median of the distributions. Stars denote significant differences in between-group medians given by a two-
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As shown in Fig. 4a, b, the somatomotor and ventral attention
networks were the most prominent senders for the M= 7
partition. Prominent receivers included the default mode,
frontoparietal and limbic networks, which were more efficiently
navigated from a number of cognitive systems than vice versa.
Interestingly, adopting a higher resolution functional partition
(M= 17) suggested that sub-components of coarse (M= 7)
resting-state networks can assume different roles as senders and
receivers. For instance, the visual network was segregated into
early (e.g., V1 and V2) and late areas of the visual cortex (e.g., MT
+ complex and dorsal and ventral streams), with the first being a
sender and the latter a receiver (Supplementary Fig. 6). Other
systems that exhibited this behavior included the ventral
attention, limbic, somatomotor and default mode networks.
These findings reiterate that, despite the presence of asymmetries
in send-receive efficiency, cognitive systems are not exclusively
capable of sending or receiving, suggesting connectome topology

may allow for context-dependent directionality of neural
information flow between functional networks.

We also identified senders and receivers for a high-resolution
cortical partition comprising M= 22 subsystem32. This enabled a
fine-grained, yet visually interpretable, characterization of send-
receive asymmetries (Fig. 4c). Cortical domains associated with
auditory, somatosensory and motor processes ranked amongst
the strongest senders, while frontal and prefrontal areas
consistently featured amongst the most prominent receivers
(Supplementary Figs. 6–9). Together, these results provide
putative multi-scale maps of how the structural substrate of the
human connectome may facilitate directional information flow
between cognitive subsystems.

Senders, receivers, and effective connectivity. We sought to
validate our characterization of subsystems as senders or receivers
using an independent data modality. To this end, time series
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summarizing the functional dynamics of cortical subsystems were
extracted from resting-state functional MRI data for the same K
= 200 HCP participants. For each individual, we used spectral
DCM39,40 to compute effective connectivity between cortical
subsystems (M= 7,17,22, see Methods section, Effective con-
nectivity). Pairwise effective connectivity asymmetry was com-
puted at the scale of subsystems by applying the previously
described asymmetry test to the estimated effective connectivity
matrices (Fig. 2c). Importantly, effective connectivity is an
inherently directed (asymmetric) measure of connectivity. This
allowed us to test whether send-receive asymmetries in commu-
nication efficiency (derived from diffusion MRI) and effective
connectivity (derived from resting-state fMRI) are correlated
(Fig. 2d).

Communication and effective connectivity send-receive asym-
metries were significantly correlated across pairs of subsystems
(Fig. 5). These associations were significant for all three
communication measures and were replicated across two
independent resting-state functional MRI sessions and multiple
structural connection densities. For instance, for M= 17, fMRI
session 1 and 15% connection density, we found r=
0.51, 0.32, 0.32 for navigation, diffusion and search information,
respectively (all P < 10−4). Similarly, for M= 22, fMRI session 2
and 15% connection density, we obtained r= 0.45, 0.48, 0.48 for
navigation, diffusion and search information, respectively (all P <
10−12). No significant correlations were found forM= 7, possibly

due to the lack of statistical power afforded by only 21 data points
comprising the upper triangle of asymmetry matrices. These
results suggest that biases in the directionality of neural signaling
inferred from the structural connectome are related to the
directions of causal functional modulation during rest. Therefore,
they establish a correspondence between structural (connectome
topology and network communication measures) and functional
(effective) directions of neural information flow.

We sought to determine whether the above association
between communication and effective connectivity could be
explained by certain properties of connectome organization. We
generated ensembles of randomized connectomes in which (i)
connectome topology was rewired while preserving degree
distribution41; (ii) connectome topology was rewired while
preserving degree distribution and total network cost (defined
as the sum of Euclidean distances between structurally connected
nodes14); and (iii) nodes were spatially repositioned while
preserving topology (relevant only for navigation; see Supple-
mentary Note 3). For all families of randomized connectomes,
correlations between asymmetries in effective connectivity and
communication efficiency were significantly decreased compared
to empirical results (e.g., Fig. 5c, d top-right corner, all P < 10−3;
with the exception of diffusion and search information for the
M= 17 partition in fMRI session 2, Fig. 5a). These results
indicate that the relationship between send-receive asymmetry
and directionality of effective connectivity cannot be explained by
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the combination of connectome degree distribution and network
cost, since these properties were preserved in random ensembles
(i) and (ii). For navigation, random ensemble (iii) highlights the
importance of connectome geometry in addition to topology.

