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Abstract

Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and
proteins that drive the cytoplasmic response. The Ga subunit of the G protein, in particular, is highly constrained due to its
many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of
Ga-interacting proteins, clearly indicating that shifts in sequence and associated Ga functionality were acquired over time.
These numerous interactions constrained much of Ga evolution; yet Ga has diversified, through poorly understood
processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic
sequence-based approach to mammalian Ga subunits, we established a set of seventy-five evolutionarily important class-
distinctive residues, sites where a single Ga class is differentiated from the three other classes. We tested the hypothesis that
shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-
specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our
results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We
also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms.
Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical
for the establishment of new Ga classes, whereas others arose in punctuated bursts throughout metazoan evolution. These
Ga class-distinctive residues are rational targets for future structural and functional studies.
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Introduction

How is functional novelty generated when a protein is highly

constrained by its many interactions with other proteins and by its

critical role in the cell? In these proteins, new mutations are likely

to have deleterious consequences by disrupting some important

function within the cell due to the high probability that the

mutation interferes with at least one of the many interactions. The

Ga subunit of the heterotrimeric G protein complex is a classic

example of a highly constrained family of proteins. Heterotrimeric

guanine nucleotide binding proteins (G proteins) serve as physical

couplers between cell surface 7 transmembrane (7TM) G-protein

coupled receptors (GPCRs) and downstream targets known as

effectors. As such, they are critical for signal transduction in

eukaryotes and act as a nexus of extracellular signaling and

intracellular changes. The Ga subunit, therefore, is ideal for

understanding how functional novelty arises when a protein that is

highly constrained evolves.

G proteins have three subunits – Ga, Gb and Gc. In humans,

there are 21 Ga, 6 Gb and 12 Gc subunits, which can be

combined into many possible heterotrimers [1]. The human G

protein signaling pathway is diverse and complex with approxi-

mately 850 GPCRs and dozens of G protein effectors (Jones and

Assmann, 2004). These complex interactions mean that changing

any residue of a G protein may have profound pleiotropic effects

(Figure 1). For example, a promiscuous Ga subunit may interact

with dozens of receptors and effectors [2], thus any mutation

resulting in novel receptor or effector interactions potentially

impacts many signaling pathways and can disrupt other

interactions such as heterotrimer formation. The Ga subunit also

has endogenous enzymatic activity, GTP hydrolysis, which puts

further mechanistic constraints on the protein structure, and also

drives a functional role where Ga acts as a ‘‘timer’’ with the

intrinsic and regulated hydrolysis activity controlling the length of

time the signaling pathways are activated as well as the amplitude

of the response. Ga subunits are further constrained because they

must cycle through multiple conformational states; any alteration

of these states can disrupt the function of the G-protein and its

interactions. The Ga structural core contains nucleotide-binding

domains and switches that establish the basal, active and
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transition-state conformations. All Ga subunits bind GDP and

GTP within a nucleotide pocket comprised of structural elements

called a P-loop and an NKxD motif (Figure 1, center). The basal

state occurs when Ga is bound to GDP, driving switch

conformations compatible with interactions to Gbc subunits.

Nucleotide exchange of GDP for GTP generates switch confor-

mations that define the active state and form an interface for target

downstream effectors while driving the dissociation of Ga from

Gbc. The transition state for nucleotide hydrolysis is a third

conformational state which is only recognized by a subset of

interactors involved in regulation of G protein signaling. The Ga
amino terminus, which is defined by an extended helix that affects

associations with the Gbc dimer, is involved in delimiting the

subunit to the membrane through covalent attachment to lipids,

and associates with a GPCR. Certain residues at both the amino

and carboxyl termini of Ga interact with the activated receptor

and are involved in nucleotide exchange [3,4].

Besides receptors and effectors, a great many other proteins

interact with the Ga subunit to control the activation state

(Figure 1). Ga subunits are regulated by molecules that control its

activation by acting as guanine-nucleotide exchange factors (GEFs)

and guanine-nucleotide dissociation inhibitors (GDIs), and its

deactivation by acting as GTPase activating proteins (GAPs).

Thus, the surface of Ga evolved multiple, specific protein-protein

interaction interfaces – such as those for the Gbc dimer, the

receptor, and the cognate effectors or regulators – many of which

were partially or completely overlapping. The complexity of the

Ga surface means that pleiotropic effects would most likely

accompany any single mutation.

Given these enormous constraints, how did Ga evolve from a

single ancestral subunit to form the four main classes in humans

(G(io), G(q), G(s), G(12)) with multiple subtypes (Figure 2), each

with distinguishing sets of sub-functionalities? Gene duplication

clearly provided the raw genetic material, but how these nascent

duplicates acquired class-distinctive functionality is unclear [5]. A

confounding factor is the sporadic emergence of interacting

proteins throughout evolution (Figure 2). Three new developments

enabled us to answer these questions. First, plants, in contrast to

animals, have a greatly simplified G-protein signaling pathway [6]

thus providing a working structure of an ancestral-like Ga subunit.

Second, there is now a wealth of comparative genomic sequence

data to track over evolutionary time how and when new

functionality was added to the ancestral Ga subunit [7,8]. Third,

there are now atomic structures of Ga in three conformational

states, in its heterotrimeric complex, as well as co-resolved with

several different interacting proteins. These structures allow us to

place the evolutionary changes that we observe into a spatial

context. These spatial data then reveal which protein interfaces or

conformational states provide the evolutionary pressure driving

the emergence of class-distinctive amino acid changes.

To understand how the functional diversity of extant Ga
subunits arose from a single ancestral core, we need to know how

the intermolecular interactions of this signaling network con-

strained the evolution of structure to a set of core sub-functions

associated with all the subunits, and how differentiated structural

elements drove the emergence of unique sets of sub-functions

within subgroups of Ga subunits. Typically, this type of analysis

begins with a deduction of the ancestral structure along with

ancestral core functionalities, followed by an analysis of retained

modifications as subunits duplicated and diverged throughout class

evolution [9–11]. This approach by itself is recalcitrant to

dissecting structure-function relations in a signaling nexus like

Ga because this large Ga family has members containing both

partially overlapping and non-overlapping protein-protein inter-

action interfaces as well as multiple distinct conformations. For

example, many interfaces are dependent on the nucleotide-bound

state.

We developed a broadly-applicable, synthetic approach for

identifying key functional sites in Ga using structural data from

mammalian Ga subunits and sequence data from across the

diversity of eukaryotes. We used mutual information theory

[12,13] to select functional sites and phylogenetic analyses to show

when and how the ancestral Ga diverged. Mutual information

theory is a statistically-robust method for identifying the subset of

sites most critical to the preservation of the functional core of Ga
and those evolved sites important to diversification among

subclasses of Ga (class-distinctive sites). We used this strategy to

select evolutionarily important sites, setting criteria to automati-

cally select sites that are uniquely associated with the functional

divergence of a single Ga class and therefore likely arose from

modifications to parental functionality after gene duplications. We

used the atomic structures of Ga complexes to place our class-

distinctive sites in a three-dimensional context and to identify

sources of constraints on certain class-distinctive sites. We traced

changes in these class-distinctive sites over evolutionary time to

show when and how each of these functional Ga classes emerged.

The initial impetus was to determine the structural requisites for

Ga class-specific functionality to enable regulation of activation/

deactivation, coupling, and specificities. However, given the broad

and deep genomic resources available, the approach described

here is applicable to any protein that is a member of a gene family

that underwent divergence through multiple, closely-spaced gene

duplications, such as phospholipase C proteins, kinases, GPCRs,

etc. Our analysis yielded several surprising results regarding Ga.

For example, class-distinctiveness within the functional core was

conferred by relatively few sites per class. A closer look at these

sites within a class revealed unique features, functions, and

interfaces of that class. Class-distinctive sites were found to impact

all Ga classes and functionalities in addition to protein-protein

interactions, such as the nucleotide binding properties that control

signaling pathway dynamics. We used these data to propose

explanations for several intriguing questions about Ga functional

Author Summary

Proteins evolve new protein-protein interactions through
changes to their residues. Many residue changes are
harmful because they disrupt important existing interac-
tions and functions. The more interactions a protein
participates in, the more difficult it is to make changes
that are not harmful to the protein. And yet, proteins with
many existing interactions are also likely to evolve new
functions or new interactions. How does evolution occur in
the context of a well-constrained protein with many
interactions? We studied the heterotrimeric G protein
subunit Ga, a multi-functional protein that acts at the
nexus between receptors responding to extracellular
signals and the cytoplasmic proteins driving the response
within the cell. The Ga subunit participates in numerous
interactions that have constrained much of Ga evolution;
yet Ga has diversified into four functionally specialized
classes. We developed an approach that identifies key
residue changes important to the evolution of Ga
functionality and class, and gained insight into the types
of residue changes that occurred both early and late in the
evolution of Ga function. By studying these critical
residues in Ga we can de-couple the many functionalities
of this signaling nexus.

