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Software programming is a modern activity that poses strong challenges to the human brain. The neural mechanisms that support
this novel cognitive faculty are still unknown. On the other hand, reading and calculation abilities represent slightly less recent
human activities, in which neural correlates are relatively well understood. We hypothesize that calculus and reading brain
networks provide joint underpinnings with distinctly weighted contributions which concern programming tasks, in particular
concerning error identification. Based on a meta-analysis of the core regions involved in both reading and math and recent
experimental evidence on the neural basis of programming tasks, we provide a theoretical account that integrates the role of
these networks in program understanding. In this connectivity-based framework, error-monitoring processing regions in the
frontal cortex influence the insula, which is a pivotal hub within the salience network, leading into efficient causal modulation of
parietal networks involved in reading and mathematical operations. The core role of the anterior insula and anterior
midcingulate cortex is illuminated by their relation to performance in error processing and novelty. The larger similarity that we
observed between the networks underlying calculus and programming skills does not exclude a more limited but clear overlap
with the reading network, albeit with differences in hemispheric lateralization when compared with prose reading. Future work
should further elucidate whether other features of computer program understanding also use distinct weights of phylogenetically
“older systems” for this recent human activity, based on the adjusting influence of fronto-insular networks. By unraveling the
neural correlates of program understanding and bug detection, this work provides a framework to understand error monitoring
in this novel complex faculty.

1. Introduction

Software programming is a complex and phylogenetically
very recent human activity (100 years old), even more
than reading/literacy (which started around 5000BC) or
complex mathematics (3000 BC) [1]. Importantly, in a
century where computers dominate, there is an increasing
interest in understanding the neural correlates of program
comprehension [2].

The transversal nature of software use (i.e., software is
needed for almost all modern human activities) makes soft-
ware development one of the largest industry sectors, if not

the largest. However, in spite of decades of research and
advances in software engineering and software reliability,
software defects (i.e., bugs) remain as the most enduring
problem of software quality [3-5]. The average number of
bugs per 1000 lines of delivered code (KLOC) [6] remains
astonishingly high, which reinforces the importance of
understanding error-monitoring processes in the brain dur-
ing execution of this novel complex task. This might have
important implications for understanding how the brain
can control programming performance [7].

In neuroscientific terms, there is the debate [2] if pro-
gramming requires the expert integration of mathematical
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and language skills, including logical thinking and symbol
manipulation. Programming may require a large set of skills
beyond mathematical calculations using numbers and might
require integration with the language/reading skills at an
abstract level. In this line, the reading and cognitive analysis
of algorithms likely requires a large set of regions with dis-
tinctive contributing weights for optimal performance.

The functional anatomy of reading and language [8, 9]
has been studied for many years [10-13]. There is evidence
for a task-dependent connection between language, reading,
and arithmetic/calculation skills from both behavioral [14-
17] and imaging studies [18, 19]. The interaction of these net-
works during programming tasks remains to be investigated.
However, concerning the neural correlates of computer pro-
gram reading and understanding, functional neuroimaging
studies are still scarce due to the inherent challenges in
performing such studies [20, 21]. The relation between
error-monitoring and program understanding processes
and how information is integrated between reading-related
regions—including the visual word form area [22] and mid-
dle temporal, inferior, and middle frontal gyrus regions
[23]—and calculation processing networks—involving bilat-
eral parietal regions, including the precuneus [24]—remain
elusive. To clarify how does the brain effectively utilize these
circuits, and their relative weights, for effective programming
remains a very interesting question. In this work, we try to
understand the particular patterns of recruitment of reading
and calculation circuits for programming, as a function of
their coordinated enrolment by high-level neural systems.

The interplay between brain networks involved in syntac-
tic processes, arithmetic operations as recursion, or language
processing are known [25, 26]. Language, in particular read-
ing, and calculation may require processing across common
neural networks [27] possibly because recursive processing
and/or symbolic operations are important across these cogni-
tive domains. Whole-brain imaging suggested nevertheless a
near-complete spatial separation of areas activated by calcu-
lation and reading [28, 29] and, e.g., a separation between
code and prose writing [30, 31]. The use of those networks
for computer code understanding might represent an
instance of the “reutilization/recycling” hypothesis [1].

To perform programming tasks, it is likely that the brain
needs to “reutilize” brain networks in an adaptive manner for
this type of complex activity, possibly by reorganizing this
form of complex integrative processing in a top-down man-
ner [1]. Dehaene et al. have pioneered this “recycling”
account whereby cortical regions may be partly recycled for
new human-specific uses. In other words, a brain region that
evolved for a given processing demand might be reutilized in
novel ways and distinct weights when new demands emerge
during human history for a given new function [22].