Control analyses. Having established several properties of the
senders and receivers of the human connectome, we aimed to
determine whether our results were robust to alternative defini-
tions of send-receive communication asymmetry and changes in
our connectome mapping pipeline. First, we redefined our com-
munication asymmetry measure using non-parametric Wilcoxon
rank sum tests instead of t-tests (Supplementary Note 4). This
approach ensures that send-receive asymmetries are robust to
deviations from normality and outliers. Second, we computed the
send-receive asymmetries of connectomes derived with prob-
abilistic tractography (Supplementary Note 5). Third, we inves-
tigated send-receive asymmetries in connectomes including
subcortical structures (Supplementary Note 6). Send-receive
asymmetries were compatible across all three scenarios and
remained consistently associated with the directionality of effec-
tive connectivity (Supplementary Fig. 10). Interestingly, while the
classification of nodes into senders and receivers in connectomes
containing subcortical structures remained largely unaltered,
biases towards incoming or outgoing communication were less
pronounced (Supplementary Figs. 12 and 13), suggesting a role of
subcortical structures as mediators of neural signaling
directionality.

Senders and receivers of non-human connectomes. The asso-
ciation between effective connectivity directionality and the send-
receive asymmetry of undirected connectomes indicates that
signaling directions in the human brain are not exclusively
determined by axonal directions. To further quantify this obser-
vation, we next sought to establish the extent to which signaling
directionality is determined by axonal directions per se, compared
to other potential determining factors such as network topology
and geometry.

Invasive connectome reconstruction techniques allow for the
resolution of axonal directionality, producing directed connec-
tomes for a host of non-human species42. Here, we consider the
connectomes of the fruit fly (Drosophila)43,44, mouse45,46 and
macaque47 (Methods section, Non-human connectomes). We
began by computing the send-receive asymmetries of these
directed connectomes. In this case, communication asymmetry is
introduced both by the asymmetric character of the network
communication measures and by the presence of directed
connections. Next, we symmetrized the connectomes by remov-
ing connection directionality, so that all connections could be
traversed bidirectionally (Methods section, Symmetrized non-
human connectomes), and recomputed send-receive asymmetries
for the resulting undirected networks. In this scenario, as with
human undirected connectomes, asymmetries are introduced
solely by the asymmetry inherent to the network communication
measures. We tested whether send-receive asymmetry values
computed in the directed (original) and undirected (symme-
trized) non-human connectomes were correlated across regions.
Evidence of a correlation would suggest that the undirected
topology and geometry of connectomes are influential in
determining the directionality of neural signaling in the absence
of directed connections.

We found that undirected and directed send-receive asymme-
tries were correlated for binarized (fly: r= 0.95, 0.96, mouse: r=
0.58, 0.50, macaque: r= 0.87, 0.75, for diffusion and search
information asymmetries, respectively; Fig. 6a, c, d) and weighted
(fly: r= 0.58, 0.84, 0.41, mouse: r= 0.34, 0.32, 0.38, macaque: r=

0.67, 0.80, −0.26, for navigation, diffusion and search informa-
tion asymmetries, respectively; Fig. 6b, e, f) non-human
connectomes. All reported r had P < 10−10 and thus survived
Bonferroni correction for multiple comparisons. The exception
was the association for the macaque weighted search information
(P= 0.01), potentially indicating the spurious nature of this
negative correlation. It is worth noting that binary navigation
paths are seldom asymmetric for densely connected networks
such as non-human connectomes, resulting in weak/undefined
correlations between directed and undirected send-receive
asymmetries. In addition, due to the presence of connection
weight asymmetries between bidirectionally connected node
pairs, original and symmetrized connectomes are more similar
for unweighted than weighted networks, explaining the stronger
associations observed for binarized connectomes.