Ga Evolution
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divergence and to propose sites that are rational targets for

generating class specific mutations.

Results

Mutual information theory identified key residues
underlying the functional diversification of Ga classes

We applied mutual information theory to 14 of the 17

vertebrate Ga subtypes listed in Table S1 to identify class-

distinctive sites that contribute to functional differences among

subgroups of Ga subunits. A robust multiple sequence alignment

(MSA) (Text S2) was achieved by seeking consensus from sequence

alignments generated by different MSA programs and also by

structural comparisons of different Ga gene family members (see

Materials and Methods).

We identified 106 invariant and 59 class-distinctive sites from an

MSA of 58 mammalian Ga sequences encompassing all 4 major

classes (Figure 3). Our criterion for labeling a site in the alignment

as class-distinctive was that it had an invariant amino acid value in

sequences of three of the Ga classes and a different amino acid

value in sequences from the fourth Ga class (as defined using a

reduced amino acid alphabet, see Materials and Methods). This

criterion limited the analysis to those sites that reflect a

modification within a single, given class of a parental sub-

functionality after a gene duplication event. Our more restrictive

criteria, as compared to the earlier sequence-based analyses on the

Ga family [14,15], allowed us to immediately hypothesize that

each class-distinctive site contributed to a unique functionality of

the given Ga class. A corollary is that any Ga class for which class-

distinctive sites could not be identified would imply a Ga class that

had conserved parental functionality without modification. This

was not the case for mammalian Ga as we found class-distinctive

sites for all 4 classes (14 G(io), 10 G(q), 16 G(s), and 19 G(12) sites;

these sites are labeled with an ‘I’, ‘Q’, ‘S’, and ‘2’, respectively, in

Figure 3). The distinct amino acid value (designated h – distinct)

was not required to be absolutely conserved within all sequences in

the distinctive Ga class, thus allowing for sub-class variation at that

site. In our initial analyses, we defined the conserved amino acid

value (designated g – not distinct) to be invariant among all

sequences in the remaining 3 classes—implying that these g amino

acids were functionally constrained in the ancestor. Sites with

different evolutionary histories are apparent in Figure 3. Some

sites have a single h amino acid value for all sequences within a

class, or distinctive values in only a subclass or even in just a single

sequence. At some sites, however, there is more than one h amino

acid value, implying subclass variation. There was no penalty

placed on the occurrence of g amino acids within the distinctive

class, allowing a site to be ancestral-like early in the evolution of a

given Ga class but then later acquiring class-distinctness. Table S2

summarizes the class-distinctive sites, their g and h residues, and

their evolutionary histories. The class-distinctive sites are displayed

on the Gai1NGbc heterotrimeric complex structure in Figure S1 in

both space-filling and cartoon rendering for relative positioning of

the distinctive sites from different classes. (A comparison between

the sites identified here and the evolutionarily important sites

identified by a different method – Evolutionary Trace – is

presented in Text S3).

Class distinctiveness at a few positions was not readily apparent

because of the stringency of the g residue criterion. A case in point

– the residue located at position Y261 in human Gaq, a residue

flanked by two G(q)-class distinctive residues (‘‘TYP’’ in Gaq in 4th

row of alignment in Figure 3); this begs the question of why this

position was not originally classified as G(q)-distinctive. This is

because one subtype in the G(io) class, namely Gat1, has an amino

acid value of H instead of the g value of N, thus precluding

designation as class-distinctive using the given stringent criteria.

To optimize the utility of the class-distinctive sites, we looked for

neighboring residues that would contribute specificity to the new

sub-functionality gained with the class-distinctive site, but which

may have also independently diverged in a second class and would

not, therefore, have been identified in our first analysis. These sites

are analogous to position Y261 in Gaq. We used a contact distance

of less than 5 Å between the two residues in the active state crystal

structure to define which sites were neighbor to a given class-

distinctive site. We looked for variation in sequences in the distinct

class to select neighboring sites that likely contributed to the same

specificity associated with the class-distinctive site. We limited

variation to within one additional class, otherwise it was impossible

to confidently assign one residue as the g residue. In this second

level of scrutiny, we identified 16 more class-distinctive sites

(designated d in Figure 3). We summarize these d sites in Table S3

and indicate the neighboring h class-distinctive sites that flagged

the second round of analysis. The core residues we identified,

including invariant (106), h (59) and d (16) class-distinctive sites,

encompass approximately half (46–52%) of the total number of

residues in the Ga subunit.

Class-distinctive sites lie within regions of known
important functionality

Functional regions are enriched with both unchanging core

residues and evolving class-distinctive sites (Figure 3); regions that

are less critical for the known functionality of a particular subtype

typically lack class-distinctive sites. For example, residues at both

termini that comprise the GPCR coupling interface are enriched

with class-distinctive sites (20 h class-distinctive sites [plus 4 d sites]

of 66 residues). Similarly, switches I, II, and III are also enriched

for h and d class-distinctive sites (11 [plus 2] of 44). Three of the

most functionally important regions of a Ga subunit are the

GPCR binding interface, the a5 helix with its b sheet enclosure,

and the 3 switches. The GPCR, through its interactions with the

Ga subunit, determines which extracellular signal is being received

and which pathway will be stimulated by that signal. The a5 helix

and surrounding residues are critical for receptor-mediated

nucleotide exchange. The switches are critical for interactions

with target effectors, GEFs, GAPs and GDIs that affect the

response and state of the Ga. In most cases, changes at these sites

are deleterious. The evolutionary shifts at these critical sites,

however, suggest a fundamental alteration in the function for that

Ga class.

Figure 1. Ga as a regulated molecular signaling nexus. This graphic of the Ga signaling nexus delineates functional elements within the
molecule such as nucleotide binding (e.g. NKxD motif, TCAT motif, P-loop) and GPCR-driven nucleotide exchange (a-helix 5, b-strand 6), the different
conformations of Ga (i.e. transition and GDP-, GTP-bound states), along with mammalian macromolecules that have been reported to directly interact
with Ga. Reported interactions are classified by nucleotide dependence and by functional outcome (GDI, GEF, etc.). The single-headed arrow
represents an interaction leading to signaling, the ‘X’ represents an interaction that does not lead to signaling, a blunt arrow represents interactions
leading to signal termination, while the double-headed arrow represents a neutral physical interaction. While the list of reported interactions is
intended to be extensive, it is not intended to be exhaustive, particularly in regard to the GPCRs. An expanded figure legend with additional
references is in Text S1.
doi:10.1371/journal.pcbi.1000962.g001
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Figure 2. Evolution of the molecular signaling nexus Ga. A heuristic tree that captures commonly accepted characteristics between taxa and
Ga and Gb subunits from representative genomes is shown to the left. Plants have a single Ga subunit and the two fungi have either 2 or 3 Ga that
do not fit any of the 4 animal subtypes. Thus, the evolution of the Ga subunit from a single gene to the multigene family evident in mammals occurs
within eukaryotes. Divergent Ga subunits found in some genomes are not included in this diagram. Homologs of well-studied proteins that interact
with mammalian Ga subunits are indicated to the right. For incomplete genomes, the presence of the interactor may be indeterminate and is
indicated by a ‘?’. Homology indicates the presence of a protein in the given organism, but not all interactions have been verified in lower metazoans.
As is evident from the chart, plant Ga subunits contain a single known interacting protein, the Gbc heterodimer. The number of interacting proteins
grew steadily throughout evolution of the GPCR signaling system. No bootstrap or other credibility scores are shown for the heuristic tree as this is

Ga Evolution
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Classes diverged by modifying Ga coupling to the GPCR
and, in some cases, by modifying the switches

