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The transcription factor BTB and CNC homology 1 (Bach1) is widely expressed in most mammalian tissues and functions
primarily as a transcriptional suppressor by heterodimerizing with small Maf proteins and binding to Maf recognition elements
in the promoters of targeted genes. It has a key regulatory role in the production of reactive oxygen species, cell cycle, heme
homeostasis, hematopoiesis, and immunity and has been shown to suppress ischemic angiogenesis and promote breast cancer
metastasis. This review summarizes how Bach1 controls these and other cellular and physiological and pathological processes.
Bach1 expression and function differ between different cell types. Thus, therapies designed to manipulate Bach1 expression will
need to be tightly controlled and tailored for each specific disease state or cell type.

1. Introduction: Bach1 Structure and
Cellular Distribution

BTB and CNC homology 1 (Bach1) is a member of the Cap
‘n’ Collar and basic region leucine zipper family (CNC-bZip)
of transcription factors. It is widely expressed in mammalian
tissues, and the human variant consists of 736 amino acids.
The N-terminal region of Bach1 contains a BTB/POZ
domain, which functions as a protein interaction motif, while
the C-terminal bZip domain binds to DNA [1] and mediates
the heterodimerization of Bach1 with small Maf proteins
(e.g., MafF, MafG, and MafK) (Figure 1). Once formed, the
Bach1-Maf heterodimers inhibit the transcription of many
oxidative stress-response genes, including heme oxygenase-1
(HO-1) [2] and NADPH quinone oxidoreductase 1(NQO1)
[3], by binding to Maf recognition elements (MAREs) in the
gene promoters. Another transcription factor in the basic
region leucine zipper family, Bach2, is expressed in B cells,
T cells, macrophages, and neural cells [4] and is involved in
oxidative stress-mediated apoptosis, macrophage-mediated
innate immunity, and adaptive immune response [5–7].

Bach1 contains six cysteine-proline (CP) motifs, four of
which are located in a heme-binding region near the C-
terminus. Heme inactivates Bach1 by interacting with two
of the CP motifs, leading to the exclusion of Bach1 from

the nucleus [8], and by promoting HOIL-1-mediated ubiqui-
tination and degradation [9]. Bach1 nuclear export is also
triggered by the antioxidant-induced phosphorylation of a
tyrosine residue (Bach1 tyrosine 486) [10] and by cadmium,
which activates a cytoplasmic localization signal (CLS)
located in the Bach1 C-terminus via a mechanism that
requires extracellular signal-related kinase (ERK) [11]; both
heme- and cadmium-induced Bach1 nuclear export signals
are dependent on chromosome region maintenance 1
(Crm1) [12]. After export into the cytoplasm, Bach1 forms
fiber-like structures on microtubules by colocalizing with
intracellular hyaluronic acid-binding protein (IHABP),
which regulates the subcellular localization of Bach1 [13].
Furthermore, human cells also express an alternative splice
variant of Bach1, Bach1t, which lacks the leucine zipper
domain and is constitutively nuclear, suggesting that
Bach1/Maf heterodimer formation may also have an impor-
tant role in Bach1 subcellular localization and activity [14].

Bach1 competes with nuclear factor (erythroid-derived
2)-like-2 (Nrf2) for binding to the MAREs in oxidative
stress-response genes. Under normal physiological condi-
tions, nuclear Nrf2 contributes to vascular protection by
inducing expression of the glutamate cysteine ligase modula-
tory subunit (GCLM) and the light chain component of sys-
tem xc

− (xCT) in human endothelial cells, while cytoplasmic
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Nrf2 is bound and inhibited by Kelch-like ECH-associated
protein 1 (Keap1) [15]. During oxidative stress, Nrf2 dissoci-
ates from Keap1, translocates into the nucleus, and binds to
MAREs as a heterodimer with small Mafs, thereby activating
oxidative stress-response genes (e.g., HO-1 and NQO1) [16],
while Bach1 is displaced from MAREs and exported out of
the nucleus [17] (Figure 2); evidence in hepatocytes suggests
that both the nuclear import of Nrf2 and the dissociation of
Bach1-MARE are promoted by sirtuin (Sirt) 6 [18]. Further-
more, a functional MARE site has been identified near the
transcription start site of Bach1 transcript variant 2, and
Nrf2 overexpression, as well as Nrf2-activating agents, upre-
gulates Bach1 expression [19]. Thus, Bach1 appears to act as
a functional inhibitor of Nrf2 under physiological oxygen
levels [16], while Nrf2 restores Bach1 levels after oxidative
stress-induced Bach1 nuclear export and degradation.