Finally, we observed that regional senders and receivers of
undirected (symmetrized) non-human connectomes also recapi-
tulated putative hierarchies of functional specialization (Supple-
mentary Note 7). For instance, macaque sensory, visual and
motor areas were senders, while portions of the frontal and
prefrontal cortices were receivers (Supplementary Figs. 14g, h, i
and 15). Collectively, these findings provide further evidence that
the directionality of neural signaling is partially determined by
the undirected architecture of nervous systems across species.

Discussion
The present study focused on characterizing the directionality of
neural information flow arising from the application of decen-
tralized network communication measures to connectomes. In a
recent study, Avena-Koenigsberger and colleagues presented a
first account of differences between send and receive commu-
nication in brain networks16. Here, we build on these efforts by
contributing a statistical framework to compute send-receive
communication asymmetry. We apply this framework to identify
putative sender and receiver brain regions, as well as pairwise
maps of neural signaling directionality for the nervous systems of
several species.

Send-receive asymmetry recapitulated hierarchical patterns of
cortical organization from a structural connectivity standpoint.
Several studies of axonal tract-tracing and non-human
connectomes34,48,49, macroscale gradients of cortical
organization35,37,50, and computational models of neuronal
dynamics27,51–54 converge to a common conceptualization of a
cortical hierarchy of functional specialization. The bottom of the
hierarchy tends to comprise high-frequency, low-degree, unim-
odal, sensory and motor areas that constitute the main inputs of
perceptual information to the brain. At the top, low-frequency,
high-degree, multimodal regions are conjectured to integrate
multiple streams of information in order to support higher cog-
nitive functions. Our observations of a send-receive spectrum of
cortical regions and subsystems complements this description of
neural organization, placing senders and receivers, respectively, at
the unimodal and multimodal ends of the hierarchy.

Previous studies have demonstrated that navigation efficiency,
search information and diffusion computed on structural con-
nectomes are capable of inferring resting-state functional
connectivity8,15,24. Here, we provided further evidence for the
utility of decentralized communication models by showing an
association between send-receive asymmetry—inferred from
connectomes mapped with tractography and diffusion MRI—and
directionality of effective connectivity—computed from spectral
DCM applied to resting-state fMRI. This relationship was robust
to variations in tractography algorithms, cortical subsystem par-
cellations, treatment of subcortical structures, send-receive
asymmetry statistical tests, structural connection density
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thresholds and two independent resting-state fMRI sessions.
Compared to the first fMRI session, the strength of this rela-
tionship was weaker in the second session for the case of theM=
17 cortical subsystems. This may be due to the effect of MRI
phase-encoding differences between the two sessions (Methods
section, Send-receive effective connectivity asymmetry) on par-
ticular subsystem parcellations, although this requires further
investigation.

Recent work has demonstrated the validity of spectral DCM in
multi-site longitudinal settings55 and using optogenetics com-
bined with functional MRI in mice56. The use of spectral DCM
instead of the traditional task-based DCM was motivated by two
important factors. First, spectral DCM infers effective con-
nectivity from resting-state fMRI data, allowing validation of our
findings independent of hypotheses about the directionality of
causal connectivity specific to certain task scenarios. In addition,
recent evidence indicates that functional connectivity topology at
rest shapes task-evoked fluctuations, highlighting the cognitive
relevance of resting-state neural dynamics57,58. Second, spectral
DCM is capable of handling relatively large networks comprising
many regions59. This enabled a direct comparison between
asymmetries in send-receive efficiency and effective connectivity
at the level of subsystems spanning the whole cerebral cortex. Our
results provide cross-modal evidence that network communica-
tion measures accurately capture aspects of directional causal
influences between neural systems. Structurally derived commu-
nication asymmetry may help formulate hypotheses for DCM
studies, potentially reducing the search space of candidate net-
work models60. In addition, send-receive asymmetry may be

useful in understanding asymmetric responses in functional
dynamics following exogenous stimulation of brain regions27,52.