After duplication, each Ga gene diverged by evolving class-

distinctive sites in a subset of – but not all –functionally-

important regions (Figure 3). Since a different subset of

functional regions were modified within each gene subfamily,

the set of regions selected for evolving class-distinct functionality

become characteristic for that gene or gene subfamily. For

example, G(12) is unique in that it has class-distinctive sites in

switch I. In contrast, both G(s) and G(12) have distinctive sites in

switch II. Switches I and II are involved in binding the Gbc
heterodimer [16,17] and other proteins such as regulators of G

protein signaling (RGS) that stimulate Ga GTPase activity

[18,19]. A change in a switch commonly adds or removes critical

contacts between the Ga and its effectors or regulators,

suggesting that the changes in switch I of G(12) altered the

interactions between G(12) and some of its binding partners,

potentially regulatory proteins (see below). Analogously, class-

distinctive sites evolved in switch III and the upstream region in

G(q) and G(s), with G(io) containing d sites that also have h
residues in G(q) or G(s) subunits. However, there are no G(12)-

distinctive sites located in switch III. Switch II (helix 2) and the

region upstream of switch III (helix 3 and loop) is an interface for

cognate effectors [20], again suggesting altered interactions in

these Ga classes, but with effectors this time, allowing for the

partially overlapping interfaces of regulatory and effector

proteins on the Ga subunit. The GPCR coupling region,

distributed over both termini, contains class-distinctive residues

from all 4 major classes. These differing patterns of class-

distinctive sites between switches and the GPCR interaction

region are consistent with the coupled receptor and effector class

specificity noted by Lichtarge et al. [14], but also indicate that

natural selection exploited Ga as an existing signaling nexus by

independently modifying individual regions associated with sub-

functionalities (such as switch I) so that new connections in the

network between effectors, regulators and receptors formed.

These changes to different subsets of functionally-important

regions within the Ga subunit ultimately resulted in new proteins

with altered function and in new class-specific signaling

pathways.

Ga subunits are not mere scaffolds for protein-protein

interactions; they also affect signaling dynamics. We propose that

control of GPCR based signaling pathways occurs through

sequence-based modifications to Ga that indirectly affect nucle-

otide binding by directly affecting interactions with regulators such

as GPCRs, GDIs, GAPs and GEFs. The a5 helical region,

discussed below, has been shown to be important for receptor

mediated exchange [21]. The a5 helical region contains class-

distinctive sites from all classes except for G(q). Other regions are

also involved in nucleotide binding. G(q) subunits are unique

because they contain a class-distinctive site in the P-loop associated

with nucleotide binding and because G(q) subunits have an

undetectable basal nucleotide exchange rate [22]. Directly

modifying nucleotide exchange properties within the different

classes throughout evolution enhances the functional role of Ga as

a ‘‘timer’’ controlling the length of time of activation of the

different signaling pathways.

We hypothesize that the evolutionary patterns associated with

a small set of class-distinctive sites within these largely

autonomous functional domains of Ga predict residues that

are critical for the functional specificity of these domains within

each Ga class. In the following analyses, we test this hypothesis

and link these evolutionary changes with class specific functions

showing how this analytical framework can explain several

conundrums regarding the structure and function of specific Ga
subunits. We will explain (1) how functional specificity evolved,

(2) how Ga subunits evolved class-specific functionality in their

active state without affecting their inactive state, (3) how

different but structurally-related Ga subunits evolved opposing

functional outcomes, and (4) how new functionality evolved by

modifications to residues participating in intramolecular inter-

actions – versus intermolecular interactions – thereby control-

ling activation of the Ga subunit, and (5) how Ga diversified

throughout metazoan evolution within and between functional

classes.

An example of the evolution of functional specificity:
Two changes at G(q)-distinctive sites determine the
specificity of the GRK2 interaction with Gaq

All three G(q) subtypes included in our study, Gaq, Ga11,

Ga14, acquired two G(q)-distinctive sites that we propose are key

to determining the specificity of the interaction with G protein-

coupled receptor kinase 2 (GRK2). GRK2 inhibits GPCR

signaling by phosphorylating activated GPCRs [23], and also

by sequestering Gbc and G(q) subunits through its pleckstrin

homology (PH) [24] and RGS homology (RH) [25] domains,

respectively. The atomic structure of an activated Gai/q chimera

and Gbc in complex with GRK2 [26] revealed the structural

elements by which G(q) subunits are sequestered. In this complex,

the RH domain of GRK2 interacted with switch II and an

adjacent helix in Gai/q while the N-terminal helix of Gai/q – the

domain inherited from Gai1 – was disordered (Figure 4A). G(q)

family subunits have no distinctive residues in switch II to

distinguish this family from members of the G(io) class. However,

G(q) family subunits do have two G(q)-distinct residues in the

helix bordering switch II that formed part of the interface. Gaq

residue T260, labeled as the 9th G(q)-distinctive site in Figures 4A

and 4D, formed a hydrogen bond with a GRK2 residue in

the structure. P262, G(q) site 10, was found to pack into a

hydrophobic pocket formed by GRK2 and Gaq residues. Tesmer

et al. [26] reported that GRK2 binding to G(q) subunits was

eliminated with a P262K mutation, which corresponded to a h to

g mutation at G(q)-distinctive site 10, and identified residues

261–263 as a specificity determinant region [26]. Residue Y261

was discussed earlier and is a d site with h residues in both

G(q) family members and in Gat1 of the G(io) family. The role

of G(q)-distinctive site 9 (T260) in contributing to specificity

determination has not previously been recognized or verified

experimentally.

We propose that G(q)-distinctive sites evolved to drive specificity

of G(q) interactions to GRK2 but not p63RhoGEF, a G(q) specific

effector that activates the small GTPase RhoA [27–29]. The

atomic structure of p63RhoGEF complexed with activated Gai/q

[30] revealed this interface contains no direct interactions with

G(q)-distinctive residues (Figure 4B). In addition, the modeled

heterotrimeric G-protein complex containing Gaq (Figure 4C)

revealed a parental interface on Gaq for the Gbc heterodimer. At

present, only the GaqNGRK2 interface appears to constrain G(q)-

distinctive sites 9 and 10.

not intended to be a definitive phylogeny. Marine sponge = Geodia cydonium; Freshwater sponge = Ephydatia fluviatilis; Worm = Caenorhabditis
elegans; Fruitfly = Drosophila melanogaster; Human = Homo sapiens.
doi:10.1371/journal.pcbi.1000962.g002
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Figure 3. Alignment of select human Ga subtypes highlighting invariant and class-distinctive sites. Invariant residues are conserved
across all 4 Ga classes (INV: colored dark gray) while class-distinctive sites are conserved across 3 of the 4 Ga classes to a non-distinctive (g: colored
light gray) amino acid value. At class-distinctive sites, distinctive (h) amino acid values are allowed in the remaining class but are not required to be
absolutely conserved within all sequences in the distinctive Ga class, thus allowing for subclass variation at that site. Some sites are identified as class-
distinctive based on variation in a single non-human sequence. See Table S2 to identify sequences where h occurs. d sites lie within 5 Å of a

Ga Evolution

PLoS Computational Biology | www.ploscompbiol.org 7 October 2010 | Volume 6 | Issue 10 | e1000962



An example of the evolution of active-state-specific
functionality: G(12)-distinctive residues in the switches
are critical for the interaction between p115RhoGEF and
Ga13 in the active state but do not disrupt the primordial
interaction with Gbc in the inactive state

The Ga12/13Np115RhoGEF interface is dense with G(12)-

distinctive sites (Figures 5A, 5B). Class-distinctive sites, analogous

to those in the interaction of Gaq with GRK2, contribute

significantly to the specificity of interactions between the G(12)

subunit family and p115RhoGEF. The G(12)-distinctive sites,

however, lie in the switches, which are regions sensitive to the

bound nucleotide. In contrast, the G(q)-distinctive sites driving the

Gaq specificity lie in a helix neighboring switch II, a region not

sensitive to the state of the bound nucleotide. We hypothesize that

the G(12)-distinctive sites confer effector and regulator specificity

in the active and transition states (Ga13 in Figure 5A and Ga12 in

Figure 5B), yet do not disrupt interactions with Gbc in the inactive

state (Ga12 in Figure 5C) even though the sites are in switches I

and II, regions important for binding both Gbc and p115Rho-

GEF.

The G(12) story is complicated by significant differences in the

functional outcomes that result when the two different vertebrate

G(12) subunits interact with p115RhoGEF. Specifically, Ga13, but

not Ga12, activates RhoA when in complex with p115RhoGEF.

Several of the G(12)-distinctive sites in switch II, which form part

of the interface, show subtype variation within the gene family.

This subtype-specific variation at G(12)-distinctive sites in switch II

may contribute to this G(12) subtype difference in effector

functional outcome (below).