In spite of the evidence for a network involved in pro-
gramming skills [7, 30, 32, 33], this does not necessarily
imply a novel form of brain specialization but might emerge
from a new form of top-down controlled brain connectivity
with distinct weights of reading and calculation systems.

In this study, we aimed at understanding which are the
common and separable brain networks supporting both cal-
culation and reading processes in adults [31] and what are
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their relative weights in programming-related tasks. We used
evidence from the current data-driven meta-analysis and
additional review of emerging neuroimaging of program-
ming literature to suggest that program understanding
recruits error-monitoring fronto-insular circuits which inte-
grate (weighted) resources from processing modules related
to visual, language, reading, calculation, and memory
processing [34-36] and put forward a new theoretical frame-
work that should be tested in the future.

2. Materials and Methods

We investigated into which extent activity across regions
involved both in reading and math operations supports the
more recently evolved cognitive process of program under-
standing. To address this question, we took advantage of a
meta-analysis quantitative approach [37-39], a strategy that
allows for the identification and localization of brain regions
exhibiting commonalities (the main focus for hypothesis
generation) and differences across tasks [40, 41]. The integra-
tion of neuroimaging data is important because it allows
overcoming limitations due to small sample sizes, which limit
generalization [42]. To demonstrate the possible interdepen-
dence of activation of regions involved in reading, calcula-
tion, and program understanding, we further compared the
results of the meta-analysis with the results from the emerg-
ing literature of fMRI studies of programming.

2.1. Study Design and Review Protocol. We performed 2
meta-analyses, which were carried out using the activation
likelihood estimation (ALE) analysis, one including data
published in neuroimaging studies of reading and the second
with studies of calculation. We performed a contrast and
conjunction analysis of reading and calculation studies
(suppl. Table Al and A2) following the PRISMA guidelines
in meta-analysis [43]. Moreover, we compared the results
with the emerging and recently published literature on
program understanding.

2.2. Search Strategy and Data Sources. We performed the lit-
erature search using the BrainMap (Sleuth 2.4) database. The
Sleuth search criteria for reading were as follows: “Diagnosis
is Normal and Stimulus is visual and Imaging modality is
fMRI and Paradigm class is Reading and Activation is activa-
tions only.” The search criteria for calculation were as follows
“Diagnosis is Normals and Stimulus is Visual and Imaging
modality is fMRI and paradigm class is Counting/calculation
and Activation is activations only.” The programming-
related fMRI studies were manually found from each of the
reference list of the different papers published in the field.
Supplementary Figure Al (PRISMA) summarizes the
number of articles and duplicates that were found. The final
study included 68 reading and 73 calculation studies
(Supplementary Table Al and A2, respectively) and 7
programming studies. We then used these foci of brain
activations for the ALE analysis. These data provide an
effect size Cohen’s d = 0.8845.

To identify functional brain imaging studies, our inclu-
sion criteria were as follows: (1) the studies imaged the whole
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brain (studies reporting only ROI analysis were excluded);
(2) the results presented coordinate-based data in a standard
space; (3) experimental paradigms included visual stimuli, a
reading task (words, pseudowords, or sentences, the instruc-
tion being to read), calculating (and/or arithmetic opera-
tions) tasks, or programming-related tasks (source-code
understanding; bug detection; and code writing); (4) the
imaging method was fMRI, and only activations were consid-
ered; (5) subjects were healthy controls; and (6) sample size
N>8[39].

The supplementary material includes the PRISMA figure,
the tables reporting the papers included and the individual
meta-analysis results, and the figure representing the super-
imposed results from the different meta-analysis results.

2.3. Data Extraction. We exported data as a text file contain-
ing all the coordinates of the results from the original
publications for the three conditions. All coordinates were
converted between Talairach/MNI standard spaces (using
the Brett transform as implemented in the mni2tal or tal2mni
function of MATLAB (v2013a, MathWorks, USA).

2.4. Data Analysis. We applied the activation likelihood esti-
mation (ALE) method to reading, calculation, and program-
ming fMRI studies, using data published in healthy control
subjects (see supplementary figure Al). This method entails
a coordinate-based meta-analysis (CBMA) of whole-brain
studies [42, 44-47]. A 3D Gaussian function is used at each
coordinate with a certain FWHM, which depends on the
sampling size, and a nonparametric test is performed
against a null hypothesis derived from permutation analysis
[39]. The ALE algorithm uses a random-effects model,
which is more conservative than the fixed-effects model. It
incorporates modeling of both within and between study
variance to minimize the possibility that the results might
be influenced by a possible variability of the included
studies [42].