The analyses of human undirected connectomes indicate that
meaningful patterns of neural signaling directionality can be
inferred without knowledge of the directions of axonal projec-
tions. We provided further evidence for this notion by examining
non-human connectomes, for which information on axonal
directionality is invasively derived. Send-receive asymmetries
computed for directed connectomes were significantly associated
to those derived from networks for which the directionality of
connections was suppressed. Moreover, senders and receivers
computed from undirected version of non-human connectomes
also recapitulated putative functional roles of brain regions. These
results indicate that despite the documented importance of
directed connections47,61, the undirected architecture of nervous
systems also imposes constraints on signaling directionality. This
may suggest the presence of fundamental, cross-species organi-
zation properties of brain networks that facilitate decentralized
communication between neural elements. It is worth noting that
send-receive asymmetry is more pronounced between pairs of
regions that are not directly connected, for which communication
takes place along multi-hop paths. Consequently, as formulated
here, send-receive asymmetry is not well suited to perform
inference for structurally connected nodes, and thus should not
be conceptualized as a methodology to transform an undirected
structural connectome into a directed graph. Future work
exploring alternative formulations of communication asymmetry
could attempt to infer directed structural traits from undirected
connectomes.
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Send-receive asymmetry is a result of the interaction between
asymmetric network communication models and the topology
and geometry of brain networks. Navigation depends on local
knowledge of the network’s spatial embedding to identify
communication paths, while diffusive processes rely solely on
local connectivity knowledge to propagate signals. Despite these
conceptual differences, navigation efficiency, search informa-
tion and diffusion efficiency led to similar patterns of send-
receive asymmetry. The classification of cortical regions into
senders and receivers, as well as the association with effective
connectivity directionality was generally consistent across
measures. This indicates that our results may be primarily
driven by how the architecture of brain networks gives rise to
general patterns of communication asymmetry, rather than by
specific strategies of neural signaling. An interesting deviation
from these consistencies was observed in the relationship
between regional send and receive efficiencies. While naviga-
tion and search information showed a positive correlation
between send and receive efficiencies, this was not the case for
diffusion. Moreover, as previously reported16, diffusion receive
efficiency showed markedly greater regional variation com-
pared to diffusion send efficiency. This is a consequence of high
degree nodes being more accessible to incoming random
walkers than low degree ones.

We reiterate that a significant send-receive asymmetry does
not preclude information transfer in a particular direction, in
the same way that regions classified as senders (receivers) are
capable of receiving (sending) information. Interestingly, we
also found that coarse functional networks with significant
biases towards incoming or outgoing communication are
typically comprised of subcomponents placed along different
positions of the sender-receive spectrum. This may facilitate
feedback loops in which high-order regions send information to
sensory cortices, allowing for flexible and context-dependent
transfer of neural information. These results support the notion
that cortical computations do not follow a strictly serial para-
digm, but rather involve distributed hierarchies of parallel
information processing38,48.

Several limitations of the present study should be considered.
Send-receive asymmetry was defined statistically across sub-
jects. Future developments are necessary to conceptualize
robust measures of subject-level send-receive asymmetry. In
addition, alternative asymmetric network communication
measures such as Markovian queuing networks62, linear
transmission models of spreading dynamics19,20 and coopera-
tive learning63 can lead to further insight into the large-scale
directionality of neural signaling. Additional measures of
directed functional connectivity such as transfer entropy and
Granger causality may offer supplementary cross-modal vali-
dation of send-receive asymmetry. Importantly, tractography
algorithms are prone to known biases, potentially influencing
results regarding human structural connectomes31,64,65. Lastly,
navigation was computed based on the Euclidean distance
between brain regions. Alternative distance measures taking it
account axonal fiber length may provide more biologically
realistic guidance for connectome navigation.

In conclusion, we showed that the large-scale directionality of
neural signaling can be inferred, to a significant extent, from the
interaction between decentralized network communication mea-
sures and the undirected topology and geometry of brain net-
works. These results challenge the belief that connectomes
mapped from in vivo diffusion data are unable to characterize
asymmetric interactions between cortical elements. Our findings
introduce decentralized network communication models as a new
avenue to explore directional functional dynamics in human and
non-human connectomes.

Methods
Connectivity data. Minimally preprocessed diffusion-weighted MRI data from 200
healthy adults (age 21–36, 48.5% female) was obtained from the Human Con-
nectome Project (HCP)30. Details about the diffusion MRI acquisition and pre-
processing are described in66,67.