P115RhoGEF is a G(12) specific effector that binds members of

the G(12) family in a nucleotide-dependent manner and acts as a

GAP toward Ga12 and Ga13 [31,32]. P115RhoGEF also

stimulates GEF activity on Rho GTPase when bound to Ga13,

activation exerted via its DH and PH domains [31,33]. The

structure of the N-terminal domains of p115RhoGEF bound to an

activated Ga13/i1 chimera (Figure 5A) suggested the GAP activity

was associated with an N-terminal bN-aN hairpin element that

was conformationally distinct from canonical RGS domains,

which had also been shown to possess GAP activity toward Ga
proteins [20]. Mapping our class-distinctive sites onto the structure

of the Ga13/i1Np115RhoGEF complex revealed an interface

covering switches I and II of the Ga13 subunit, a region that

possesses 7 G(12)-distinctive sites within these two switches. One

(site 10, Figures 5A and 5D) of three G(12)-distinctive sites in

switch I made a direct contact to the bN-aN structural element of

p115RhoGEF. Mutating the h amino acid value at site 10 (K204)

diminished binding of p115RhoGEF to Ga13 [34,35], verifying the

importance of this G(12) site in the evolution of G(12) functional

specificity. Chen et al. [20] also noted that R201, which is the h
amino acid in G(12)-distinctive site 9, acted as a tether between

switch I and a Ga13-unique helical insert within the a-helical

domain, suggesting that some distinctive sites may be important

for switch conformation and intra-domain contacts rather than

direct interactions at an interface.

The Ga13/i1Np115RhoGEF structure revealed that the RGS-like

box of p115RhoGEF bound to the Ga effector interface (switch II)

rather than the typical regulator interface of Ga13. Chen et al. [20]

proposed that, based on the effector-like interactions between

switch II and the RGS-like box, Ga13 may act indirectly on the

DH and PH domains of p115RhoGEF through the RGS-like box

to exert the GEF activity on RhoA. We show that two (sites 12 and

13) of three G(12)-distinctive sites in switch II made direct contacts

to residues of the RGS-like box of p115RhoGEF. Distinctive sites

11 and 12 in switch II show subtype variation, with the g amino

acids evident in Ga13 at these sites (Figure 5A) and the h amino

acids in a model of Ga12 [36] bound to p115RhoGEF (Figure 5B).

P115RhoGEF also acted as a GAP toward Ga12 [32], but Ga12,

unlike Ga13, did not mediate RhoA activation [31]. It is possible

that the subclass sequence variation at these two sites account for

this subtype specific loss of p115RhoGEF activity, but the story

may be more complex (see Text S4 for additional discussion).

Although these G(12)-distinctive sites confer specificity to the

interaction with p115RhoGEF when the Ga subunits are in the

active/transition state (Ga13 in Figure 5A, Ga12 in Figure 5B), the

G(12) subunits still bind Gbc in the inactive state (Ga12 in

Figure 5C). The switches in the Ga12NGDP conformation form a

ledge with Gbc binding to the side of the ledge shaped by

conserved residues (Figure 5C, right view and inset). The G(12)-

distinctive residues (sites 10–13) are on the opposite side of the

ledge, positioned away from the Gbc interface, and thus do not

disrupt G(12) family members binding to the Gbc heterodimer.

Gbc is not the only macromolecule which binds the inactive

conformation. GoLoco motifs found in several proteins also bind

the GaNGDP conformation (see below and also Figure 1), but

GoLoco motifs bind in the concavity formed by the G(12) sites 10–

13 and the main Ga structure (Figure 5C, right view and inset).

Several of the G(12) h residues in the switches are positioned to

discriminate among molecules that utilize this surface (data not

shown), emphasizing the pleiotropic effects that arise whenever

shifts are made in a molecule highly constrained by so many

interactions.

An example of the evolution of opposing outcomes in
structurally similar Ga: G(s)-distinctive sites may drive the
conformational changes within the Ga interface affecting
the interactions of Gas and Gai with adenylyl cyclase

Two Ga subunits interact with adenylyl cyclase (AC) with

opposite functional outcomes. Gas stimulates AC, whereas Gai

inhibits AC. Comparisons of the crystal structures of Gai1NGTPcS

[37,38] with those of GasNGTPcS [39], and the GasNGTPcSNVC1

NIIC2Nforskolin [40] complex prompted Sunahara et al. [39] to

suggest that the interface on Gas for AC (Figure 6A), which is

comprised of switch II (Figure 6B ‘‘sw II’’) and its neighboring loop

(Figure 6B ‘‘neigh’’), was similar in sequence but dissimilar in

shape to the same region on Gai1 (Figure 6B; Gas, gray cartoon;

Gai1, green cartoon). They concluded that disparately-shaped

binding surfaces, not sequence differences, drove the distinct

functional outcomes [39,40]. With their model in mind, we noted

three G(s)-distinctive sites (sites 7, 8, and 9 in Figures 6A and 6D)

are in or near switch II. Site 9 is the only one of these sites that has

a direct interaction with AC (Figure 6B), but a mutation of three

residues at the interface that also included site 9 resulted in only a

distinctive site but are conserved in 2 classes (see Table S2 and Table S3 for summaries). h amino acid values are colored according to Ga class and
noted above the alignment: ‘I’ = G(io) site (green); ‘Q’ = G(q) site (magenta); ‘S’ = G(s) site (blue); ‘2’ = G(12) site (yellow orange) and ‘d’ = d site.
Functional regions are indicated below the alignment, including regions important for coupling to the receptor (GPCR), guanine-nucleotide-
dependent conformational change (switches I, II, III) and nucleotide binding (P-loop, NKxD, TCAT). Also noted below the alignment (‘*’) are distinctive
sites discussed in more detail in results. Distinctive sites for all 4 Ga classes were defined using 58 mammalian Ga sequences from 14 subtypes and a
reduced amino acid alphabet (Materials and Methods).
doi:10.1371/journal.pcbi.1000962.g003
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Figure 4. G(q) class-distinctive sites in structural context. (A) The RH domain of GRK2, shown as a sand colored cartoon display, in complex
with activated Gai/qNGDPNMg2+NAlF4

2 (PDB ID 2BCJ). In all structural panels in this figure, Gai/q is shown as spheres with core residues colored gray if
the residues are conserved between Ga subunits (either INV (invariant) or g (non-distinct) amino acids) while G(q)-distinctive sites are colored hot
pink only if they contain a h (distinct) amino acid. Non-core residues and d sites are colored white. G(q)-distinctive sites are numbered according to
their position in the signature sequence (see panel (D)). (B) The DH and PH domains of p63RhoGEF, in a teal colored cartoon and surface display,
binds to activated Gai/qNGDPNMg2+NAlF4

2 (PDB ID 2RGN). Gai/q is in the same orientation as panel A. (C) Homology model of GaqNGDP (sphere display)
bound to GbNGc (deepblue/copper cartoon) heterodimer. Two orientations related by a 180u rotation about the vertical axis are shown. (D) Signature
sequences are formed by grouping all distinctive sites for a given class together, removing all residues between individual distinctive sites of the
noted class. The distinctive sites for each class are presented in order from the N-terminus to the C-terminus and numbered accordingly. Amino acids
that correspond to the h values at the G(q) site are colored hot pink. Sites that interact with GRK2 are denoted by ‘G’ above the site, while sites that
are buried and not visible are denoted by ‘b’ above the site.
doi:10.1371/journal.pcbi.1000962.g004
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Figure 5. G(12) class-distinctive sites in structural context. (A) The structure of the p115RhoGEF RGS-like box domain (dark teal cartoon) and a
bN-aN hairpin element (cyan loop cartoon) bound to an activated Ga13/i1 chimera (Ga13/i1NGDPNMg2+NAlF4

