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Abstract

Human mesenchymal stem/stromal cells (hMSCs) are a promising therapy for acute respi-

ratory distress syndrome (ARDS) and other inflammatory conditions. While considerable

research has focused on paracrine effects and mitochondrial transfer that improve lung fluid

balance, hMSCs are well known to have immunomodulatory properties as well. Some of

these immunomodulatory properties have been related to previously reported paracrine

effectors such as indoleamine-2,3-dioxygenase (IDO), but these effects cannot fully account

for cell-contact dependent immunomodulation. Here, we report that CD40 is upregulated on

hMSCs under the same conditions previously reported to induce IDO. Further, CD40 tran-

scription is also upregulated on hMSCs by ARDS pulmonary edema fluid but not by hydro-

static pulmonary edema fluid. Transcription of CD40, as well as paracrine effectors TSG6

and PTGS2 remained significantly upregulated for at least 12 hours after withdrawal of cyto-

kine stimulation. Finally, induction of this immune phenotype altered the transdifferentiation

of hMSCs, one of their hallmark properties. CD40 may play an important role in the immuno-

modulatory effects of hMSCs in ARDS and inflammation.

Introduction

Human mesenchymal stem/stromal cells (hMSCs) have emerged as a promising therapy for

myriad inflammatory conditions including graft versus host disease, systemic lupus
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erythematosus, multiple sclerosis, sepsis, and acute respiratory distress syndrome (ARDS) [1,

2]. Our research group has focused on the potential role of hMSCs for treatment of the ARDS

[3].

ARDS represents a state of immune activation in which inflammatory insults such as sepsis,

transfusions and major trauma lead to increased activation of the innate immune system—

particularly macrophages and neutrophils. Alveolar macrophage activation leads to secretion

of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF),

interleukin-6 (IL-6), and interleukin-8 (IL-8), which lead to additional neutrophil activation

{Chollet-Martin, 1996 #139; Strieter, 1993 #134}. This combined activation of neutrophils and

macrophages mediates some of the tissue injury in ARDS [4, 5]. While aberrations in innate

immunity have been well described, the humoral immune system is also dysregulated. Activa-

tion of CD4+ T cells has also been reported in a murine model of lipopolysaccharide (LPS)-

induced ARDS [6]; T regulatory (Treg) cells are also involved in resolution of acute lung injury

in mice and humans [7].

hMSCs have many beneficial immunomodulatory effects. Through soluble mediators such

as indoleamine-2,3-dioxygenase (IDO) [8] and prostaglandin E2 (PGE2) [9], hMSCs promote

the M1 to M2 transition of activated macrophages. hMSCs also promote T cell suppression

through the IL-1β mediated secretion of transforming growth factor-β (TGF-β) [10]. Despite

the well-characterized paracrine effects, cell-cell contact is also required for induction of Treg

cells [11] and some aspects of macrophage modulation [10].

Previously, our laboratory has demonstrated that a mixture of inflammatory cytokines,

termed CytoMix (50 ng/mL TNF-α, interferon (IFN)-γ, and IL-1β) recapitulated the effects of

ARDS pulmonary edema fluid on type II alveolar cells, including loss of tight junctions and

impaired fluid clearance [12]. Re-analysis of prior microarray data revealed that CytoMix also

induced hMSCs transcription of CD40 [13]. Here, we report the conditions under which

CD40 is transcribed and importantly also report that CD40 upregulation develops after expo-

sure of hMSCs to human ARDS pulmonary edema fluid.

Materials and methods

Mesenchymal stem/stromal cells

hMSCs were obtained from Dr. D.J. Prockop at the Institute for Regenerative Medicine in

Texas A&M Health Science Center (IRM), Dr. Shibani Pati at the Blood Systems Research

Institute (BSRI), and Dr. David McKenna at the University of Minnesota (UM). Cell lines

were validated using qPCR for the presence of CD73, CD90, and CD105 expression, as well as

the absence of CD11b, CD14, CD34, CD45, CD19, CD79A, CD54, and HLADRB expression

(S1 Fig). Cells were cultured as previously described [14].

hMSC treatment with cytokines or LPS

For these experiments, hMSCs were plated at 1.6 x 105 cells/cm2 on 60mm untreated tissue

culture plates in DMEM-F12 supplemented with antibiotics. TNF-α, IL-1β, and IFN-γ were

obtained from R&D Systems. As previously described, CytoMix consisted of 50 ng/mL TNF-α,