Connectome analyses are sensitive to the number of nodes used to reconstruct
brain networks68. We aimed to reproduce our key findings for human
connectomes constructed with different granularities of cortical segmentation
comprising N= 256,360,512 regions/nodes. The parcellations for N=
256,512 segment the cortex into approximately evenly sized regions that respect
predefined anatomical boundaries. Details on the construction of these
parcellations are described in15. In addition, we mapped connectomes using the
HCP MMP1.0 atlas (N= 360), a cortical parcellation based on multi-modal data
from the HCP32.

Diffusion tensor imaging combined with a deterministic tractography pipeline
was used to map connectomes for each individual. Deterministic tractography
leads to less false positive connections than other reconstruction methods, and thus
may better suit connectome mapping compared to alternative tractography
methods31,64,65. Computations were carried out using MRtrix369 with the following
parameters: FACT tracking algorithm, 5 × 106 streamlines, 0.5 mm tracking step-
size, 400 mm maximum streamline length and 0.1 FA cutoff for termination of
tracks. Connection strength between a pair of regions was determined as the
number of streamlines with extremities located in the regions divided by the
product of the surface area of the region pair, resulting in a N ×N weighted
connectivity matrix per subject. For each individual, the resulting weighted
adjacency matrix was thresholded at 10, 15, and 20% connection density to
eliminate potentially spurious connections31, and subsequent analyses were carried
out on the obtained weighted connectomes.

The fruit fly connectome was mapped using images of 12,995 projection
neurons in the female Drosophila brain available in the FlyCircuit database43,44.
Single neurons were labeled with green fluorescent protein and traced from whole
brain three-dimensional images. Individual neurons were grouped into 49 local
processing units with specific morphology and function. The resulting connectome
is a 49 × 49 weighted, directed, whole-brain network for the fruit fly, with 83%
connection density.

The Allen Institute for Brain Science mapped the mesoscale topology of the
mouse nervous system by means of anterograde axonal injections of a viral tracer45.
Using two-photon tomography, they identified axonal projections from the 469
injections sites to 295 target regions. Building on these efforts, Rubinov and
colleagues constructed a directed, bilaterally symmetric, whole-brain network for
the mouse, comprising N= 112 cortical and subcortical regions with 53%
connection density46. Connections represent interregional axonal projections and
their weights were determined as the proportion of tracer density found in target
and injected regions.

Markov and colleagues applied 1615 retrograde tracer injections to 29 of the 91
areas of the macaque cerebral cortex, spanning occipital, temporal, parietal, frontal,
prefrontal and limbic regions47,70. This resulted in a 29 × 29 weighted, directed,
interregional sub-network of the macaque cortico-cortical connections with 66%
connection density. Connection weights were estimated based on the number of
neurons labeled by the tracer found in source and target regions, relative to the
amount found in whole brain.

Network communication measures. A weighted connectome can be expressed as
a matrix W ∈ ℝ N ×N, where Wij is the connection weight between nodes i and j.
Connection weights are a measure of similarity or affinity, denoting the strength of
the relationship between two nodes (e.g., streamline counts in tractography or
fraction of labeled neurons in tract tracing). The computation of communication
path lengths mandates a remapping of connection weights into lengths, where
connection lengths are a measure of the signaling cost between two nodes11. The
transformation L=−log10(W/(max(W)+min(W>0)) ensures a monotonic
weight-to-length remapping that attenuates extreme weights8,71, where min(W>0)
denotes the smallest positive value in W, preventing the remapping of the max-
imum value of W to 0.

Navigation (also referred to as greedy routing) is a decentralized network
communication model that utilizes information about the network’s spatial
embedding to route signals without global knowledge of network topology28.
Navigation is reported to achieve near-optimal communication efficiency in a
range of real-world complex networks, including the connectomes of several
species15,17,18.

Navigation from node i to j was implemented as follows. Progress to i’s
neighbor that is closest in distance to j. Repeat this process for each new node until
j is reached—constituting a successful navigation path—or a node is revisited—
constituting a failed navigation path. The distance between two nodes was
computed as the Euclidean distance between the centroids of their respective gray
matter regions. For each parcellation resolution, a single Euclidean distance matrix
was computed in standard space and utilized to guide the navigation of each
individual’s connectome.