2) (PDB ID 1SHZ). In all structural panels in this
figure, Ga is shown as spheres with core residues colored gray if they are conserved between Ga subunits (either INV (invariant) or g (non-distinct)
amino acids) while G(12)-distinctive sites are colored yellow orange only if they contain a h (distinct) amino acid. The chimeric Ga subunit in this
structure also contained h (distinct) amino acids at several G(io)-distinctive sites (green spheres). Non-core residues and d sites are colored white. G(12)-
distinctive sites are numbered according to their position in the signature sequence (see panel (D)). (B) Model of Ga12/i1 in complex with p115RhoGEF.
Ga is in the same orientation as panel A. (C) Homology model of Ga12NGDP (sphere display) bound to GbNGc (deep blue/copper cartoon) heterodimer.
Two orientations related by a 180u rotation about the vertical axis are shown. The inset is a close up view of the Gbc binding region in the right view. (D)
Signature sequences are formed by grouping all distinctive sites for a given class together, removing all residues between individual distinctive sites of
the noted class. The distinctive sites for each class are presented in order from the N-terminus to the C-terminus and numbered accordingly. Amino
acids that correspond to the h values at the G(12) site are colored yellow orange. Sites that have direct interactions with p115RhoGEF are denoted by ‘R’
above the site, while additional sites in switches I or II are denoted by ‘1’ or ‘2’, respectively, above the site.
doi:10.1371/journal.pcbi.1000962.g005
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Figure 6. G(s) class-distinctive sites in structural context. (A) The structure of the catalytic domains of adenylyl cyclase (VC1 in sand cartoon,
IIC2 in purple cartoon) bound to an activated Gas (GasNGTPcS) (PDB ID 1AZS). In all structural panels in this figure, Gas is shown as spheres or cartoon
with core residues colored gray if they are conserved between Ga subunits (either INV (invariant) or g (non-distinct) amino acids) while G(s)-
distinctive sites are colored blue only if they contain a h amino acid. Non-core residues and d sites are colored white. G(s)-distinctive sites are
numbered according to their position in the signature sequence (see panel (D)). (B) Superimposition of Gas (light gray cartoon with h amino acids at
G(s) sites of interest rendered as blue sticks) and Gai1 (PDB ID 1GIA in light green cartoon with corresponding g amino acids at G(s) sites in sticks and
colored gray) highlighting sequence and backbone conformational changes in switch II (‘‘sw II’’) and loops near the adenylyl cyclase interface. The
two views are related by a 90u rotation about the vertical axis. VC1 is in sand spheres and IIC2 is in purple spheres. G(s) site 11 lies in a loop
neighboring switch II that forms part of the binding interface (‘‘neigh’’) while G(s) site 13 is in a loop that abuts the binding interface (‘‘abut’’). (C)
Homology model of GasNGDP (sphere display) bound to GbNGc (deepblue/copper cartoon) heterodimer. Two orientations related by a 180u rotation
about the vertical axis are shown. (D) Signature sequences are formed by grouping all distinctive sites for a given class together, removing all
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threefold reduction in AC activation [39,41], consistent with the

proposed role of conformational differences, not sequence

differences, as the source of discrimination between Gai1 and Gas.

There are two other G(s)-distinctive sites near the interface: G(s)

site 11 that lies in the neighboring loop that forms part of the

interface, and site 13 that lies in a loop abutting the interface

(Figure 6B ‘‘abut’’). The g amino acid in Gai1 at G(s) site 13 is a

solvent-exposed lysine, whereas the h amino acid in Gas at the

same site is a buried histidine. Adjustments to the backbone in the

abutting loop allow for these different side chain orientations

(Figure 6B) in the two Ga subunits. The abutting loop is different

in sequence and length between G(s) and G(io) family members,

which contributes to the conformational differences in this loop

between the two families [39]. In contrast, the loop neighboring

switch II containing G(s)-distinctive site 11 is similar in sequence

and length between G(s) and G(io) family members [39], except for

the single G(s) class-distinctive site, even though it adopts slightly

different conformations in the two family members. Conforma-

tional differences in this neighboring loop may be driven both by

sequence changes at site 11 – the bulky phenylalanine (g amino

acid) in Gai1 is shifted in position from the leucine (h amino acid)

in Gas [39] – and by the conformational changes in the abutting

loop. Thus, conformational differences in these two loops leading

to the opposite functional outcomes between Gai1 and Gas are

potentially driven by the class-distinctive sites in G(s) subunits.

Both G(s)-distinctive sites 11 and 13 were identified by Sunahara et

al. [39] in a structural analysis as critical components driving

structural differences, which is consistent with earlier mutational

studies replacing entire loops in the two Ga families [41]. This

analysis suggests that G(s)-distinctive sites could influence the

conformational changes that affect the interactions of Ga subunits

with AC.

An example of new functionality in intramolecular
interactions: G(io)-distinctive sites in a helix controlling
activation of Ga by the GPCR

Though there are two d sites in switch III of G(io) family

members, there are no G(io)-distinctive sites in the switches of all

three subtypes (Gai, Gao, Gat) of the G(io) family members

(Figure 7A, left view); all of the G(io)-distinctive sites lie on the

opposite face of the molecule (Figure 7A, right view) or are buried.

The lack of G(io)-distinctive sites on the switch side of the molecule

implies that this family of Ga subunits has maintained the parental

functionality in all switches and, therefore, continues to interact

with the primordial set of effectors and regulators. While the

interface remained ancestral, new effectors – such as GoLoco

motifs [42] (Figure 7A, left view) or PDEc [18] – that utilized

surface areas of the parental structure emerged in metaozoans.

Most of the G(io)-distinctive sites on the opposite face of the

subunit (Figure 7A, right view) tend to lie in regions associated

with binding to the GPCR and with GPCR-driven GDP release (7

sites out of 14 total G(io)-distinctive sites) implying modifications to

GPCR specificity and Ga nucleotide binding properties. An N-

terminal peptide from Gat1 of the G(io) class was reported to

competitively inhibit Gat1-rhodopsin interactions [43]. This N-

terminal region contains class-distinctive sites from all four classes

(Figure 3). A site-specific fluorescence labeling study reported the

greatest receptor activation induced intensity changes and

emission shifts – indications of a less aqueous accessible

environment – at 3 residues within the Gai1 N-terminal helix

[44]. Two of these three residues are class-distinctive sites: G(q)-

distinctive site 2 and G(12)-distinctive site 3 (Figure 3). Further-

more, another study identified G(s)-distinctive site 1 as being a key

determinant of GPCR selectivity in G(q) family subunits [45]. In

yet another study that further refined the GPCR contact surface

on Ga subunits, we find the first three G(io)-distinctive residues

(sites 1, 2 and 3) lie within the 10-amino acid region in the N-

terminal helix identified by covalent cross-linking as a site of

contact on Gat1 by the GPCR rhodopsin [46] (Figure 3). We

hypothesize these class-distinctive sites are key determinants in

Ga-GPCR coupling, although subtle and cooperative interactions

are also involved [47].

Similarly, previous studies found key sites of GPCR interaction

on the C-terminal region of Ga subunits [48–52], a region with

several class-distinctive sites. However, several of the sites

important for GPCR specificity in the C-terminus rapidly evolved

and are thus unique to each Ga subtype.

In contrast to Ga-GPCR coupling in which class specificity was

conferred by changing intermolecular interfaces, we hypothesize

Gai evolved class specific functionality by changing an intramo-

lecular interface. Three G(io)-distinctive sites within a helix

reported to undergo conformational shifts during activation are

likely responsible for mediating that conformational shift during

the GPCR driven release of GDP in a class specific manner

(Figure 7B). Oldham et al. [21] proposed, based on their measured

changes in mobility for residues within helix 5, that helix 5 rotates

and translates during GPCR induced activation and in conjunc-

tion with the release of GDP. All three of the G(io)-distinctive sites

in helix 5 were mutated [21]; mutations at G(io)-distinctive sites

12, 13 and 14 decreased rate of receptor-catalyzed exchange,

especially site 14, while the mutation at site 13 also affected the

basal exchange rate. In a different study, Kapoor et al. [53]

reported that mutation V332A in helix 5 of Gai1 increased basal

exchange rates. This residue corresponds to d site 15 that lies

between G(io)-distinctive sites 12 and 13. An additional G(io) site,

site 11, that lies in b-strand 6 (Figure 7B) shows subtype variation

within the G(io) class, although no experimental evidence yet links

modifications at this site to class-specific functionality. Intriguingly,

G(io) sites 12 and 13 also show subtype variation within the G(io)

class, in stark contrast to the conservation evident at these same

sites in the other three classes. These results are consistent with our

proposal that the G(io) class of Ga subunits evolved unique

properties for this conformational shift.

