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Abstract: The enantioselective synthesis of (@)-dihydrora-

putindole D is reported. The key step is the desymmetriz-
ing benzoylation of a prochiral 1,3-diol employing Trost’s
ProPhenol catalyst system, which has been applied for the
first time to a cyclic molecule carrying geminal hydroxy-

methyl groups. The cyclopenta[f]indoline system was as-

sembled by Au(I)-catalyzed cyclization of an alkynylated
indoline precursor. (@)-Dihydroraputindole D was ob-

tained in 17 steps and 8% overall yield starting from dihy-
droxyacetone. In combination with quantum chemical cal-

culations of the ECD spectra, our synthesis allowed us to
determine the absolute configuration (5S,7R) of the natu-

ral product (+)-raputindole D from the Rutaceous plant

Raputia simulans.

The unique indole alkaloids raputindole A–D were isolated

from the neotropical tree Raputia simulans Kallunki (Rutaceae)

from Peru.[1] Biosynthetically, the characteristic cyclopenta[f]in-
dole moiety of the raputindoles is probably formed by oxida-
tive coupling of 5-, 6-, or 7-prenylindole, as suggested by the
occurrence of 5- and 7-prenylindole in the same species.[2] The

enamine section of the indole moiety of the raputindoles is
not substituted, a feature that can be found in only a few

other natural products such as the raputimonoindoles,[2] the

caulindoles,[3] the trikentrines,[4] and the herbindoles.[5] The cy-
clopenta[f]indole moiety can also be found in the nodulisporic

acids,[6] shearinines,[7] and janthitrems.[8] Biological activity was
reported only for desoxyraputindole C from Raputia praetermis-

sa ; it induces cell-cycle arrest, likely by binding to cathepsin L
(IC50 1.7 mm).[9] However, not all raputindoles were tested.

In the course of our total synthesis of raputindole A (1), we

developed the regioselective AuI-catalyzed cyclization of 6-al-
kynylindole precursors as the key step in constructing the cy-
clopenta[f]indole system.[10] Having the quaternary center in-

stalled, diastereoselectivity of the synthesis was achieved by

tethered Ir-catalyzed hydrogenation of an intermediate cyclo-
pentene-containing tricycle.[11] However, our attempts to as-

semble the quaternary center in an enantioselective manner
by using chiral AuI complexes remained unsuccessful.

For raputindole D (2), optical activity was reported without

determination of the absolute configuration. Raputindole D dif-
fers from raputindole A by the presence of a hydroxymethyl in-

stead of a methyl group at the quaternary center (C5,
Scheme 1). This led us to the idea of exploiting the 1,3-diol

moiety of cyclopenta[f]indoline 5 for an enantioselective de-
symmetrization strategy. Among the few existing methods, the

use of Trost’s ProPhenol catalyst 4 appeared to be most prom-

ising, as the benzoylation of 2-monosubstituted 1,3-diols had
provided yields and enantioselectivities superior to those ac-

cessible by enzymatic methods.[12]

In the case of indole 5, it was unclear how catalyst 4 would

behave both in terms of reactivity and enantioselectivity. In
the mechanism proposed by Trost et al. , the enantiodifferentia-

tion of the two hydroxymethyl groups is possible because the

carbonyl oxygen of the benzoyl source—vinyl benzoate—coor-
dinates to the zinc center from the sterically clearly preferred

Scheme 1. Structures of raputindoles A (1) and D (2) from the Peruvian ruta-
ceous plant R. simulans, model of a possible ProPhenol catalyst–substrate
complex, and synthetic strategy.
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side, where the hydrogen substituent is located (R’= H,
Scheme 1).[12b] However, differing from all earlier examples, our

envisaged substrate 5 contains a quaternary carbon in the 2-
position of the 1,3-diol moiety.

The synthesis of tricyclic 1,3-diol 11 starts from dihydroxya-
cetone (6) that, after double TIPS protection, underwent alky-

nylation to the tertiary propargylic alcohol 7 (Scheme 2). Sono-
gashira coupling with N-TIPS-6-iodoindoline (8, 5 steps from p-

toluidine)[13] and subsequent DMAP-catalyzed acetylation (86 h)

of the sterically hindered tertiary alcohol provided propargylic
acetate 9. Excess alkyne coupling partner was also acetylated
and removed after the subsequent step. Gold-catalyzed[14] cyc-
lization (1 mol % of Au(PPh3)NTf2) afforded the cyclopenta[f]in-

doline as the alkenyl acetate, which was saponified to ketone
10 (NaOMe), exhibiting blue fluorescence (lem max = 429 nm in

THF). Based on our earlier experience with the total synthesis

of raputindole A, the N-TIPS protecting group was replaced by
tosyl, which was required for the envisaged introduction of the

isobutenyl side chain by Suzuki–Miyaura coupling. Ketone 10
was triflated (LHMDS, PhNTf2), N-desilylated (2 m HCl), and the

resulting indoline was N-tosylated. Finally, double O-desilyla-
tion afforded cyclopenta[f]indoline 11 with two hydroxymethyl

groups.