Let Λ denote the matrix of navigation path lengths. If node i cannot navigate to
node j, Λij=∞. Otherwise, Λij= Liu+…+ Lvj, where {u, …, v} is the sequence of
nodes visited during navigation. Note that while navigation paths are identified
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based on the Euclidean distance between nodes, navigation path lengths are
computed in terms of connection lengths derived from the structural connectivity
matrix W. Navigation efficiency is given by Enav(i, j)= 1/Λij, where Enav(i, j) is the
efficiency of the navigation path from node i to j15.

A diffusion process is a network communication model whereby information is
broadcast along multiple paths simultaneously22. Diffusion can be understood in
terms of agents, often termed random walkers, which are initiated from a given
region and traverse the network independently of each other by randomly selecting
a connection to follow out from each successive region that is visited. Diffusive
communication does not mandate assumptions on global knowledge of network
topology, constituting, from this perspective, a biologically plausible model for
neural communication9. Diffusion efficiency23 is related to how many intermediate
regions (synapses), on average, a naive random walker needs to traverse to reach a
desired destination region.

Let T denote the transition probability matrix of a Markov chain process with
states corresponding to nodes in the adjacency matrix W. The probability of a
random walker at node i stepping to node j is given by Tij ¼ Wij=

PN
n¼1 Win . The

expected number of hops 〈Hij〉 a random walker takes to travel from node i to node
j is given by72:

Hij

D E
¼

X1

h¼0

hPðHij ¼ hÞ ¼
X1

h¼0

PðHij>hÞ: ð1Þ

This result is given by the fact that the expected value of a random variable is
given by the sum of its complementary cumulative distribution. The probability of
a walker requiring more than h hops to reach node j is equal to the sum of the
probabilities of the walker being at any node other than j after exactly h hops. To
compute this, we define Tj as the matrix T with all elements in the jth column set to
zero, so that it is impossible for a walker to arrive at node j. This way, we have
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with the last derivation step following from the summation of an infinite geometric
sequence. Further details on this derivation can be found in refs. 11,23,72. The
diffusion efficiency communication matrix is given by Edif (i, j)= 1/Hij, where
Edif (i, j) quantifies the efficiency of information flow from node i to node j under a
diffusive process23.

Search information relates to the probability that a random walker will
serendipitously travel between two nodes via their shortest path29, quantifying the
extent to which efficient routes are hidden in the network topology. Previous
studies suggest node pairs with an accessible shortest path—characterized by low
search information—tend to show stronger resting-state functional connectivity8.

The connection length matrix L can be used to compute Ω, where
Ωij= {u, …, v} denotes the sequence of nodes traversed along the shortest
path from node i to node j. The search information from i to j is given by
SIij=−log2(P(Ωij)), where P(Ωij)= Tiu+…+ Tvj and T is the transition
probability matrix. We define communication efficiency under search
information as Esi(i, j)=−SIi,j. This way, Esi(i, j) quantifies the accessibility
of the Ωij shortest path under diffusive communication.

Send-receive communication asymmetry measures. Send-receive communica-
tion asymmetry matrices A∈ℝ N ×N were computed as detailed in the Results,
Measures of send-receive communication asymmetry section. For each pair of
regions or subsystems, a one-sample t-test was used to assess whether the mean of
the send-receive asymmetry values across all individuals was significantly different
from 0 (see Supplementary Note 3 for an investigation of normality assumptions
involved in t-tests and send-receive asymmetries based on non-parametric statis-
tics). Bonferroni correction was then performed to control for the N(N− 1)/2
multiple comparisons corresponding to distinct pairs of regions. This was repeated
for each of the three communication measures.

The communication asymmetry matrix A refers to pairwise asymmetric
interactions between regions. We performed a similar test to derive a regional (i.e.,
node-wise) measure of send-receive asymmetry. Let {S, R} ∈ℝ N × K denote,
respectively, the average send and receive efficiencies of nodes in the network such
that Sði; kÞ ¼ 1=N

PN
j¼1 Cði; j; kÞ and Rðj; kÞ ¼ 1=N

PN
i¼1 Cði; j; kÞ. The difference

between outgoing and incoming communication efficiencies of node i is given by
δ(i, k)= S(i, k)−R(i, k). Analogous to the pairwise asymmetry test, we performed a
one-sample t-test to determine whether the mean of the distribution δ(i, k= 1…K)
is significantly different to 0. The resultant t-statistic, termed a(i), quantifies the
communication asymmetry of node i by taking into account all of its incoming and
outgoing communication efficiencies. Nodes with significant and positive
(negative) a were classified as senders (receivers), while non-significant values of a
were characterized neutral nodes. For each network communication measure,
Bonferroni correction was performed to control for multiple comparisons across
the N regions.