The ALE meta-analysis was carried out as described previ-
ously by [44]. A permutation (1000 permutations) statistical
test of randomly distributed foci was computed to assess the
statistical significance of the results including a family-wise
error rate (FWE) threshold set to P < 0.05 and a minimum
cluster size of 200 mm?> [39]. We used GingerALE, the Java
version of ALE developed at the Research Imaging Center
and available at http://brainmap.org/ale for data processing.

To determine the differences between the ALE maps for
reading and calculation, the two meta-analysis studies were
pooled and contrasted using the GingerALE software. We
followed the work described in [48]. In this contrast analysis,
new-threshold (P <0.05) ALE images are created using a
voxel-wise minimum statistic [49] by contrasting the individ-
ual ALE images (already FWE corrected for multiple com-
parisons). In order to take into account the differences
between studies included in the meta-analysis and to obtain
a voxel-wise P value image, we performed a 1000 permuta-
tion analysis using a P value of 0.05 and a minimum volume
of 200 mm?® [39]. The resulting ALE contrast images were
converted to Z scores in order to simplify interpretation
and show their significance. The same procedure was applied

to compare reading and calculation with programming
studies.

For visualization, the results were overlaid into an image
of the International Consortium for Brain Mapping single-
subject MRI anatomical template in the MNI space [50]. Gin-
gerALE tools were used to convert results between Talairach
and MNI spaces.

2.5. Review of fMRI Studies of Programming Skills. To further
evaluate the hypothesis that program understanding shares,
the same resources as reading and/or calculation, one takes
into account the results from the available fMRI studies using
a program understanding task [7, 24, 30, 32, 33, 51-53].
These are, to our knowledge, the only studies available in
the literature about the neuronal correlates of program
understanding. The one from Castelhano et al. uniquely
reported functional and effective connectivity, but the ampli-
tude findings of the available articles provide relevant
insights on the relative weight of each network in program-
ming tasks [2, 30, 32, 33]. The work from Siegmund et al.
used detection of syntax errors as contrast condition to inves-
tigate the cognitive process of programming/source-code
comprehension. The others focused on specific processing
neural mechanisms requiring program understanding,
because they required the identification of bugs in computer
code, which requires deeper program understanding. On the
other hand, the 2020 work from Krueger et al. was focused on
code writing. They found that code writing involves the right
hemisphere brain regions involved in spatial ability and plan-
ning and present evidence suggesting that code and prose
writing are quite dissimilar at the neural level. Ikutani et al.
[33] showed a fine-tuned representation of source code in
the brain while Ivanova et al.’s work [32] report code com-
prehension activations in particular differences in BOLD
responses to code problems with responses to content-
matched sentence problems. All the available fMRI studies
of programming (a still new field with relatively few studies
(N=7)) are included in the meta-analysis (including
contrast and conjunction comparisons with reading and cal-
culation). This last particular analysis is exploratory given the
limited sample size [39].

3. Results

We performed the ALE meta-analysis and distinct contrast
studies using the activation data to compare reading, calcula-
tion, and programming neural correlates. The individual
meta-analysis results of brain activation associated with each
of these conditions are shown in Figure 1 and detailed in
supplementary material (Table A3). We found reliable
activations across reading studies spanning a ventro-
temporal and frontal network. Regarding calculation, the
analysis revealed mainly a parieto-frontal network.
Accordingly, our review of the literature investigating
programming shows that previous works included 166
subjects (mean age range: 20-28 years) and revealed a
network of areas, some of which overlap with the areas
identified for the other conditions, in particular the frontal
region BAG6, the anterior insula, and the parietal regions.
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FI1GURE 1: Brain activation maps of reading, calculation, and programming skills. The ALE results corrected with FWE are shown for the three
conditions in separate panels (suppl. figure A2 report the superimposed maps). Frontal decision-related areas and other calculation (parietal
precuneus), reading (middle temporal including visual word form area and inferior frontal gyrus), and insula regions are activated during

programming tasks.

Most importantly, we asked which regions jointly acti-
vated regarding calculation/math tasks and reading and
found that these include particularly a set of frontal
(BA6, BA9, and BA10) and the superior parietal regions
involved in executive function and the anterior insula
(Tables 1 and 2). In this line, we found regions in the
frontal gyrus, parietal lobule, insula, and occipital gyrus,
possibly representing a network involving fronto-insular-
parietal connections. This meta-analysis therefore helped
us define in a data-driven manner (corroborating our
own previous model-driven study of code comprehension)
a core set of regions-of-interest involved in programming,
which also validates the choice derived from our previous
study [7]. Moreover, a conjunction analysis of program-
ming and calculation shows common activation mainly at
the middle frontal and precentral gyrus (BA6, BA19, and
BA46) and the insula (BA13) both at left and right hemi-
spheres. On the other hand, we found middle frontal gyrus
and middle temporal gyrus activations (BA6, BA9, BA13,
BA20, BA21, BA37, and BA46) for programming and
reading conjunction analysis.