Contrasting how different effectors within a class
achieved functional diversification: Modifications to
ancestral functionality drive the GaqNGRK2 interaction
but not the GaqNp63RhoGEF interaction

We proposed earlier that G(q)-distinctive sites evolved to drive

specificity of G(q) interactions to GRK2 (Figure 4A) but not to

p63RhoGEF (Figure 4B). In contrast to the Gai/qNGRK2 interface

in which 80% of the Ga residues within 4 Å of GRK2 are either

invariant or G(q)-distinctive sites, only 50% of the Ga residues at

the Gai/qNp63RhoGEF interface have core functionality, either

through invariance or G(q)-distinctive sites. This suggests the

GaqNp63RhoGEF interaction arose through de novo evolution of

residues between individual distinctive sites of the noted class. The distinctive sites for each class are presented in order from the N-terminus to the
C-terminus and numbered accordingly. Amino acids that correspond to the h values at the G(s) site are colored blue. Sites that have been proposed
to be important to the interaction with adenylyl cyclase are denoted by ‘A’ above the site, while additional sites in switches II or III are denoted by ‘2’
or ‘3’, respectively, above the site.
doi:10.1371/journal.pcbi.1000962.g006
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Figure 7. G(io) class-distinctive sites in structural context. (A) The structure of the GoLoco domain of RGS14 (blue cartoon) bound to an
inactive Gai1 (Gai1N GDP) (PDB ID 1KJY). In all structural panels in this figure, Gai1 is shown as spheres or cartoon with core residues colored gray if
they are conserved between Ga subunits (either INV (invariant) or g (non-distinct) amino acids) while G(io)-distinctive sites are colored green only if
they contain a h (distinct) amino acid. Non-core residues and d sites are colored white. G(io)-distinctive sites are numbered according to their position
in the signature sequence (see panel (D)). Panel A shows two views of Gai1 related by a 180u rotation about the horizontal axis. The left view is of the
switch region of Gai1 while the right view is of the top of the subunit. (B) Closeup view of b-strand 6 and a-helix 5 from Gai1 with the side chains of
G(io)-distinctive residues in a stick rendering. The orientation is the same as the right-hand view in panel A. Helix 5 rotates and translates toward b-
strand 6 (arrow) during GPCR-mediated activation of the Ga subunit. Sites 12 and 13 in Gai1 are the h residue but show subtype variation within the
G(io) class. G(io) site 11 (colored lime green) lies in b-strand 6 and also shows subtype variation; Gai1 possesses the g residue at that site and is,
therefore, colored gray in (A). (C) Structure of Gai1NGDP (sphere display) bound to GbNGc (deepblue/copper cartoon) heterodimer (PDB ID 1GP2). Two
orientations related by a 180u rotation about the vertical axis are shown. (D) Signature sequences are formed by grouping all distinctive sites for a
given class together, removing all residues between individual distinctive sites of the noted class. The distinctive sites for each class are presented in
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neo-functionality with the acquired utilization of residues that

were not previously functional, rather than primarily through

modifications to parental functionality like the GaqNGRK2

interaction. This hypothesis is further supported by noting that

the Gaq interface with p63RhoGEF, containing 30 residues, is

twice the size of the GaqNGRK2 interface, which contains only 15

residues. Therefore, evolving the GaqNp63RhoGEF interface

required fixing an additional 15 residues beyond those used in

parental functionality, enough residues to warrant identifying this

as de novo evolution of an interaction interface.

Discussion

Ga subunits of G proteins are essential for signal transduction in

all eukaryotes. As eukaryotes diversified and became more

functionally complex, so did Ga subunits. Extant Ga subunits

arose through multiple rounds of duplication and divergence [54].

How these gene duplicates functionally diversified, however, is not

well understood. Because Ga resides at the nexus of many

signaling pathways and interacts with many effectors, any change

can have profound negative pleiotropic effects. How then do

highly constrained proteins like Ga evolve the functional

complexity we see today? We hypothesize that a narrow subset

of class-distinctive sites has the evolutionary potential to confer

class-distinctive function with minimal evolutionary cost. From a

structural point of view, these sites are those that can mutate and

shift the class functionality with a minimal deleterious effect on

other aspects of the signaling nexus. At first blush, this idea that

highly constrained sites are the ones that confer class specificity is

counter-intuitive. Part of the explanation is simple; we found class

specificity in the core because we seeded this analysis with the

conserved sites within and between classes and avoided highly-

labile sites because lack of conservation provides little information

about the molecular evolution. Another reason we focused on

conserved residues is because changes in these residues have

known functional consequences, thereby making any observed

class-distinctive change in these sites likely critical for class specific

function. We identified 59 of these sites spread across the 14

mammalian Ga. In several instances, these class-distinctive sites

associate with known class-specific properties. We also identified

many more uncharacterized sites that likely play a role in the sub-

functionalization of mammalian Ga. While we have probably not

identified all of the residues important for class-distinctive

behavior, we identified an important subset of these residues.

Mutations at our selected sites will likely disrupt a class-distinctive

functionality, but are not likely to be sufficient to confer a full gain

of functionality. Other residues, both neutral and restrictive

[10,11], most likely occurred but would not have been identified

by our approach.

Our analyses suggested several interesting evolutionary patterns.

We showed how two changes at G(q)-distinctive sites determine

the specificity of the GRK2 interaction with Gaq and how changes

at G(q)-distinctive sites are effector specific, driving specificity of

the GaqNGRK2 interaction but not the GaqNp63RhoGEF

interaction. We also highlighted the role of G(12)-distinctive sites

in the specificity of the Ga13Np115RhoGEF interactions. Two of

these three examples illustrates how functional diversity within and

between classes was driven by changes to parental functionality at

class-distinctive sites, while the third example, p63RhoGEF,

showed emergence of new functionality by utilizing previously

non-constrained residues. In this case, it is possible that the

interface evolved in two stages – originally the extended PH

domain of p63RhoGEF could have bound to the parental

structure of the switch region and the DH domain could have

evolved contacts over time to a non-parental surface area

(Figure 4B). This process would be mechanistically similar to that

speculated for the phosducin interaction with the Gb subunit [7].

We also showed how evolution can overcome the complexity of G

protein interactions by producing structurally-related Ga subunits

with opposing functional outcomes. For instance, we showed that

by evolving class-distinctive sites that induced conformational

changes in Ga, Ga proteins shift from inhibiting AC to stimulating

AC. All of these changes affected only the active/transition states

of Ga while leaving the inactive state intact and able to interact

with the heterodimeric Gbc complex (Figures 4C, 5C, 6C and

7C). Although two distinctive residues, G(12)-D site 10 and G(s)-D

site 8 lie at the interface with the Gbc complex and have the

potential to confer specificity to the interaction of Ga with Gbc,

we are not aware of any published data suggesting there is

specificity in this interaction. Finally, we illustrated how novel

functionality evolves by variations at sites involved in functionally

important conformational changes related to Ga activation rather

than through evolution of new interfaces.

All four Ga classes were formed early in metazoan evolution.

From the number of distinctive sites established in the lowest

metazoans and the correlations of these changes with class-

specific function, our data suggest that the four major Ga classes

were established by the split with sponges, in agreement with two

earlier studies of Ga evolution [55,56]. Ga evolution is

characterized by bursts of duplication and diversification followed

by long quiescent periods [55] and this is also true for class-

distinctive sites (Figure 8). For example, our data suggest that the

evolution of the class-distinctive sites critical for the GRK2

interaction with Gaq (Figure 8B, G(q) sites 9, 10) occurred around

the time of emergence of the G(q) class. However, the GRK2

interaction was not the only sub-functionality driving the

emergence of G(q) as several other class-distinctive sites not

likely involved in the GaqNGRK2 interaction also appeared at the

time of emergence (Figure 8B, G(q) sites 4, 5, 7), and other sites

clearly became class-distinctive at later times (Figure 8B, site 1).

For G(s) subunits, the G(s) sites associated with AC functionality

were also established at the time of emergence of the G(s) class

(Figure 8C, G(s) sites 9, 11, 13). At the same time, we see h amino

acids became fixed at G(s) sites 1, 15, and 16, sites which are

structurally adjacent (Figure 6C, right view). This set of sites is in

the GPCR coupling region. We speculate that the evolution of

new GPCR specificity was linked to AC activation, resulting in a

new signaling network. G(s) site 14 in helix 5, the helix associated

with GPCR induced activation, also became distinctive with

emergence of the G(s) class, potentially imparting new exchange

properties to this signaling pathway. Two additional G(s) sites

that currently are not correlated with any known function – G(s)

sites 3 and 4 – were also established early, whereas several G(s)

sites became distinctive later in evolution. We see similar patterns

within the G(12) class.