Regionally aggregated send and receive efficiencies depicted in the scatter plots
of Fig. 3e, h were computed as sðiÞ ¼ 1=K

PK
k¼1 Sði; kÞ and

rðjÞ ¼ 1=K
PK

k¼1 Rðj; kÞ, respectively. For navigation (Fig. 3b), we display the
median send and receive efficiencies in order to attenuate outlier efficiency values
and aid visualization.

Non-human directed connectomes were constructed from the results of
numerous invasive experiments, often combining experiments across multiple
animals of a given species to yield a single, representative connectome. As a result,
non-human brain networks were not available for multiple individuals, precluding
use of the communication asymmetry test defined for human connectomes. As an
alternative, for non-human brain networks, we computed the communication
asymmetry between nodes i and j as A(i, j)= (E(i, j)− E(j, i))/(E(i, j)+ E(j, i)),
where E is a communication efficiency matrix. While this measure does not
constitute a statistical test of communication asymmetry, it allows us to evaluate
differences in the directionality of information flow of non-human nervous
systems.

Cortical gradient of functional heterogeneity. Margulies and colleagues applied
a diffusion embedding algorithm to resting-state fMRI data to identify latent
components describing maximum variance in cortical functional connectivity35.
The obtained components, termed “gradients”, are conjectured to describe mac-
roscale principles of cortical organization37. In particular, the resultant principal
gradient (G1) separated unimodal from multimodal regions, spanning a spectrum
from primary sensory-motor areas on one end, to the regions comprising the
default-mode network on the other. We used this gradient as a quantitative
measure of cortical functional heterogeneity and compared it to regional send-
receive communication asymmetries. To this end, we downsampled the gradient
from vertex to regional resolution by averaging the values comprising each of the
N= 256,360,512 cortical areas defined by the parcellations that we used. Regions
were grouped into the unimodal (G1 ≤−2), transitional (−2 <G1 < 2) and multi-
modal (G1 ≥ 2) groups shown in Fig. 3.

Cortical subsystems. Yeo and colleagues proposed a widely used partition of the
cortical surface into 7 and 17 resting-state functional networks38. These networks
constitute distributed (i.e., non-contiguous) functional communities that have been
implicated in a wide range of cognitive demands, as well as in rest. Glasser and
colleagues used multimodal HCP data to identify 360 cortical regions. Subse-
quently, they grouped these regions into 22 contiguous subsystems based on
geographic proximity and functional similarities32. We use these definitions of
cortical partitions to investigate send-receive communication asymmetry at the
level of subsystems.

First, we transformed the Yeo partitions (M= 7,17) from vertex to regional
resolution. This was achieved by assigning each of N= 360 cortical regions to the
resting-state network with the largest vertex count within the vertices comprising
the region. The HCP partition (M= 22) does not necessitate this step, since it is
already defined in terms of the N= 360 of the Glasser atlas.

Second, we downsampled individual communication efficiency matrices from
regional (N= 360) to subsystem resolution (M= 7,17,22) by averaging the pairwise
efficiency of nodes assigned to the same subsystem. For two subsystems u and v, we
have

E′
uv ¼

1
jMujjMv j

X

i2Mu
j2Mv

Eij; ð3Þ

where Mu and |Mu| denote, respectively, the set and number of regions
belonging to subsystem u, E∈ℝ N ×N, and E′∈ℝ M ×M. Across K subjects, this
results in a set of communication matrices C∈ℝ M ×M × K that is used to compute
between-subsystems send-receive communication asymmetries as described in
Fig. 2 and in the Results section, Measures of send-receive communication
asymmetry.

The send-receive communication asymmetry for individual cortical subsystems
was computed analogous to regional communication asymmetries as described
in the Methods section, Send-receive communication asymmetry measures. For
each network communication measure, Bonferroni correction for M and M(M−
1)/2 multiple comparisons was applied to individual and pairwise subsystems
asymmetries, respectively.