For the desymmetrizing, enantioselective O-monobenzoyla-
tion of 11, we employed a dinuclear zinc asymmetric catalyst

developed by the Trost group (Scheme 3).[12] Diol 11 was treat-
ed with vinyl benzoate in the presence of Et2Zn and (S,S)-

ProPhenol ((S,S)-12, 2 :1, 5 mol %) to afford monoester 13
(91 %). The enantiomeric ratio of triflate 13 (84:16) was deter-

mined by HPLC on a chiral column (Lux amylose-2, n-hexane/
EtOH (75:25)). Suzuki–Miyaura coupling of 13 with isobutenyl-

boronic acid afforded diene 15 in high yield (90 %). Changing
the order of benzoylation and cross coupling gave a lower

yield in the coupling step (70 %) and a lower er of 15 (79:21,

determined by 19F NMR spectroscopy of the (R)-Mosher ester).
To our surprise, the assignment of the absolute configura-

tion of tricyclic benzoate 15 by quantum chemical calculation
of the ECD (TDDFT, wB97XD/TApr-cc-pVDZ) proved to be diffi-

cult. Fortunately, the situation was clear for the tricyclic alkenyl
triflate 13, for which the configuration shown in Scheme 3 was

unambiguously assigned by ECD calculation (see the Support-
ing Information). The prediction of the stereochemical out-
come of the benzoylation was not possible based on analogy

with existing examples. Compounds 13 and 14 constitute the
first examples with a quaternary center in the 2-position.

The successful monobenzoylation of 11 gave us the oppor-
tunity to exploit the remaining primary hydroxy group as a

tether for the diastereoselective Crabtree hydrogenation of tri-

cyclic diene 15. To our surprise it proved to be necessary to
use the high amount of 28 mol % of Crabtree catalyst [Ir(COD)-

py(PCy3)]BARF[15] to achieve a satisfactory degree of conversion
(Table 1). It was impossible to achieve the selective monohy-

drogenation of 15. Even at @20 8C, the major product was the
isobutyl-substituted indane derivative 17 (79 %), which was ac-

Scheme 2. Synthesis of tricyclic 1,3-diol 11 by AuI-catalyzed cyclopentannu-
lation of propargylic acetate 9.

Scheme 3. Desymmetrization of 1,3-diol 11 by enantioselective benzoylation
employing Trost’s catalyst (S,S)-12/Et2Zn (1:2), followed by Suzuki–Miyaura
cross coupling.
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companied with isobutenyl indane 16. At @40 8C, we observed
only minimal conversion, whereas at 0 8C, dihydrogenation of

had taken place exclusively.
When starting from diol 14, the hydrogenation was much

faster, but it was still impossible to avoid reduction of the iso-
butenyl side chain. The best result was obtained when using

[Ir(COD)py(PCy3)]PF6, providing a 1:2 mixture of mono- and di-

hydrogenated products, accompanied by traces of starting ma-
terial. Chiral hydrogenation catalysts (entries 6–8, Table 2) were

not successful, either.
To our surprise, hydrogenation of 14 in the presence of

[Ir(COD)(S)-tBu-PHOX)]BARF (5 mol %) on the 10 mg scale af-
forded the diastereomeric Diels–Alder dimers 20 a (59 %) and

20 b (7 %) as racemic major products (Scheme 4), the structures

of which were elucidated by extensive 2D NMR spectroscopy.

In both cases, we observed a singlet for the aliphatic methine-
H of the cyclohexene moiety (d= 3.15, 3.14 ppm), which ex-

cludes the alternative regiochemistry. The decisive NOESY cor-

relation allowing the assignment of the major diastereomer
was observed between 6-H and 8’-H. By DFT calculation

(B3LYP/6-31G(d)), diastereomer 20 a is more stable than 20 b.
For the formation of 20 a and 20 b, half of the starting material

must have undergone isomerization of the isobutenylcyclopen-
tene to a 2-methylallylidene moiety. One of the rare examples,

where this behavior occurred when employing a Crabtree cata-

lyst under hydrogenation conditions, was described by Guillou
et al.[16] who reported the isomerization of an exocyclic meth-

enyl double bond to the endocyclic position. The hydrogen
served only as activator of the Crabtree catalyst, but was not

incorporated.
Given the difficulties experienced with the monohydrogena-

tion of 15, we decided to pursue the enantioselective synthesis

of dihydroraputindole D (3), which differs from the natural
product by the presence of an isobutyl instead of an isobuten-
yl side chain.

It was unclear, whether the benzoyloxy group of 17 would

be compatible with the Takai/Suzuki–Miyaura route that was
envisaged for the installation of the second indole moiety.

Moreover, it seemed to be interesting to compare the optical
properties of a hitherto unknown dihydroraputindole D with
those of 2, for which the absolute configuration has remained

undetermined. Dihydrogenated product 17 was obtained from
15 in 93 % yield and oxidized to the aldehyde (IBX), followed

by Takai olefination to (E)-iodoalkene 21 (Scheme 5). Suzuki–
Miyaura coupling with indol-5-ylboronic acid proceeded

smoothly (91 %) and provided the complete skeleton of rapu-

tindole D. Saponification (LiOH), reductive detosylation (Na/
naphthalene), and dehydrogenation (Pd/C) afforded (@)-dihy-

droraputindole D in 8 % overall yield over 17 steps starting
from dihydroxyacetone (6). The enantiomeric ratio of (@)-dihy-

droraputindole D (3, 90:10) was determined by HPLC on a
chiral column (Lux Cellulose-1, n-hexane/EtOH (85:15)).