Interestingly, G(io) sites 12, 13, and 14 – the 3 G(io) sites in helix

5 discussed above – show variance in early metazoans in G(io) and

G(12) subunits but not in G(q) or G(s) subunits (Figure 8). This

order from the N-terminus to the C-terminus and numbered accordingly. Amino acids that correspond to the h values at the G(io) site are colored
green. Sites in helix 5 that have been proposed to be important for coupling to the GPCR are denoted by ‘5’ above the site, while site 11 in strand 6 is
denoted by ‘b’ above the site.
doi:10.1371/journal.pcbi.1000962.g007
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implies an exploration of nucleotide-binding properties in early

metazoan ancestors or lineage-specific modifications in G(io) and

G(12), but not the other two classes of Ga subunits. Lastly, we see

that two G(12)-distinctive sites in switch II (sites 11, 12) possessed h
amino acids in the single invertebrate G(12) family member

throughout early metazoan evolution but reverted to g amino acid

values in Ga13 after a gene duplication that occurred with the

emergence of vertebrates (Figure 8D). This accepted change went

from h to g – an unusual direction – rather than the canonical

direction of g to h.

Our data show that the four Ga classes acquired class-distinctive

sites throughout metazoan evolution, usually along with the

evolution of an expanded or novel class-specific function. One

particularly significant period for distinctive site acquisition was

before nematodes split from the mammalian lineage (Figure 8) a

time when the olfactory system greatly evolved. Interestingly, the

second most significant period occurred during the emergence of

vertebrates, when all four Ga classes experienced gene duplica-

tions leading to an explosion of Ga subtypes, a period when

endocrine system complexity dramatically increased. Both olfac-

Figure 8. Class-distinctive signature sequences of Ga family members from select organisms. Signature sequences from select organisms
are used to follow the evolution of class-distinctive sites (also see Figure 2). Each panel reflects the evolutionary history of a subtype: (A) Gai1, (B) Gaq,
(C) Gas, (D) both Ga12 and Ga13. Signature sequences are formed by grouping all distinctive sites for a given class together, removing all residues
between individual distinctive sites of the noted class. The distinctive sites for each class are presented in order from the N-terminus to the C-
terminus and numbered accordingly. Amino acids that correspond to the h values at that site are colored according to distinctive class: green = G(io);
magenta = G(q); blue = G(s); and yellow orange = G(12). Class-distinctive sites were determined using only mammalian sequences. Occasionally a non-
mammalian subunit will contain a h or variable (white) amino acid where only g amino acids were observed in the mammalian sequences (for
comparison see Figures 4D, 5D, 6D, 7D). (A) Class-distinctive signature sequences of G(io) family members from select organisms. Sites in helix 5 that
have been proposed to be important for coupling to the GPCR are denoted by ‘5’ above the site, while site 11 in strand 6 is denoted by ‘b’ above the
site. (B) Class-distinctive signature sequences of G(q) family members from select organisms. Sites that interact with GRK2 are denoted by ‘G’ above
the site, while sites that are buried and not visible are denoted by ‘b’ above the site. (C) Class-distinctive signature sequences of G(s) family members
from select organisms. Sites that have been proposed to be important for the interaction with adenylyl cyclase are denoted by ‘A’ above the site,
while additional sites in switches II or III are denoted by ‘2’ or ‘3’, respectively, above the site. (D) Class-distinctive signature sequences of G(12) family
members from select organisms. Sites that have direct interactions with p115RhoGEF are denoted by ‘R’ above the site, while additional sites in
switches I or II are denoted by ‘1’ or ‘2’, respectively, above the site. Marine sponge = Geodia cydonium; Freshwater sponge = Ephydatia fluviatilis;
Worm = Caenorhabditis elegans; Fruitfly = Drosophila melanogaster; Sea urchin = Strongylocentrotus purpuratus; Frog = Xenopus laevis; Human = Homo
sapiens.
doi:10.1371/journal.pcbi.1000962.g008
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tion and hormone signaling rely on G protein coupled signaling.

This observation may mean that Ga diversification played a

critical role in the morphological and physiological evolution of

the modern vertebrate.

We propose that specific sequence changes that occurred early

in the acquisition of class-specific functionality arose from

modifications to parental functionality. Most class-distinctive sites

were in regions that were already constrained by functional

demands – such as the switches – where modifications to

surprisingly few residues could complement existing functionality

while simultaneously contributing to divergence. As suggested by

Conant and Wolfe [57], the ‘‘new’’ function may have been a

secondary property that was always present in the ancestor, similar

to the property recently revealed for steroid hormone receptors

[11]. Our observation that many of the class-distinctive sites arose

from highly conserved residues and essential structural compo-

nents suggests that gene duplication was essential for the

diversification of the Ga. Reduction of the functional constraint

on a new paralog following duplication allowed that copy of Ga to

convert its secondary property into its primary. This is not,

however, the sole mechanism for evolutionary divergence. Both

the lack of sequence conservation in the GaqNp63RhoGEF

interface and the presence of residues with different evolutionary

rates in the a-helical domain [15] imply divergence by evolution of

neo-functionality of a previously unspecialized but highly con-

strained domain following gene duplication.

We believe that our comprehensive view of Ga evolution shows

us the amino acid changes that allowed G proteins – despite the

constraints put upon them by their myriad of interactions – to

become functionally diversified proteins. With this view, we

explained several conundrums regarding the structure and

function of specific Ga. We produced a partial list (Table S2

and Table S3) of the sites that are likely to contribute to class

specific function, and are important for the role of Ga as a

signaling nexus. Translating the patterns of evolution at Ga class-

distinctive sites into predictions for future structural and functional

studies is the next challenge. We will achieve this by uncovering

additional details in metazoans of class divergence and the

acquisition of neo-functionality in Ga and also by defining the

characteristics of the primordial Ga through analysis of the pre-

metazoan plant and fungal Ga.

Materials and Methods

Ga Sequence Inventory
G-protein sequences were collected from the UniProtKB/Swiss-

Prot/TrEMBL Knowledgebase [58] available on the ExPASy

Proteomics Server (www.expasy.org) [59] using BLAST [60] and

filtered for redundancy using the Ensembl Genome Browser (www.

ensembl.org) [61]. Sequences were aligned using ClustalX [62] and

adjusted using a T-Coffee alignment program [63] and finally by eye

using known atomic structure data as a guide. The final multiple

sequence alignment (MSA) contained 347 sequences. Four Ga
classes and 16 subclasses were tabulated (Table S1). A subset of

sequences was selected for distinctive site determination based on the

following criteria: 1) must be mammalian, 2) must be at least human

and rodent sequences available for every subclass included in the

analysis (Gat3 had only a rat sequence at the time of the original

analysis), and 3) subtypes must not be highly divergent (e.g. this

excluded Gaz and Ga15). Ultimately, a total set of 58 mammalian

sequences from all 4 major classes comprising 14 subclasses were

culled from the full MSA and used for the final analysis.

Ga sequences from several lower metazoans were included in

the analysis reported here. Geodia cydonium, a marine sponge, and

Ephydatia fluviatilis, a freshwater sponge, belong to the phylum

Porifera. G. cydonium has three Ga proteins: a G(io), a G(q) and a

G(s), while E. fluviatilis has five proteins that are clear progenitors

of mammalian proteins. E. fluviatilis has a single G(q), G(s) and

G(12) family member, but two G(io)-like members (a G(i) and a

G(o)). There are four additional Ga proteins specific to the

Ephydatia lineage and these were not included in our analysis here.

All E. fluviatilis sequences used in this study are fragments missing

the first ,50 residues of the amino terminus.

The Ga family Caenorhabditis elegans (nematode) expanded

greatly, with 21 Ga proteins in total, but only four subunits –

G(o), G(q), G(s) and G(12) – are clearly related to the progenitors

of mammalian proteins and are thus included in this analysis. The

fruit fly, D. melanogaster belonging to the phylum Arthropoda, also

has G(i), G(o), G(q), G(s), and G(12) members with three

additional Ga subunits that are specific to the insect lineage.

Strongylocentrotus purpuratus (purple sea urchin) is an echinoderm and

is the last invertebrate considered in this analysis. Four S.

purpuratus Ga sequences were analyzed: a G(i), G(q), G(s) and

G(12). A number of gene duplications occurred between

invertebrates and vertebrates and, given the current available

sequences in the databases, it appears that most vertebrates

possess a full complement of the 16 mammalian Ga subunits with

some having taxa-specific subunits. Xenopus laevis (frog) was the

model vertebrate organism included in our analysis. Four X. laevis

Ga sequences were analyzed, annotated as Gai1, Gao1, Gaq and

Gas. Current data suggest that the ancestral plant had a single Ga
subunit while most extant fungi have two or three Ga proteins.