Send-receive effective connectivity asymmetry. Spectral DCM estimates effec-
tive connectivity from resting-state fMRI data. It receives as input time series
characterizing the functional dynamics of neural activity and a network model
describing how these elements are coupled. As opposed to the more common task-
based DCM, spectral DCM estimates effective connectivity in the absence of
experimental or exogenous inputs, characterizing functional modulations between
neural elements based on intrinsic neural fluctuations at rest. Details on the gen-
erative models inherent to spectral DCM, as well as the frequency-domain model
inversion are described in39,59.

Minimally preprocessed resting-state fMRI data for the same K= 200 subjects
was acquired from the HCP. Functional volumes were acquired during 14m33s at
720 TR, resulting in 1200 time points. Data from two separate sessions (rfMRI
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REST1 LR and rfMRI REST2 RL, i.e., right-to-left and left-to-right encoding,
performed on different days) was used to compute two estimates of effective
connectivity for each subject. HCP acquisition and preprocessing of resting-state
fMRI are detailed in66,67.

We computed the blood-oxygenation-level-dependent (BOLD) signal of N=
360 regions by averaging the time series of all cortical surface vertices belonging to
a region. Next, the N regions were partitioned into M cortical subsystems as
described in the Methods section, Cortical subsystems. For each subsystem, we
performed a principal component analysis on all the time series belonging to it.
The resultant first principal component was used to summarize the functional
activity of a subsystem in a single time series. The M × 1200 time series of principal
components were used as input to spectral DCM, together with a fully connected
model of coupling strengths (1M ×M), enabling estimation of effective connectivity
between subsystems covering the whole cortex59. Spectral DCM estimations were
carried out using SPM12.

Spectral DCM estimates signed effective connectivity, with positive and negative
values indicating excitatory and inhibitory influences, respectively. Under the
assumption that both excitatory and inhibitory processes are facilitated by
communication between neural elements, we considered the absolute value of the
estimated coupling strengths.

The obtained coupling strengths of each subject were concatenated. For each
resting-state session, this yielded a M ×M × K effective connectivity matrix, which
were used to compute effective connectivity asymmetry between cortical
subsystems, as described in Fig. 2 and the Results, Measures of send-receive
communication asymmetry section.

Symmetrized non-human connectomes. Directed non-human connectomes (Wd)
were symmetrized in order to omit information on axonal directionality. Undir-
ected (symmetric) networks (Wu) were computed as Wu ¼ ðWd þWT

d Þ=2,
ensuring that all original connections in Wd can be traversed bidirectionally in Wu.
Directly connected node pairs do not show send-receive asymmetry under navi-
gation, since both directions of routing will necessarily occur via the single con-
nection linking the two nodes. For this reason, we restricted the analyses in
ʻSenders and receivers in non-human connectomesʼ to node pairs that did not
share a direct structural connection in Wu. Non-human binary connectomes were
constructed by discarding information on connectivity weight and considering only
the presence or absence of directed connections. Formally, B(i, j)= 1 if W(i, j) ≠ 0
and B(i, j)= 0 otherwise.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All analyses in this study were carried out on publicly available datasets. Structural and
effective human brain networks were mapped from Human Connectome Project data30

(https://db.humanconnectome.org/). The fruit fly connectome was collated from data
available in http://www.flycircuit.tw and can be found in the Supplementary Information
of ref. 44. The macaque connectome was derived from data available at http://core-nets.
org/47. The mouse connectome was constructed from resources provided by the Allen
Institute for Brain Science (https://mouse.brain-map.org/45) and is available in
the Supplementary Information of ref. 46. The cortical gradient of functional connectivity
from ref. 35 is available at https://www.neuroconnlab.org/data/index.html. Send-receive
communication asymmetry measures, custom MATLAB code, and other data necessary
to generate key figures in this work are available at https://github.com/caioseguin/
sen_rev.

Code availability
Functions to compute navigation efficiency, diffusion efficiency and search information
are available as part of the Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet/). Further analyses and computations were performed using MRtrix3 (www.
mrtrix.org/), SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) or custom
MATLAB code available at https://github.com/caioseguin/sen_rev.
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