The contrast analysis between these conditions
(Table 2) shows that calculation activated more the inferior
parietal lobule (BA40) than reading or programming for
both hemispheres. Regions most activated for reading vs.
calculation or reading vs. programming represent a
temporal-frontal network mainly at the left hemisphere.
The comparison between programming and calculation
studies reveals higher activations for programming at mid-
dle temporal regions (mainly for the left, BA20, BA21, and
BA22) and middle frontal regions (BA6, BA8, BA9, BA45,
and BA46) both on the left and right hemispheres. Regard-
ing the programming vs. reading comparison, program-
ming tasks activated more frontal, insular, and temporal
regions while reading has increased the activity at the
superior temporal, inferior, and medial frontal gyrus and
cingulate gyrus. These might represent a parieto-temporo-
frontal network comprising BA2, BA6, BA8, BA9, BA13,
and BA21.

Additionally, a closer look into the programming studies
identified a set of regions (Figure 1; Table 3; Figure A2)
involved either in reading, calculus/math, or both:
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TaBLE 1: Overlap in brain activation across studies, as assessed using a conjunction analysis of reading, calculation, and programming. The
major activation is shown with their corresponding Brodmann area (BA), the ALE value of the peak-activated voxel, and MNI coordinates.
Statistical criteria were P < 0.05 with 1000 permutations and a minimum volume of 200 mm”.

Peak coordinates

Task Cluster X y P ALE Hem. Lobe Region BA
Reading and calculation 1 -4571  7.69  29.27 0.158 L Frontal Inferior frontal gyrus 9
P (FWE) < 0.05 (1000 permutations) -47.97 2391 19.01 0.123 L Frontal Middle frontal gyrus 46
Cluster threshold > 200 -47.7 041 4551 0.094 L Frontal Precentral gyrus 6
-31.02 2475 0.9  0.094 L Sublobar Insula 13
2 -28.27 -56.74 47.85 0.102 L Parietal Superior parietal lobule 7
-4545 -37.98 4425 0.084 L Parietal Inferior parietal lobule 40
-2834 -7292 3137 0.079 L Occipital Precuneus 31
-26.18 -7045 356  0.078 L Parietal Precuneus 19
573 1394 5046 0.122 R Frontal Superior frontal gyrus
-497 137 4837 0.121 L Frontal Superior frontal gyrus
-2.69  -235  60.84 0.066 L Frontal Medial frontal gyrus
31.57 -54.27 4696 0.122 R Parietal Superior parietal lobule
-43.69 -61.63 -14.01 0.11 L Temporal Fusiform gyrus 37
-39.29  -80.12 -5.82  0.069 L Occipital ~ Inferior occipital gyrus 19
6 4832 1036 2796 0.108 R Frontal Inferior frontal gyrus
46.06 3327 2161 0.069 R Frontal Middle frontal gyrus
3523 2286 -193 0.116 R Sublobar Insula 13
-26.41  -92.56  -2.69  0.075 L Occipital ~ Inferior occipital gyrus 18
48.63 -34.79 4959 0.073 R Parietal Inferior parietal lobule 40
10 -26.24 -3 5448 0.074 L Frontal Middle frontal gyrus 6
11 3341 -9026 -58  0.064 R Occipital ~ Inferior occipital gyrus 18
12 37.48 -63.77 -2145 0.065 R Cerebellum Posterior lobe
Programming and calculation 1 -30.3  -73.51 2659  0.008 L Occipital ~ Superior occipital gyrus 19
P <0.01 (1000 permutations) 2 -4242 -2.78  36.85 0.008 L Frontal Precentral gyrus 6
Cluster threshold > 200 3 -50.51 2749 29.75 0.011 L Frontal Middle frontal gyrus 46
4 3838 1627 521  0.008 R Sublobar Insula 13
5 4778 284 4227 0.007 R Frontal Precentral gyrus
6 2828 1.03 6535 0.005 R Frontal Middle frontal gyrus
Programming and reading 1 -42.42  -2.78  36.85 0.008 L Frontal Precentral gyrus 6
P <0.01 (1000 permutations) 2 38.38 16.27 521  0.008 R Sublobar Insula 13
Cluster threshold > 200 4444 2214 12.05 0.006 R Frontal Inferior frontal gyrus 13
3 -49.49 2646 2969  0.01 L Frontal Middle frontal gyrus 46
4 -50.51 -53.54  -3.09  0.007 L Temporal ~ Middle temporal gyrus 37
5 4646 422 4158 0.006 R Frontal Middle frontal gyrus
6 -10.1 -525  67.19 0.004 L Frontal Superior frontal gyrus
7 -12.12 -3.09  65.13 0.003 L Frontal Medial frontal gyrus
8 -56.57 -42.83 -12.01 0.003 L Temporal  Middle temporal gyrus 20
9 -58.59 -40.87 -9.51  0.003 L Temporal ~ Middle temporal gyrus 21
10 -6.06 -33 6947 0.002 L Frontal Superior frontal gyrus 6