2. Bach1 in Oxidative Stress and
Heme Homeostasis

Bach1-deficient mice are more resistant to the oxidative
stresses associated with trinitrobenzene sulfonic acid-
(TNBS-) induced colitis [20], hyperoxic lung injury, nonalco-
holic steatohepatitis [21], and cardiovascular disease [22], as
well as bleomycin-induced pulmonary fibrosis [23], while
declines in Bach1 expression or activity reduced measures
of oxidative stress-induced apoptosis in pancreatic β-cells
[24] and the damaging effects of ultraviolet radiation in ker-
atinocytes [25]. Furthermore, we have shown that Bach1
overexpression enhances the production of reactive oxygen
species (ROS) from the mitochondria of endothelial cells
and in the ischemic limbs of mice, which leads to increases
in apoptosis and declines in angiogenesis [26]. Many of the
genes targeted by Bach1 (e.g., NQO1, glutamate-cysteine
ligase catalytic subunit (GCLC), glutamate-cysteine ligase
modifier (GCLM), and solute carrier family 7 member 11
(SLC7A11)) [3, 27] also participate in redox regulation,
including HO-1, which is essential for cell survival under
conditions of oxidative stress and for the maintenance of cel-
lular iron homeostasis in higher eukaryotes [28]. HO-1
expression is suppressed by Bach1 when heme levels are
low, but higher heme levels inhibit Bach1-DNA binding
and promote Bach1 nuclear export and degradation [12],
thereby inducing HO-1 expression, which subsequently
degrades heme while generating antioxidant molecules such
as ferrous iron, carbon monoxide (CO), and biliverdin. Thus,
the Bach1/HO-1 pathway forms a feedback loop that main-
tains heme homeostasis during periods of oxidative stress.
Bach1 also appears to increase the cytotoxicity of an

anticancer drug by downregulating HO-1 expression in
human primary acute myeloid leukemia (AML) cells [29].

3. Bach1 in the Cell Cycle, Senescence,
and Mitosis

The effect of Bach1 on cell proliferation and survival can dif-
fer profoundly depending on the cell type and experimental
conditions. In endothelial cells, we have shown that exoge-
nous Bach1 expression inhibited proliferation and the
expression of cyclin D1 while inducing cell-cycle arrest and
caspase 3-dependent apoptosis [26]; however, proliferation
was also impaired in Bach1-deficient aortic smooth muscle
cells (SMCs) [30], and Bach1 deficiency reduced both prolif-
eration and activated p53-dependent senescence in murine
embryonic fibroblasts under conditions of oxidative stress
[31]. Notably, although many of the genes targeted by Bach1,
such as E2F1, cyclin-dependent kinase 6 (CDK6), calmodulin
1 (CALM1), transcription factor binding to IGHM enhancer
3 (TFE3), EWS RNA-binding protein 1 (EWSR1), and
BCL2-like 11 (BCL2L11), participate in cell-cycle control
and apoptosis [27], phosphorylated Bach1 interacts with
hyaluronan-mediated motility receptor (HMMR) and CRM1
to stabilize the orientation of the mitotic spindle, and deple-
tion of endogenous Bach1 impaired spindle formation, in
dividing HeLa cells [32–34]. Thus, Bach1 appears to have
two distinct roles in cell proliferation, one as a transcriptional
regulator of cell-cycle proteins and another during chromo-
somal alignment, which are dependent upon the phosphory-
lation state of Bach1.