An annotated version of the MSA containing the 58 mammalian

sequences used for determining the class-distinctive residues

highlighted in Figure 3 and the metazoan sequences included in

the evolutionary analysis in Figure 8 is provided in FASTA format

(Text S2).

Mutual Information
Mutual information can be used to measure the correlation

between amino acid value and protein family for a set of sequences

subdivided into families with different functional specificity

(Basharin, 1959). Positions in the alignment which exhibit

conservation within each family and variation between families

have high mutual information. Positions that exhibit conservation

between families (such as invariant residues) or variation within

families (such as non-conserved residues) have low mutual

information. This method was used by [64] to detect putative

specificity-determining residues for paralogous protein kinases. In

their study, mutual information was defined as

Ii~
X

x

X

y

Pi x, yð Þ log
Pi x, yð Þ

Pi xð ÞP yð Þ

Where i is the position in the alignment, x the amino acid value,

and y the protein family number. The summations are over all

families in the alignment ( y) and amino acid values (x). Pi (x, y) is

the probability of finding amino acid value x at position i and in

family y; Pi (x) is the probability of finding amino acid value x at

position i regardless of family; and P(y) is the fraction of proteins

belonging to family y. In our mutual information calculation, we

subdivided our sequences into four families: G(io), G(q), G(s), and

G(12). We also treated amino acid residues with similar side

chains as identical, resulting in an amino acid alphabet of 15

values (G, A, V, I = L, M, P, F = Y, W, S = T, N, Q, C, K = R, H,

D = E). In addition, we normalized the mutual information scores

to the range [0.0,1.0].
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Invariant and Class Distinctive Positions
Sites of interest were characterized as either invariant or class-

distinctive. Invariant sites contained the identical amino acid

values for the 58 mammalian Ga subunits from all four of the

major animal classes. These residues likely were constrained early

in Ga evolution and formed part of the primordial Ga core. While

invariant sites are important for our understanding of the

structural/functional aspects of Ga subunits, they do not

contribute to an understanding of the evolution of Ga classes.

Each class-distinctive site is occupied by an invariant amino acid

(designated g – not distinct) in all sequences except for those of a

specific functional or distinctive class. Within the distinctive class,

sequences contain a different amino acid value (designated h –

distinct). In 33 of our 59 sites, the distinctive amino acid h is

conserved across all subtypes within the class. Of our 59 sites, 21

show subtype variation within the class. In 5 of our 59 sites, the h
amino acid was not conserved for a single subtype and the

variation potentially occurred in a non-human sequence.

A single mutual information calculation simultaneously using all

four Ga classes cannot identify our selective distinctive sites.

Therefore, we used a series of six pair-wise mutual information

calculations covering all possible pairs of Ga classes [G(io) vs. G(q);

G(io) vs. G(s); G(io) vs. G(12); G(q) vs. G(s); G(q) vs. G(12); G(s) vs.

G(12)], then scanned for patterns in the scores to identify

distinctive sites (see Table S4). Invariant sites corresponded to

positions with the lowest Ii (0.0) for all 6 calculations. Distinctive

sites corresponded to positions with the lowest Ii (0.0) for all Ga
pairs not involving the distinctive class and higher Ii (.0.0) for all

Ga pairs involving the distinctive class.

By accepting any nonzero Ii in the calculations involving

determination of distinctive sites, residue positions with a wide

range of properties were only tolerated in the distinctive class. The

sites had scores that ran from low Ii (0,Ii%1) for all Ga pairs

involving the distinctive class where the position was almost

invariant with many g and few h values, to residues with high Ii

(0,Ii#1) for all Ga pairs involving the distinctive class and

containing only h amino acid values in the distinctive class.

The stringency of criteria for designation as class-distinctive is a

function of the amino acids permitted to evolve at that site.

Allowing unrestricted evolution, that is any site can evolve to any

of the 20 amino acids, would yield only 30 class-distinctive sites

instead of the 59 sites identified using a reduced, and more

evolutionarily plausible set (see Table S2). Although some

substitutions within our reduced amino acid set could result in

unaccounted functional changes (e.g. incorporation of a tyrosine

phosphorylation site), some sites with known class-distinctive

functionality discussed would not have been identified with a 20

amino acid set. We also included class distinctive sites that were

identified using an evolutionarily likely set of possible amino acids

from our phylogenetic and structural analyses (discussed in the

RESULTS section).

Evolutionary Trace Analysis
We used the Evolutionary Trace Server (ETS) at http://

mordred.bioc.cam.ac.uk/,jiye/evoltrace/evoltrace.html to iden-

tify evolutionarily important sites for comparison to our class-

distinctive sites [65]. We used the identical Ga MSA as utilized for

identification of class-distinctive sites, along with chain A of PDB

ID 1GP2 for the mapping [17]. Using 10 evenly spaced partitions

of our phylogenetic tree, we computed the trace using the

TraceSeq and TraceScript algorithms as implemented on the

ETS. This revealed the functional patches on the surface of these

highly related proteins that reside in similar regions of Ga,

regardless of functional differences.

Modeling of Ga complexes not available in PDB
The homology models of GaqNGDP, Ga12NGDP and GasNGDP

each used two partial structures as templates. The first template

was an active conformation structure for the given class with the

switch regions removed. Structures used as templates – after the

removal of the switch regions – were (PDB ID) 2BCJ (Gaq), 1AZS

(Gas), and 1ZCA (Ga12). The switch regions in the three inactive

state homology models were built using the switch regions from

the inactive Gai1NGDP (PDB ID 1GP2) as the template. Models

were generated using InsightII (www.accelrys.com). Side chain

rotamer conformations were selected that minimized steric

hindrance upon complex formation with the Gbc subunits from

1GP2. The model of the Ga12/i1Np115RhoGEF complex was

based on structures of Ga12/i1NGDPNMg2+NAlF4
2 (PDB ID 1ZCA)

and Ga13/i1Np115RhoGEF complex (PDB ID 1SHZ). Ga12 from

1ZCA was used directly for complex formation with p115Rho-

GEF except for the adjustment of one side chain conformation to

reflect the conformation evident in the complex structure of Ga13/i1

Np115RhoGEF.

Supporting Information

Figure S1 Class-distinctive sites in structural context. Gai1 is in

complex with the GbNGc (deepblue/copper cartoon) heterodimer

(PDB ID 1GP2). Ga is shown as spheres (A) or cartoon (B) with

core residues colored gray if the residues are conserved between

Ga subunits of different classes. All distinctive sites are colored

according to the distinctive class (G(io) = green; G(q) = hot pink;

G(s) = marine; G(12) = yellow orange). Non-core residues and d

sites are colored white. Class-distinctive sites are numbered

according to their position in the signature sequence (see

Figures 4D, 5D, 6D, 7D, 8). Sites are placed on Gai1 for relative

positioning, no actual mammalian Ga subunit has distinctive sites

from more than one class unless it is a chimera.

Found at: doi:10.1371/journal.pcbi.1000962.s001 (2.60 MB PDF)

Table S1 Human Ga classes, subclasses and isoforms.

Found at: doi:10.1371/journal.pcbi.1000962.s002 (0.06 MB PDF)

Table S2 Class-distinctive sites summary.

Found at: doi:10.1371/journal.pcbi.1000962.s003 (0.16 MB PDF)

Table S3 d sites summary.

Found at: doi:10.1371/journal.pcbi.1000962.s004 (0.07 MB PDF)

Table S4 Mutual information calculations.

Found at: doi:10.1371/journal.pcbi.1000962.s005 (0.02 MB PDF)

Text S1 Expanded figure legend for Figure 1, including

additional references for noted interactions.

Found at: doi:10.1371/journal.pcbi.1000962.s006 (0.08 MB PDF)

Text S2 Multiple sequence alignment in fasta format.

Found at: doi:10.1371/journal.pcbi.1000962.s007 (0.05 MB

TXT)

Text S3 Comparison of evolutionary trace and class-distinctive

site analyses.

Found at: doi:10.1371/journal.pcbi.1000962.s008 (0.09 MB PDF)

Text S4 Additional discussion of RhoGEF and G(12) families.

Found at: doi:10.1371/journal.pcbi.1000962.s009 (0.08 MB PDF)
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