Brodmann areas 6, 21, 39, 40, 44, and 47 [51, 52, 54]. The
medial frontal cortex, including the cingulate cortex and,
most importantly, the anterior insula were also activated [7,
24, 30, 32, 33]. In the study by Castelhano et al., (blue
regions represented in Figure 1) we investigated the neural
underpinnings of programming by using fMRI while

subjects performed a bug-detection task, which requires
deep program understanding. This study revealed a brain
network that includes the above-mentioned regions of the
saliency network (cingulate cortex and insula) related to
error monitoring, dorsolateral middle frontal and other
regions involved in working memory and executive
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TaBLE 2: Major ALE foci for the contrast study between the three conditions: programming, reading, and calculation.
Task Cluster Peak coordinates Z value Hem. Lobe Region BA
X Y Z
Reading > calculation 1 -48.15 2523 1132 3.72 L Frontal Inferior frontal gyrus 47
P (FDR) < 0.05 (1000 permutations) 2 -40.77 -50.41 -19.22 3.72 L Cerebellum Posterior lobe ¥
Cluster threshold > 200 3 -46.5  3.56 5037 3.72 L Frontal Precentral gyrus 6
Calculation > reading 1 39.74 -4347 4418 371 R Parietal Precuneus
P (FDR) < 0.05 (1000 permutations) 231 -57.86 56.28 3.54 R Parietal Precuneus
Cluster threshold > 200 2 -26.36  0.39 54.3 3.71 L Frontal Middle frontal gyrus 6
3 -33.62 -45.18 50.63 3.71 L Parietal Inferior parietal lobule 40
Programming > calculation 1 4475 20.09 7.372 2.88 R Frontal Inferior frontal gyrus 45
P <0.04 (1000 permutations) 2 -52.53 -49.42 -2.857 237 L Temporal ~ Middle temporal gyrus 22
Cluster threshold > 200 3 -57.58 -1591 -14.03 171 L Temporal ~ Middle temporal gyrus 21
4 -56.57 -44.84 -13.32 246 L Temporal ~ Middle temporal gyrus 20
5 -13.54 -3911 71.51 1.76 L Frontal Superior frontal gyrus 6
6 -52.12  -75.26 -2.086 1.76 L Occipital ~ Inferior temporal gyrus 37
7 6364 4949  46.8 1.76 R Frontal Medial frontal gyrus 8
8 21.82 0923 65.34 1.76 R Frontal Subgyral 6
9 -51.52 2597  29.12 3.09 L Frontal Middle frontal gyrus 46
10 51.52 2522 3398 1.85 R Frontal Middle frontal gyrus 9
Calculation > programming 1 3172 -62.94 47.39 2.37 R Parietal Superior parietal lobule 7
P <0.012 (1000 permutations) 33.64 -58.01 43.62 2.26 R Parietal Inferior parietal lobule 40
Cluster threshold > 200 2 -32.32 -57.76  42.66 2.58 L Parietal Inferior parietal lobule 40
-22.93  -61.15 46.61 2.51 L Parietal Precuneus 7
Programming > Reading 1 23.54 1232 65.36 1.85 R Frontal Middle frontal gyrus 6
P <0.042 (1000 permutations) 2 -51.52 -73.82 -1.884 1.85 L Occipital ~ Inferior temporal gyrus 37
Cluster threshold > 200 3 4444 2028 7.6 2.75 R Frontal Inferior frontal gyrus 13
404 1431 2932 196 R Sublobar Insula :
4 29.39  -81.5  5.602 1.73 R Occipital Middle occipital gyrus 19
5 -62.63 -42.83 -12.01  1.98 L Temporal  Middle temporal gyrus 21
6 -13.03  -3.644 7239 1.85 L Frontal Superior frontal gyrus 6
7 6.162 4925 47.54 1.85 R Frontal Medial frontal gyrus 8
8 -48.79 2845 31.21 2.88 L Frontal Middle frontal gyrus 9
9 -54.75 -30.88 50.28 1.85 L Parietal Postcentral gyrus 2
10 47.27 2561  46.06 1.73 R Frontal Middle frontal gyrus 6
11 -59.6  -13.01 -14.1 1.73 L Temporal ~ Middle temporal gyrus 21
Reading > programming 1 -50  6.887 13.64 2.75 L Frontal Precentral gyrus 44
P <0.05 (1000 permutations) -3434 2039 5429 2.51 L Sublobar Insula 13
Cluster threshold > 200 -43.33  14.02  9.011 2.37 L Frontal Precentral gyrus 44
-46.46 2564  3.53 2.23 L Frontal Inferior frontal gyrus 47
-52.53  8.134  2.606 2.14 L Temporal  Superior temporal gyrus 22
-404 1112 26.71 2.07 L Frontal Middle frontal gyrus 9
2 -2.02  1.109  48.38 1.64 L Limbic Cingulate gyrus 24
-6.364 4.821 50.64 1.64 L Frontal Medial frontal gyrus 32
function, and posterior regions, namely superior parietal. ~ while code writing preferentially recruits the right