In addition, Bach1 is also associated with an age-
dependent loss of adaptive homeostasis. Bach1 was increased
in all tissues (heart, liver, and lung) of aging mice [35] and
was higher in human bronchial epithelial cells from older
adults than from young adult donors [36]. Thus, Bach1
appears to attenuate redox adaptive homeostasis in aging
mice and old people. Another aging-associated disease osteo-
arthritis is also found to be related to Bach1 due to oxidative
damage. Inhibition of Bach1 by carnosic acid can induce
HO-1 expression and attenuate cartilage degradation [37].

4. Bach1 in Angiogenesis and
Myocardial Protection

We have shown that measurements of perfusion, vascular
density, and the expression of proangiogenic cytokines were
greater in the limbs of Bach1-deficient mice than in the limbs
of wild-type mice after surgically induced hindlimb ischemia
[38]. Bach1 appears to limit the angiogenic response to ische-
mic injury, and at least one of the mechanisms by which
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Figure 1: Schematic diagram of the structure of Bach1.
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Bach1 suppresses angiogenesis involves Wnt/β-catenin sig-
naling. Canonical Wnt/β-catenin signaling regulates gene
transcription by facilitating the transport of cytoplasmic β-
catenin into the nucleus, where β-catenin forms a complex
with transcription factor 4 (TCF4)/lymphoid enhancer-
binding factor 1 (LEF1) and recruits transcription factors,
such as CREB-binding protein (CBP), that initiate Wnt-
targeted gene expression [39]. The binding of β-catenin also
displaces histone deacetylase 1 (HDAC1) [40] and other tran-
scriptional corepressors from TCF4 [41] and recruits tran-
scriptional coactivators such as the histone acetyl transferase
p300/CBP [42]. Bach1 functions as a competitive inhibitor
of β-catenin/TCF4 binding, recruits HDAC1 to the promoter
of TCF4-targeted genes, and prevents β-catenin from being
acetylated by p300/CBP, thereby reducing the expression of
downstreamWnt targets, such as vascular endothelial growth
factor (VEGF) and interleukin- (IL-) 8, that promote angio-
genic activity in human ECs [38] (Figure 3). Bach1 also
appears to suppress developmental angiogenesis in zebrafish
by impeding Wnt/β-catenin signaling and the expression of
VEGF and IL-8 [43].

Arsenite stimulates angiogenesis by promoting the disso-
ciation of Bach1 from HO-1 enhancer elements in endothe-
lial cells [44], and the subsequent increase in HO-1
expression upregulates the expression of proangiogenic mol-
ecules such as VEGF [45]. In the heart, HO-1 expression also
protects against ischemia and reperfusion injury [46], and
the deletion of Bach1 upregulated HO-1, which subsequently
inhibited transverse aortic constriction- (TAC-) induced left
ventricular hypertrophy and remodeling [47]. However, the
cardioprotective effects associated with Bach1 deficiency in
mice also appear to be partially mediated by activation of
the STAT3 pathway and by the inhibition of p38/MAPK sig-
naling and apoptosis [22], and Bach1 deficiency reduces the
proliferation of SMCs as well as neointimal formation in a
murine model of arteriosclerosis via an HO-1-independent
mechanism [30].

5. Bach1 in Cancer

Bach1 depletion had no effect on the growth of breast cancer
cells in culture or on primary tumor growth in mice [48];
however, the expression of Bach1 and its target genes has
been linked to a higher risk of breast cancer recurrence in
patients [49], as well as increases in cell invasion and migra-
tion of prostate and colon cancer cells [50–52], while lower
Bach1 levels have been associated with declines in breast
tumor metastasis [48]. The prometastatic activity of Bach1
is at least partially mediated by increases in the expression
of metastatic genes such as CXC-chemokine receptor 4
(CXCR4), high-mobility group AT-hook 2 (HMGA2),
vimentin, and matrix metalloproteinases (MMPs) 1, 9, and
13 [51, 52]. Furthermore, Bach1 both suppresses and is sup-
pressed by the metastasis-suppressor Raf kinase inhibitory
protein (RKIP), and computational models suggest that this
interplay between Bach1 and RKIP, as well as their down-
stream targets, could provide amechanism bywhich environ-
mental factors and stochastic fluctuations can trigger a
metastatic phenotype in previously noninvasive cells without
altering the cells’ genomes [53]. Furthermore, Bach1 represses
its own expression by binding to its promoter region and
therefore has its own negative feedback loop [53]. This indi-
cates that Bach1 is under tight control, and cells cannot toler-
ate too high expression level suggesting that Bach1 can have
profound physiological effects that become deleterious when
too extreme.