IFN-γ, and IL-1β [12]. For cytokine array experiments, TNF-α, IFN-γ, and IL-1β were used at

50 ng/mL in various combinations. LPS concentrations ranged from 5 pg/mL– 1 mg/mL (List

Labs or Sigma). In all cases, the hMSCs were exposed to the experimental condition for 24

hours prior to harvesting, unless otherwise noted.
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Human pulmonary edema fluid

Human pulmonary edema fluid was previously collected by our laboratory immediately after

endotracheal intubation of patients with ARDS secondary to sepsis or hydrostatic pulmonary

edema, with Institutional Review Board approval at the University of California, San Francisco

[15]. Samples were frozen at -80˚C until use in these studies. Undiluted pulmonary edema

fluid from four donors with either ARDS or hydrostatic edema fluid was thawed, pooled, and

centrifuged at 10,000 rpm for 2 minutes to remove cellular debris. The gender of all hMSC

lines was determined by XIST levels; two male and two female lines were utilized to avoid gen-

der confounding. hMSCs were plated at 1.5 x 104 cells/cm2 for 12 hours, washed with PBS and

incubated with undiluted pulmonary edema fluid for 24 hours. RNA was isolated as described

below.

Real Time PCR (RT-PCR) analysis

Total RNA from hMSCs was extracted using Qiagen1QiaShredder and either RNeasy mini or

RNAeasy plus mini kits according to the manufacturer’s methods. RNA was quantified using a

ND-1000 (ThermoFisher) and 260/280 absorbance; 1 μg RNA was converted to cDNA using

the cDNA iScript synthesis kit (Biorad). RT-PCR was performed in technical triplicate on each

biologic replicate using the Agilent platform, StepOnePlus System (Applied Biosystems) and

Fast Sybr1Green Mastermix (Applied Biosystems); primers are shown in Table 1. Run cycle:

PCR was activated at 95˚C for 20 seconds followed by 40 cycles of 3 seconds at 95˚C followed

by 20 seconds at 60˚C. All RT-PCR analyses for CytoMix and cytokine array were carried out

on at least 5 biologic replicates; only four biologic replicates were conducted for the human

pulmonary edema fluid samples due to limited reagents. Lipopolysaccharide (LPS) experi-

ments were only conducted in biologic triplicate due to futility. ΔCT values were normalized to

housekeepers TBP and EIF2E2.

hMSC differentiation

hMSC differentiation studies were conducted using the R&D Systems human mesenchymal

stem cell functional identification kit according to the manufacturer’s directions using fatty

acid binding protein 4 (FABP4), osteocalcin, and aggrecan as markers of adipocyte, osteoblast,

and chondrocyte differentiation, respectively. Adipogenesis was further evaluated using oil red

O staining [16]. Images were transmitted to a pathologist in blinded manner. Positive and neg-

ative cells were quantified in Image J; a minimum of 99 cells were counted per cohort.

Flow cytometry

Four-color flow cytometry was performed on a FACS-Calibur II instrument. KG-1 cells differ-

entiated to dendritic cells with PMA and ionomycin [17] were used as positive controls for

HLA-DR (ThermoFischer, MEM-12 clone) and CD40 (Novusbio, 5C3 clone). Two represen-

tative cell lines were harvested by incubation with Accutase (Gibco) for five minutes. Analyses

were conducted with FlowJo version 10. Cells were gated on hMSCs by forward and side scat-

ter. The CD40 positive gate was determined a priori on the unstained sample and then applied

to the stained control and CytoMix-exposed cells.

Statistical analysis

Statistical analyses for all RT-PCR experiments were conducted in GraphPad Prism (V8.2.1).

For all direct comparisons between experimental groups using cytokine mixtures (n = 6),

Mann-Whitney U tests were utilized. Pulmonary edema fluid experiments (n = 4) were
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Table 1. RT-PCR primers.