Others have reported that prose writing entails significant
differences when compared to code writing: prose writing
activates left hemisphere regions associated with language,

hemisphere, including regions associated with attention
control, working memory, planning, and spatial cognition
[30], which might be further specialized for the domain of
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TaBLE 3: Regions activated during program understanding.
Z or
Programming Threshold X Y Z T Size Hem. Lobe Region BA
value
Parietal regions
Precentral
Middle and inferior frontal gyrus
Ivanova et al. 2020 P <0.001 Medial frontal
Insula
Middle orbito frontal
Posterior temporal
46 22 8 6.81 369 R IFG (P. triangularis)
12 0 66 535 298 L , ,
Posterior-medial frontal
6 52 42 517 587 R Superior medial gyrus
Tkutani et al. 2020 P(FWE)<0.05 -56 -28 50 5.16 649 L Inferior parietal lobule
24 4 60 4.84 428 R Superior frontal gyrus
-52 30 24 479 346 L IFG (P. triangularis)
-52 -72 45 347 L Inferior occipital gyrus
-50 -54 435 347 L Inferior temporal gyrus
L Left post
Central gyrus and superior parietal lobule
L Primary motor cortex 4
L
and Premotor/supplementary motor cortex 6
R
Krueger et al. 2020 21<t<62 Including the superior and middle frontal
R eyt 09-10
R Inferior and middle temporal gyri 18-19
R Inferior parietal lobule 39-40
R Anterior insula 13
L Anterior insula 13
27 -66 38 10 5442 R Parietal Precuneus 7
-27 -84 -1 10 4921 L  Occipital Middle occipital gyrus 18
48 18 35 8 2694 R Frontal Middle frontal gyrus
Castelhano et al. 2019 P (FDR)<0.05 -48 9 41 11 2265 L Frontal Middle frontal gyrus
33 -84 -16 1514 R Posterior Declive
54 -45 -13 849 R  Temporal Inferior temporal gyrus 20
42 -45 44 413 R Parietal Inferior parietal lobule 40
Siegmund et al. 2017 P (FDR) < 0.01 21;1:0’
6, 21,
Siegmund et al. 2014 P (FDR) <0.01 40, 44,
47
Duraes et al. 2016 P(FDR)<0.05 38 16 3 R Insula 13

Blank spaces in the table: data not reported.

programming [33]. The relation with attention control and
working memory may not be specific to programming, at
least in part, but these functions are particularly engaged in
this complex task.

4. Discussion

We first hypothesized that program understanding is jointly
dependent, but with different weights, on processing of
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FIGURE 2: A schematic representation of the reading and calculation systems and their weighed use for programming skills in the brain.
Previous works suggest the circuitry that is recruited for tasks requiring these skills. Regions shown in orange, green, and blue increase
their activation for the reading, calculation, and programming tasks, respectively (numbers indicate the Brodmann areas). A series of
brain regions link and share resources for the distinct tasks (bar plot summary represent the normalized number of studies reporting
those regions). Despite the fact that ventro-temporal areas related to reading are visible, the parietal regions related to calculation and
visuo-spatial attention are strongly recruited under programming demands. The summary boxes indicate the known functions per region,
and in bold, the function we suggest that those regions might be involved for particular programming skills.

calculus/math operations and reading skills, which motivated
the meta-analysis, including conjunction approaches, to
identify critical hubs and to test if they converge with the
ones identified in the emerging literature on neuroimaging
of program comprehension. Using this strategy, we identified
a functional architecture underlying this cognitive function.

The involvement of frontal decision-related areas, error-
monitoring regions such as the insula and cingulate cortex
and other calculation (parietal precuneus) regions are in line
with our prediction that an integrated system recruiting areas
associated to other tasks such as reading, working memory,
and calculus operates during program understanding [2]. In
particular, attention and planning processes involving parie-
tal regions related to the processing of calculus are activated
(BA7, BA40), in line with the hypothesis that earlier regions
involved in mathematical and reading operations are
recruited for programming, albeit with distinct weights
(Figure 2).