Bach1 is also involved in epigenetic mechanisms of can-
cer progression. In both colorectal cancer and melanoma,
the B-Raf protooncogene variant BRAF (V600E) upregulates
v-maf avian musculoaponeurotic fibrosarcoma oncogene
homolog G (MAFG), which heterodimerizes with Bach1
and recruits both chromodomain helicase DNA-binding
protein 8 (CHD8, a chromatin remodeling factor) and the
DNA methyltransferase DNMT3B, leading to the hyperme-
thylation and transcriptional silencing of tumor-suppressor
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Figure 2: Model for competition between Nrf2 and Bach1 on MARE of HO-1 in response to oxidative stimuli. During oxidative stress, Nrf2
dissociates from Keap1 and Nrf2 degradation is inhibited, so Nrf2 will accumulate in the cytoplasm and translocate into the nucleus. Then,
Nrf2 binds to MAREs as a heterodimer with small Mafs, activating HO-1 expression, while Bach1 is displaced fromMAREs and exported out
of the nucleus.
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genes [54, 55] (Figure 4). Bach1 also promotes temozolomide
(TMZ) resistance in patients with glioblastoma by antagoniz-
ing the p53-mediated suppression of O6-methylguanine
DNA methyltransferase (MGMT); once activated, MGMT
counteracts the antitumor effect of TMZ by reversing the
TMZ-induced methylation of guanine residues [56].

Notably, Bach1 can also function as a tumor suppressor,
and at least some of its anticancer properties can likely be
attributed to its role as a regulator of HO-1 expression. In
acute myeloid leukemia cells, lower levels of Bach1 expres-
sion were associated with increases in HO-1 levels and in cell
viability after exposure to an anticancer drug [29], and
CXCR3-B appears to inhibit the growth of breast cancer cells
by promoting the nuclear localization of Bach1, which subse-
quently suppresses HO-1 [57]. Bach1 also suppresses the
expression of transketolase (TKT), an enzyme that is required
for the growth of hepatic cancer cells because it participates in
the pentose phosphate pathway and in the production of the
antioxidant molecule NADPH [58]. Furthermore, although
oxidative stress is known to contribute to both aging and
tumorigenesis and Bach1 deficiencies increase HO-1 expres-
sion, Bach1 does not appear to influence aging in mice and
the rate of spontaneous tumorigenesis in p53-deficient mice
and in Bach1-p53 double-deficient mice was similar [59].
Thus, Bach1 function differs between different cancer cell
types, even within the same cell type (e.g., breast cancer cells),
and Bach1 may have a different effect on cancer cell growth
and cancer metastasis [53, 57]. In fact, a previous study has
shown that Bach1 can function as both an activator and a
repressor of transcription on the same gene, depending on
the cellular context [1]. Therefore, while some evidence sug-
gests that Bach1 inhibition may be an effective therapeutic

approach for the treatment of breast cancer [60], the role of
Bach1 in cancer growth, progression, and metastasis appears
to vary and must be thoroughly characterized for each type of
cancer at different stages of tumor progression.