Target Primer #BP

CD73 F GCCGCTTTAGAGAATGCAAC 116

R TTTCATCCGTGTGTCTCAGG

CD90 F GGACTGAGATCCCAGAACCA 95

R TTAGGCTGGTCACCTTCTGC

CD105 F GCACATCCTGAGGGTCCTG 102

R ATGAGGACGGCATCGAGA

CD11b F TCTACCAGTGCGACTACAGCA 75

R ACATGTTCACGGCCTCCAC

CD14 F AAGCACTTCCAGAGCCTGTC 82

R CAGCAGCAACAAGCAGGAC

CD34 F CACCCTGTGTCTCAACATGG 115

R GGACAGAAGAGTTTGTGTTTCCA

CD45 F AGGAAATTGTTCCTCGTCTGA 76

R GAAGTCAGCCGTGTCCCTAA

CD19 F TGGTCCTGAGGAGGAAAAGA 103

R ACGTTCCCGTACTGGTTCTG

CD79A F GGGGATCATCCTCCTGTTCT 79

R GAGCTTCTCGTTCTGCCATC

CD54 F TGCTATTCAAACTGCCCTGA 80

R AGTTCCACCCGTTCTGGAGT

HLA-DRB1 F TCTGCATTTCAGCTCAGGAA 79

R GCCAACATAGCTGTGGACAA

HLA-DRA1 F GTTGGGCTCTCTCAGTTCCA 121

R TTGGCTTTCCTGCTGAGTCT

HLA-DPA1 F CCCTGTTGGTCTATGCGTCT 96

R CCCTGTGGAGGTGAAGACAT

HLA-DQA1 F CAGAGGGACCGTAAAACTGG 79

R TCTGCATTTCAGCTCAGGAA

CD68 F TTCCCCTATGGACACCTCAG 86

R TTGTACTCCACCGCCATGTA

CD40 F GTGTCCTGCACCGCTCAT 78

R GCTCGCAGATGGTATCAGAA

CD83 F GGTGGTGAAGAGAGGATGGA 81

R AGAACCATTTTGCCCCTTCT

CD80 F TTGTTCTGAAGTATGAAAAAGACG 84

R GGTGTAGGGAAGTCAGCTTTG

CD86 F GCCCAGAATTCTAAGCTGGT 76

R CCACCCAGACTGAGGAGGTA

TSG6 F GCTAGAGGCAGCCAGAAAAA 86

R GCTTCACAATGGGGTATCCA

PTGS2 F CTAGAGCCCTTCCTCCTGTG 78

R TTGAATCAGGAAGCTGCTTTT

IL1RA F TTGCAAGGACCAAATGTCAA 79

R GGATTCCCAAGAACAGAGCA

https://doi.org/10.1371/journal.pone.0240319.t001
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analyzed using unpaired two-tailed t test due to limited pulmonary edema fluid sample and

reduced power. If multiple comparisons were performed, a Kruskal-Wallis ANOVA (KW)

was performed first to determine if a difference was present across all groups and, if significant,

Mann-Whitney U-tests were performed to determine which groups were statistically different.

For flow cytometry, the geometric mean and standard deviation of positive populations and

MFI are reported (FlowJo V10). Statistical comparisons between flow cytometry population

frequencies were made using an unpaired t test (GraphPad Prism V8.2.1). Fisher’s exact tests

were utilized to compare positive cell frequency for quantifications (https://www.graphpad.

com/quickcalcs/contingency2/). P values< 0.05 were considered statistically significant. S1

Appendix includes raw data and additional statistical analyses in accordance to the minimal

data set definition.

Results

CytoMix induces transcription of CD40, CD83, and HLA-DR in hMSCs

Prior microarray results indicated that the hMSCs differentiated into a dendritic cell-like phe-

notype with CD40, CD83, CD68, and MHC class II expression when exposed to CytoMix, but

these studies were done with a single biologic replicate [13, 18]. To confirm these findings at a

transcriptional level, hMSC were exposed to CytoMix. RT-PCR revealed markedly increased

transcription of CD40, CD83, and HLA-DR (Fig 1). Additional studies of co-stimulatory mol-

ecules CD80, CD86, CD40L, and CD163 revealed no increased transcription. The transcrip-

tion of CD40, CD83, and HLA-DR were not induced by any concentration of LPS (S2 Fig).

Thus, the induction of these immune markers appeared to be due to stimulation with specific

cytokine(s) rather than activation in general.