Table 1. Hydrogenation of 15.[a]

Catalyst [mol %] T [8C] 15 16 17

1 [Ir(COD)py(PCy3)]PF6 7 0 100 0 0
2 [Ir(COD)py(PCy3)]PF6 7 RT 100 0 0
3 [Rh(NBD)(dppb)]BF4 15 RT no reaction[b]

4 Pd/C 15 RT full conversion[b,c]

5 [Rh(COD)py(PCy3)]BARF 7 RT no reaction[b]

6 [Ir(COD)py(PCy3)]BARF 7 RT no reaction[b]

7 [Ir(COD)py(PCy3)]BARF 28 RT 0 0 100
8 [Ir(COD)py(PCy3)]BARF 28 0 0 0 100
9 [Ir(COD)py(PCy3)]BARF 28 @20 0 21 79

10 [Ir(COD)py(PCy3)]BARF 28 @40 low conversion[b]

11 [Ir(COD)((S)-tBu-PHOX)]BARF 7 RT no reaction[b]

[a] Product ratios determined by 1H NMR spectroscopy are given. All reac-
tions were performed in dry CH2Cl2 (1 mL) under H2 overnight (12–14 h)
on a 10 mg/0.02 mmol scale. [b] Determined by TLC. [c] Products not
identified.

Table 2. Hydrogenation of 14.[a]

Catalyst [mol %] T [8C] 14 18 19

1 [Ir(COD)py(PCy3)]PF6 5 RT 0 0 100
2 [Ir(COD)py(PCy3)]PF6 5 0 0 0 100
3 [Ir(COD)py(PCy3)]PF6 5 @20 3 31 66
4 [Ir(COD)py(PCy3)]PF6 5 @30 3 34 63
5 [Ir(COD)py(PCy3)]PF6 5 @40 61 17 22
6 [Ru((R)-BINAP)](OAc)2 5 RT no reaction[b]

7 Ir(COD)((S)-tBu-PHOX)]BARF 5 RT see text
8 [Ir(COD)((S)-tBu-PHOX)]BARF 5 0 no reaction[b]

[a] Product ratios determined by 1H NMR spectroscopy are given. All reac-
tions were performed in dry CH2Cl2 (1 mL) under H2 overnight (12–14 h)
on a 10 mg/0.02 mmol scale. [b] Determined by TLC.

Scheme 4. Formation of diastereomeric Diels–Alder dimers 20 a and 20 b
upon attempted enantioselective hydrogenation of 1,3-diol 14.
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Quantum chemical calculation (TDDFT, wB97XD/TApr-cc-

pVDZ) of the ECD spectrum allowed the assignment of the ab-
solute configuration of (@)-dihydroraputindole D (3). The calcu-

lated spectra agreed well with the experimental data of the

synthesized product (Figure 1, see also the Supporting Infor-
mation). For the natural product (++)-raputindole D (2), which

differs from 3 by the presence of an isobutenyl instead of an
isobutyl side chain, there were no ECD spectra reported. Be-

cause we could show that the ECD spectrum of (@)-3 can be
calculated quantum chemically, we calculated the ECD spec-

trum of (++)-2 (Figure 1), which proved to be almost the mirror

image of that of (@)-3. For the enantiomers of all three com-
pounds 2, 3, and 13, we also calculated to optical rotatory
power the signs of which agreed with experimental values
(DFT, wB97XD/TApr-cc-pVDZ). Thus, we conclude that the natu-

ral product (++)-raputindole D ((++)-2) has the configuration

(5S,7R). The absolute configuration of (++)-2 corresponds to
that of the desoxy form, (++)-1, which we had determined after

separation of racemic synthetic material by HPLC on a chiral
column.

In summary, we report the first enantioselective synthesis of
a raputindole derivative. Key steps are the AuI-catalyzed cycli-

zation forming the cyclopenta[f]indoline system and the enan-
tioselective benzoylation of the achiral tricyclic 1,3-diol 11 em-
ploying Trost’s ProPhenol catalyst system. Thus, in addition the

synthesis dihydroraputindole D, our approach also addresses a
hitherto unexplored type of substrate for ProPhenol-type cata-

lysts. Desymmetrization of the 1,3-diol proved to be superior
to hydrogenation employing a chiral Crabtree catalyst that led
to isomerization and surprising dimerization of the 1,3-diol pre-
cursor. (@)-Dihydroraputindole D (3) was obtained in 17 steps

and 8 % overall yield starting from dihydroxyacetone. Our syn-
thesis also allowed us to determine the absolute configuration
of the natural product (++)-raputindole D (2) from the Ruta-

ceous plant R. simulans.

Note added in proof

After revision of this manuscript, a new total synthesis of
(+)-raputindole A was reported.[17]
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