From our review, multiple cognitive processes seem to be
required with distinct weights: cognitive analysis of algo-
rithms and code language as well as mental calculation and
working memory for operations such as multiplication and
sorting. These weights may be dependent on whether the
programming is dominantly graphical or not [32]. The
regions subserving such weight-dependent integration mech-
anisms are required for calculus/math, reading, or both, as
identified in our meta-analysis. These regions include

decision-related areas in frontal cortex and other math (pari-
etal precuneus) and the anterior insula. Reading-related
regions (middle temporal including visual word form area
and inferior frontal gyrus) may also be activated during pro-
gram understanding tasks [32, 33]. In fact, our results show a
close overlap of the reading regions involved in processing
language (extended frontal and middle temporal activations)
with those needed for computer programming skills. Since
their behavioral types appear to be conceptually related, this
relation is expected. However, the observed lateralization
patterns, which are not merely a reflection of language later-
alization, suggest that additional computational processes
kick in during programming tasks. Moreover, attentional,
mental imagery, and manipulation of symbols strongly
recruit the right hemisphere [1, 16, 30, 55-57]. Although
attention control and working memory may not be specific
to programming, they are particularly engaged in this com-
plex task. Furthermore, we found common patterns of acti-
vation for calculation and programming skills in the middle
frontal and precentral gyrus and the insula. These results
plausibly confirm our hypothesis of recruitment of shared
resources between those complex skills. Although reading
and calculation share the same type of hemispheric domi-
nance and may have partly shared the same primitive com-
putational mechanisms [58], and in particular recursion, it
is known that linguistic/semantic and mathematics skills do
not necessarily share the same brain architecture of causally
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Connectivity diagram

Cingulate

—— Functional connectivity
—— Effective connectivity (to insula)

—— Effective connectivity (from insula)

F1GURE 3: Network analysis summary in a form of directional diagram. A previous work revealed the insula receives directed input from the
anterior cingulate BA32 and middle frontal gyrus BA10 and gives directed input to the frontal regions in cingulate gyrus BA24 and middle
frontal gyrus BA8. Moreover, the functional integration also includes a path to other sensory/visual areas (BA18) or math processing regions

(BA40/BA44) [7).

directed influences [28, 31]. The language processing (in par-
ticular reading regions) is important to computer program-
ming. Moreover, calculation competences are also needed
to understand programming. In fact, these are required com-
bined skills to learn programming [59, 60]. A connection
between language and arithmetic has been suggested in both
behavioral [14, 16, 17] and imaging studies [18, 19, 61], in
line with recent models of complex mental processing [62].
This hypothesis of shared resources and distinct connectivity
in the brain might also work as a basis network for program-
ming. In this line, we suggest that emerging connectivity pat-
terns might play a role in programming skills but our view is
limited by the nature of the works available to this review.
Recent studies show that the general semantic system
(e.g., language) responses during code comprehension are
relatively more weak and inconsistent [32] but might play a
role in learning to process computer code [63-65]. This is
expected due to the nature of specific programming demands
that recruit those networks only into a certain extent depend-
ing on task requirements (and in general in a more limited
manner for the reading network). For example, types of func-
tions such as bug-specific error-monitoring processes or
mathematical recursivity (related to programming loops)
may require particular processing requirements. We identi-
fied with the contrast and conjunction analyses common sig-
natures between those skills. This is in line with the notion
that basic mathematical and reading skills are needed before
any learning of programming abilities can be successfully ini-
tiated [59, 60]. Each of the identified neuroimaging studies

regarding programming revealed clusters that were also reli-
ably activated in other studies assessing phonological pro-
cessing and calculation tasks [31, 41]. This matches the
models of complex mental processing that suggest the use
of shared resources in the brain to deal with this kind of
complex skills [62] in particular for the representation of
amounts symbolically or quantitatively [16] and associated
with executive load and selective attention [66] or symbol
recognition and processing of multiple words and digits.
We found also a fronto-insular-parietal network [35, 36]
suggesting a pivotal role for central executive and salience
networks. It is important to highlight the recent work that
showed these brain regions have enough information to
decode functional categories of source code [33] that, in line
with our previous work on the role of the insula, show corre-
lated activity with individual behavioral performance in code
inspection and bug detection. Previous studies focused only
in the identification of bugs in computer code [7, 24, 54].
Now the role of programming writing is also beginning to
be under scrutiny and might be useful to further understand
the neural underpinnings of overall programming skills [30].
Requesting participants to search for bugs in the code can
only partly help disentangle the brain regions activated dur-
ing understanding program code at a deep level. Such bug-
detection mechanisms are probably related to activation in
the anterior insula that is known to be associated with deci-
sion and error monitoring [67], and as part of the salience
network [68, 69] or the error and novelty processing in the
anterior cingulate. The relative roles of the insula and
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anterior cingulate within the saliency network remain a topic
of hot debate, which concerns the relation with task difficulty
and error monitoring. We posit that the insula is more
directly related to decision as a function of task difficulty, as
suggested by previous work [7, 70, 71]. It is possible that
insular contributions may be considered generically evaluat-
ing the quality of evidence that might be relevant for a deci-
sion on code quality and accuracy [7]. This is consistent
with the notion that the insula does belong to the salience
network which is associated with cognitive control mecha-
nisms that support arithmetic processing [72], source-code
debugging, and decision-making. The insula or part of the
cingulate cortex is also involved in other processes such as
cognitive saliency and emotion. Thus, during these bug-
detection tasks, the insula might be activated not only due
to error processing but also because of the engagement of
high cognitive processes related to saliency detection or even
emotional/reward responses (e.g., frustration for not finding
the bugs in the code).