CD40 transcription requires the same cytokine stimulation as IDO

upregulation

Ren et al. previously reported that hMSCs exposed to IFN-γ plus TNF-α or IL-1β express IDO,

and these conditions were associated with both paracrine and contact-mediated effects on T

cells [19]. Thus, we carried out a cytokine array to determine the requisite cytokine exposure

for induction of CD40, CD83 and MHC-class II transcription. hMSCs were exposed for 24

hours to a single cytokine (either TNF-α, IL1-β, or IFN-γ) or combinations of these three cyto-

kines (Fig 1). Like IDO, CD40 was also strongly induced by IFN-γ plus one additional cyto-

kine, although a small increase in transcription was noted for other conditions. CD83 was

strongly induced by TNF-α + IFN-γ, but the increase induced by IL-1β + IFN-γ was not signif-

icant (p = 0.056). As expected, based on prior reports [20], transcription of HLA-DR was

induced by IFN-γ alone. Paracrine effector molecule TSG-6 was expressed under similar con-

ditions as IDO and CD40; PTGS2 was upregulated under all conditions except TNF-α
monostimulation.

CD40 is expressed on the cell surface after CytoMix exposure

While the changes in mRNA expression for these immune markers are substantial, RNA tran-

scription does not necessarily correspond to increased protein levels and transport to the cell

surface. Flow cytometry demonstrated CD40 cell surface expression in a significant subset of

cells (Fig 2A and 2B). While the MFI shift was not statistically significant, there was a trend

towards increased MFI in the CytoMix exposed samples. (Fig 2C) In contrast, no surface

expression of CD83 nor properly assembled HLA-DR with the MEM-12 anti-HLA-DR clone

was demonstrated despite significant gene transcription. HLA-DR upregulation by
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transcriptional analysis has been observed in prior reports but was not previously correlated

with analysis of surface expression [21].

CD40, TSG-6, and PTGS2 transcription is induced by ARDS pulmonary

edema fluid

While CD40 could be reliably transcribed and expressed in an in vitro system of ARDS, using

stimulation with a mix of inflammatory cytokines, we sought to determine if more in vivo-like

Fig 1. Quantitative RT-PCR results. (A) Transcription of highlighted genes for hMSCs with and without CytoMix

exposure. Cytokine arrays to elucidate the cytokine milieu required for transcription of (B) CD40 (KW p<0.001), (C) CD83

(KW p<0.001), (D) HLA-DRB (KW p = 0.003), (E) TSG-6 (KW p<0.001), and (F) PTGS2 (KW p<0.001) are also shown.

mRNA expression levels were normalized to housekeeper genes EIF2E2 and TBPData shown as mean ± SEM, and �p< 0.05,
†p< 0.01 compared to control using Mann-Whitney U-test.

https://doi.org/10.1371/journal.pone.0240319.g001
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conditions might be similar. hMSCs were exposed to undiluted pulmonary edema fluid from

patients with either ARDS or hydrostatic pulmonary edema (e.g. heart failure). Exposure to

either pulmonary edema fluid failed to induce CD83 or HLA-DRB transcription. CD40 tran-

scription was not altered by exposure to hydrostatic pulmonary edema fluid; however, expo-

sure to ARDS pulmonary edema fluid resulted in a 5-fold increase of CD40 mRNA levels in

hMSCs (p-value 0.04). Confirmatory flow cytometry to examine CD40 protein expression

could not be performed due to the small quantity of pulmonary edema fluid available. The

paracrine molecules were similarly investigated. PTGS2 had increased transcription for both

hydrostatic and ARDS pulmonary edema fluid (~20-fold and 1000-fold increase, p values

0.002 and 0.02, respectively), but TSG-6 transcription was induced solely by ARDS pulmonary

edema fluid (6-fold increase, p value 0.02).