6. Bach1 in Hematopoietic Differentiation
and Immunity

β-Globin gene activation is a crucial step during erythroid
differentiation and is impeded by Bach1 [61], which forms
a heterodimer with MafK and recruits three transcriptional
corepressor complexes nucleosome remodeling and deacety-
lase (NuRD), switch-insensitive 3a (SIN3A), and switch/
sucrose nonfermentable (SWI/SNF) to the locus control
region (LCR) of the β-globin gene [62]. During erythroid dif-
ferentiation, Bach1 is replaced by the transcriptional activa-
tor p45, which releases the corepressor complexes from the
LCR and activates β-globin transcription by recruiting coac-
tivators such as CBP, transactivation domain-interacting
protein (TIP), and stem cell leukemia (SCL) to the LCR; c-
Jun N-terminal kinase (JNK) stabilizes the p45/MafK hetero-
dimer by phosphorylating the Ser157 residue of p45 [62, 63].
Bach1 is also displaced from the β-globin LCR (without alter-
ing the binding activity of MafK) by intracellular heme [17],
and heme biosynthesis requires GATA-1, a master regulator
of erythropoiesis that is also transcriptionally suppressed by
Bach1. GATA-1 activates globin transcription when heme
biosynthesis is normal, but in heme-deficient erythroid cells,
Bach1 accumulates and suppresses the GATA-1-mediated
transcriptional activation of globin [64]. Heme-induced
Bach1 degradation also promotes the transcription factor
SPI-C expression in monocytes and the development of bone
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Figure 3: Relations between Bach1 and angiogenesis. Bach1 suppresses angiogenesis through different mechanisms. Bach1 represses the
expression of HO-1, which has been shown to upregulate the expression of proangiogenic molecules (e.g., VEGF) and promote
neovascularization. Bach1 overexpression also enhances the production of ROS from the mitochondria of endothelial cells, which leads
to EC apoptosis and inhibits angiogenesis. Besides, Bach1 functions as a competitive inhibitor of β-catenin/TCF4 binding, recruits
HDAC1 to the promoter of Wnt target genes, thereby reducing the expression of proangiogenic cytokines, such as VEGF and IL-8, and
suppresses angiogenesis.
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marrow macrophages [65], and when Bach1 was overex-
pressed (under the control of the GATA-1 promoter) in
transgenic mice, megakaryocyte maturation was significantly
impaired and the animals developed thrombocytopenia,
likely because Bach1 suppressed the expression of p45-
targeted genes such as thromboxane synthase [66]. Bach1
also regulates adipogenesis in primary mouse embryonic
fibroblasts by suppressing the expression of peroxisome
proliferator-activated receptor (PPAR) γ and PPARγ-depen-
dent adipocyte differentiation [67].

Bach1 also has a role in the immune system and autoim-
mune disease. Bach1 regulates the expression of core
macrophage-associated genes, such as aldo-keto reductase
family 1 member B10 (Akr1b10), biliverdin reductase B
(Blvrb), calcium/calmodulin-dependent protein kinase 1
(Camk1), and glutamate-ammonia ligase (Glul) [68], and
both Bach1 and Bach2 promote B-cell development by sup-
pressing myeloid genes in lymphoid progenitor cells [69].
During inflammation, the Bach1/HO-1 pathway regulates
osteoclastogenesis, and Bach1 deficiency reduced the severity
of osteoarthritis in mice by upregulating HO-1 expression
[70, 71]. Bach1 deficiency also impaired the development of
antigen-presenting cells (APCs) in mice, which disrupted
the T-cell response and partially protected the animals from
experimentally induced autoimmune encephalomyelitis [72].

7. Conclusions and Future Perspectives

In summary, Bach1 is an important transcription factor that
regulates mechanisms involved in ROS production, cell cycle,
heme homeostasis, hematopoiesis, and immunity and has a
function in cardiovascular disease (e.g., angiogenesis and
cardiac hypertrophy) and cancer. Bach1 also regulates
adipocyte-related genes, the pentose phosphate pathway,
and Wnt/β-catenin signaling, which suggests that Bach1
may influence the development and progression of metabolic
disease, especially since some Wnt family members and/or
downstream targets of Wnt have been linked to insulin
sensitivity [73] and diabetes [74]. Other aspects of Bach1
activity that merit continued study include its involvement

in epigenetic modifications (e.g., histone methylation and
chromatin remodeling). It is clear that Bach1 expression
and function differ between different cell types. Future stud-
ies should elucidate the role of Bach1 in each type of cancer
progression based on clinical studies. Thus, the diverse phys-
iological activity of Bach1 suggests that therapies designed to
manipulate Bach1 expression will need to be tightly con-
trolled and tailored for each specific disease state or cell type.
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