Based on these results, we suggest a novel network archi-
tecture related to programming tasks and in particular bug
detection in the brain. This overlapping network, which
includes fronto-insular and parietal regions (depicted in the
conceptual framework in Figure 3), is also supported by our
previous evidence showing that connectivity between frontal
regions, the insula and parietal math processing regions (pos-
sibly related to the first insight of the algorithm in the source
code), cooccurs with directed interactions (effective connec-
tivity) to reading regions. Given that programming is a far
more complex skill set than reading or calculation, we suggest
that this complex network emerges as a function of task
demands, whereby distinct weights of those cognitive modules
are pivotal in that set (Figure 3). Interestingly, a new form of
top-down controlled brain connectivity with distinct weights
of reading and calculation systems might be important.

These modules are organized as follows: frontal regions
related to math operations, working memory, error monitor-
ing, semantic processing, and executive functions tend to be
more activated in program understanding tasks [7, 51, 53].
Other medial frontal (cingulate cortex) and insular areas
related to the salience network are required for deeper levels
of program understanding [30, 32, 33] that are needed to
error monitoring. Indeed, the insula might be activated here
as part of a more general neural architecture of error process-
ing and novelty in the anterior midcingulate cortex [73, 74].

Our analysis revealed that parietal regions related to
calculation and visuo-spatial attention are activated under
programming skill requirements, in addition to concurrent
recruitment of ventro-temporal areas related to reading.
Connectivity studies further corroborating the proposed con-
ceptual framework will be needed in the future.

5. Conclusion

Our data-driven theoretical proposal suggests that computer
programming skills rely on differential weighted recruitment
of reading and calculation networks, fueled by a pivotal con-
tribution of the anterior insula hub within the saliency net-
work. This might have important implications for shedding

Neural Plasticity

light on how the brain can improve programming perfor-
mance by improving such “reutilization” of earlier processing
modules/networks. This opens the path to a neuroscience-
informed approach that may allow establishing predictive
relationships between brain activity and computer program-
ming skills. The discussion about the reutilization based on
connectivity changes might be pivotal to understand the
brain architecture that is recruited during programming
and should benefit from studies with subjects learning pro-
gramming as a new skill.
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Figure S1: PRISMA 2009 flow diagram for the meta-analysis.
(A) Reading papers. Among the excluded papers that did not
meet the inclusion criteria, the main reasons were as follows:
studies that reported only ROI analysis or did not report
results coordinates in a standard space (N =23; screening
step); techniques other than fMRI (N = 17); studies of special
subject populations (N =3) or not adults (N =4); reviews
(N =1), tested other brain functions, and/or did not use
visual stimuli (N =6); and studies with less than 8 subjects
(N =6). (B) Calculation papers. Among the excluded papers
that not meet the inclusion criteria, the main reasons were as
follows: studies that reported only ROI analysis or did not
report results coordinates in a standard space (N =39;
screening step); techniques other than fMRI (N =1); not
adults (N =2); reviews (N = 2), tested other brain functions



Neural Plasticity

(N =19), did not use visual stimuli (N = 3), and the task was
passive viewing (N =5); studies with less than 8 subjects
(N =2) (Eickhoft et al. 2016). Figure S2: brain activation
maps of reading, calculation, and programming skills. Fron-
tal decision-related areas and other calculation (parietal pre-
cuneus) and reading (middle temporal including visual word
form area and inferior frontal gyrus) are activated during
programming tasks. Maps are represented in a standard
MNI image and FWE corrected for multiple comparisons.
Table S1: reading studies included in the meta-analysis. Table
S2: calculation/arithmetic studies included in the meta-
analysis. Table S3: major activation likelihood estimation
results for the reading, calculation, and programming tasks
separate analysis. (Supplementary Materials)
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