Induction of the immunologic phenotype affects pluripotency

Pluripotency is a key feature of mesenchymal stromal cells, and hMSCs are capable of differen-

tiating into osteoblasts, adipocytes, or chondrocytes, and transdifferentiation is possible by

changing the culture conditions [22]. Given the robust transcriptional changes induced by

CytoMix, we questioned if CytoMix exposure would also alter hMSC pluripotency. Three rep-

resentative cell lines were differentiated into chondrocytes, adipose tissue, and osteoblasts with

or without a 24 hour pre-treatment with CytoMix using standard conditions. Successful differ-

entiation was assessed by immunofluorescence for FABP4 (adipogenesis), osteocalcin (osteo-

genesis), and aggrecan (chondrogenesis). While the percent of aggrecan positive chondrocytes

(7.1% v. 8.0%) and osteocalcin positive osteoblasts (87.0% v.83.8%) were unchanged after

CytoMix exposure, CytoMix reduced FABP4 positivity from 35.4% to 5.5%, which indicates

inhibition of adipogenesis. This finding was confirmed with oil red O staining by light micros-

copy, which also demonstrated a reduction in oil red O positive cells after CytoMix exposure

(70.9% v. 16.7%) (Fig 3). Thus, preconditioning with CytoMix appears to result in reduction of

pluripotency, albeit in an in vitro setting.

Discussion

The main findings of our studies can be summarized as follows. The pro-inflammatory mix-

ture CytoMix induces CD40 cell surface expression on hMSCs under the same conditions

Fig 2. Flow cytometry demonstrates cell surface expression of CD40 before (A) and after (B) exposure to CytoMix. The CD40+ population

increased from 3.2 ± 1.9% to 52.7 ± 7.4%, (p = 0.02). A representative histogram shows an increase in MFI from 2.3 ± 14.8 to 26.5 ± 118 after CytoMix

stimulation is shown in panel C. Data reported as geometric mean ± SD, p values were determined using unpaired t tests.

https://doi.org/10.1371/journal.pone.0240319.g002
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required for IDO expression, which is associated with a potent immunomodulatory phenotype

with both paracrine and cell contact-mediated effects. Pulmonary edema fluid from ARDS

patients, but not from hydrostatic edema fluid, also led to upregulation of CD40 gene expres-

sion. Furthermore, CytoMix upregulated the expression of several anti-inflammatory cyto-

kines and paracrine effectors, which was also demonstrated with ARDS pulmonary edema

fluid. Finally, CytoMix exposure decreased in vitro pleuripotency of hMSCs and inhibited

hMSCs differentiation into adipocytes.

Previous studies of hMSCs have documented that they do not express standard immune

markers such as MHC-class II, CD40, CD80/86, and others [23], although there is one men-

tion of CD40 upregulation observed in hMSCs after IFN-γ exposure [24]. In our studies, small

quantities of CD40 transcription were detected with IFN-γ alone, but CD40 transcription

increased markedly when IFN-γ was combined with IL-1β or TNF-α. Ren et al. reported that

hMSCs exposed to IFN-γ plus either IL-1β or TNF-α develop a potent immunomodulatory

phenotype that partially relies on close cell-cell proximity [19]. While that study attributed the

Fig 3. Pleuripotency of hMSCs before and after CytoMix exposure. hMSCs were treated with 24 h DMEM-F12

medium or DMEM-F12 medium + CytoMix prior to exposure to standard differentiation conditions. 24 hour

pre-treatment with CytoMix prevented adipogenesis as demonstrated by the lack of FABP4 staining by

immunofluorescence (35.4% v. 5.5% positivity) and oil red O staining by light microscopy (70.9% v. 16.7% positivity).

Differentiation of osteoblasts (87.0% v. 83.8%) or chondrocytes (7.1% v.8.0%) was unaffected.

https://doi.org/10.1371/journal.pone.0240319.g003
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immunomodulation to IDO, we postulate that the expression of CD40 may contribute to this

immunomodulatory phenotype.

CD40 is a key molecule in the immune system, and CD40+ hMSCs likely have a multi-

modal approach to modulating the inflammatory response of ARDS. Given the impressive

pre-clinical data using hMSC treatment for ARDS [25, 26] and early clinical studies in systemic

lupus erythematosus [27], it is clear that hMSC treatments can have significant immunomodu-

latory effects. Prior literature lends credence to the possibility of T cell modulation by CD40+

hMSCs. Interestingly, CD40L+/CD14+ peripherally circulating monocytes and CD40L+ T

cells [28] have been reported in active systemic lupus erythematosus. While the majority of

research efforts have focused on CD40 co-stimulation of B cells, CD40-CD40L binding also

causes signaling in the CD40L expressing cell [29]. CD40L is important in the negative selec-

tion of auto-reactive thymocytes [30]. In CD4+ T cells, CD40-CD40L binding leads to

increased level of IL-10 and IFN-γ [31]; in the presence of IFN-γ, CD40L binding can also lead

to the generation of nitric oxide [32]. Additionally, low levels of CD40 expression on dendritic

cells leads to marked expansion of Treg cells in a murine model of Leishmania donovani infec-

tion [33], and hMSCs promote the development of Treg cells in vitro [34]. Thus, CD40+ hMSCs

may simultaneously decrease proliferation of activated T cells while promoting the expression

of Treg cells.

Beyond direct CD40 mediated modulation of the T cell repertoire, hMSCs expressing

CD40 could serve as a decoy receptor for soluble CD40L, which been implicated in patients

with ARDS. Soluble CD40L has been implicated in the development of transfusion associated

acute lung injury [35], sickle cell-related acute chest syndrome [36], and sepsis [37]. Once

hMSCs lodge within the pulmonary microcirculation following intravenous administration,

local reductions of CD40L could ameliorate endothelial dysfunction and possibly reduce

inflammatory pulmonary edema.

A significant challenge in understanding hMSC biology is their significant pluripotency

and differential responses to various conditions. In this study, the transcriptional response of

hMSCs to clinically relevant stimuli (CytoMix or pulmonary edema fluid) was variable. Even

for ARDS, a well characterized condition, our group has reported sub-phenotypes character-

ized by varying levels of inflammatory cytokines, which correlate with clinical course and mor-

tality [38]. Thus, the in vivo behavior of hMSCs in individual patients may be variable and

could represent a challenge in clinical trials.

One strength of this study is the robust and reproducible response of the hMSCs from mul-

tiple sources to the CytoMix stimuli to produce this potentially immunomodulatory pheno-

type. There was significant concern that this phenotype, although reproducible in technical

replicates in a microarray, might not be reproducible among multiple human donors or might

be a result of ex vivo expansion and manipulation of the hMSCs. For this reason, six human

donors were used for the cytokine-exposed transcriptional studies from three independent

sources; the gender ratio was four females to two males. Given the robust nature of this pheno-

type under specific conditions and the potential variability between patients and human dis-

ease states, preconditioning with CytoMix to induce an immunomodulatory phenotype may

be useful to ensure a uniform hMSC functional phenotype in clinical trials, but determining

the importance of this effect will require dditional in vivo experiemnts.

A limitation of our study is that we do not have direct evidence that CD40 is upregulated

on hMSCs in patients treated with hMSCs for ARDS. One potential future avenue of research

is to retrieve hMSCs from the bronchoalveolar lavage of patients with the ARDS, which is

planned for subset of patients of an ongoing randomized clinical trial of hMSCs for ARDS

(NCT03818854). We believe, however, that the upregulation of gene transcription of CD40

upon exposure to pulmonary edema fluid provides strong circumstantial evidence that CD40
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may be relevant in ARDS patients receiving hMSCs. Future studies will need to more directly

examine how hMSC CD40 expression contributes to the suppression of T cell and macrophage

hyperinflammatory states.

Conclusions

A combination of inflammatory cytokines in the clinically relevant condition ARDS leads to

upregulation of CD40 gene transcription and cell surface expression on bone marrow-derived

mesenchymal stem/stromal cells. Expression of CD40 provides hMSCs with a new pathway to

interact with other immune cells. CD40 expression is induced under the same cytokine condi-

tions as IDO, which has previously been shown to be a potent immunomodulatory phenotype

of hMSCs.

Supporting information

S1 Fig. hMSC validation by quantitative RT-PCR. (A) All hMSC cell lines expressed CD73,

CD90, and CD105 and (B) did not express high levels of CD11, CD14, CD34, CD45, CD19,

CD79A, CD54, CD40, or HLA-DRB. mRNA expression levels were normalized to house-

keeper genes EIF2E2 and TBP.

(TIF)

S2 Fig. CD40, CD83, and HLA-DR expression is not induced by LPS. Quantitative RT-PCR

failed to reveal any increased transcription of CD40, CD83, or HLA-DR after 24 hours of expo-

sure to varying concentrations of LPS. mRNA expression levels were normalized to house-

keeper genes EIF2E2 and TBP.

(TIF)

S1 Appendix. Underlying data and descriptive statistics for all figures and experiments in

accordance with PlosONE data transparency standards.
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