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Abstract

Background: DNA methylation microarrays are widely used in clinical epigenetics and are often processed using R packages
such as ChAMP or RnBeads by trained bioinformaticians. However, looking at specific genes requires bespoke coding for
which wet-lab biologists or clinicians are not trained. This leads to high demands on bioinformaticians, who may lack
insight into the specific biological problem. To bridge this gap, we developed a tool for mapping and quantification of
methylation differences at candidate genomic features of interest, without using coding. Findings: We generated the
workflow ”CandiMeth” (Candidate Methylation) in the web-based environment Galaxy. CandiMeth takes as input any table
listing differences in methylation generated by either ChAMP or RnBeads and maps these to the human genome. A simple
interface then allows the user to query the data using lists of gene names. CandiMeth generates (i) tracks in the popular
UCSC Genome Browser with an intuitive visual indicator of where differences in methylation occur between samples or
groups of samples and (ii) tables containing quantitative data on the candidate regions, allowing interpretation of
significance. In addition to genes and promoters, CandiMeth can analyse methylation differences at long and short
interspersed nuclear elements. Cross-comparison to other open-resource genomic data at UCSC facilitates interpretation of
the biological significance of the data and the design of wet-lab assays to further explore methylation changes and their
consequences for the candidate genes. Conclusions: CandiMeth (RRID:SCR 017974; Biotools: CandiMeth) allows rapid,
quantitative analysis of methylation at user-specified features without the need for coding and is freely available at
https://github.com/sjthursby/CandiMeth.
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Introduction

Epigenetics can be defined as stable, and most often herita-
ble, changes to the chromatin that do not alter the DNA se-
quence itself but still affect gene expression and/or are required
to maintain genomic stability [1]. These modifications consist of

reversible marks such as cytosine DNA methylation or histone
modifications, each critical to gene expression regulation, im-
printing, X-inactivation, and many other processes from mam-
malian gestation to later life [1].

Cytosine DNA methylation is the most common and thor-
oughly investigated of these epigenetic alterations. It is charac-
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terized by the addition of a methyl group to a cytosine residue,
many of which are located within so-called CpG islands (CGI)
close to gene promoters [2]. High levels of DNA methylation at
promoters aid in the stable long-term repression of the cog-
nizant genes, such as can be seen on the inactive X chromo-
some in mammals [3]. Methylation at control elements such as
insulators or enhancers can also help regulate regional gene ex-
pression, with multiple examples being seen among imprinted
genes [4] or gene clusters such as the protocadherins [5]. High
levels of methylation are seen on selfish DNA elements such as
endogenous retroviruses, where they play an important role in
their suppression [6] as well as at inert regions of the genome
such as pericentromeric repeats [7]. More recently, methylation
through the body of the gene has been recognized as contribut-
ing to maintaining gene transcription levels at highly expressed
genes [8, 9]. As well as showing such developmental program-
ming, DNA methylation is susceptible to environmental influ-
ence, with inputs such as diet [10, 11] and exposure to pollu-
tants such as cigarette smoke [12] having clear and reproducible
effects on methylation levels, sparking great interest in analysis
at a population level, particularly in humans [13].

Advances in sequencing technology have allowed us to quan-
tify and analyse methylation via whole-genome bisulphite se-
quencing at ∼28 million CpG resolution [14]. While this tech-
nique remains the gold standard for whole-genome methyla-
tion assessment, it can be very expensive, and when there are
hundreds of samples to be tested and analysed prohibitively
so; quantifying small differences reproducibly between multiple
samples is also challenging. An alternative technology known
as a microarray, which predates the era of whole-genome bisul-
phite sequencing, is often a popular solution for such cases,
where a lower CpG resolution is satisfactory but where greater
intersample reproducibility is required [15]. A popular choice
here is the Illumina Infinium Methylation BeadChip array [15],
which currently covers 850,000 CpG sites across the human
genome, including 99% of RefSeq genes and large numbers of
enhancers and other features. This can help elucidate the ef-
fects of an intervention across hundreds of samples in a cost-
effective manner. There are many packages across multiple
computational languages to analyse the outputs from these ar-
rays such as RnBeads [16,] or ChAMP [17], but these pipelines
operate in the statistical programming environment R and re-
quire some coding. Additionally, the output file formats can be
overwhelming and difficult to investigate further without ex-
perience in data analytics and bioinformatics. This situation
is exacerbated by the typically higher number of samples in
epidemiological or intervention studies where such arrays are
commonly used.

To help solve this predicament, we developed a Galaxy work-
flow known as CandiMeth, which takes the main output from
such methylation analysis pipelines and pairs this with a list
of features that the user may wish to investigate. The work-
flow first generates tracks showing both absolute methylation
levels in samples and differences in methylation between sam-
ples. These can be viewed via the University of California Santa
Cruz (UCSC) genome browser and overlaid with other available
tracks such as CpG island, enhancers, chromatin immunopre-
cipitation (ChIP) data, and so forth to allow data exploration and
more intuitive analysis. This also facilitates the design of as-
says to cover specific CGs using BLAT. The workflow can then
help confirm any patterns observed by quantifying data across
the identified regions or features, e.g., methylation differences at
specific sets of genes between cases and controls. It also has a
bespoke analysis allowing estimation of methylation differences

at repetitive sequences by leveraging the RepeatMasker tracks
at UCSC. The workflow removes the need for further analysis in
R and increases reproducibility by using an automated process,
but in a more user-friendly manner.

Methods

CandiMeth (CandiMeth, RRID:SCR 017974) (Biotools: CandiMeth)
is designed to work downstream of DNA methylation analysis
pipelines in R. It was developed initially using RnBeads as ref-
erence but has been subsequently successfully run with ChAMP
and other packages (see below). ChAMP (ChAMP, RRID:SCR 012
891) [18] and RnBeads (RnBeads, RRID:SCR 010958) [15, 18] are
end-to-end pipelines in R that can take raw data files such as
IDATs and bam files from microarray readers or sequencers and
process these to allow data exploration, visualization, and com-
parison. For array data, which is the main area where CandiMeth
addresses an unmet need, IDAT files containing raw values for
the red and green channels for each of ∼850,000 probes are ex-
ported from the microarray reader. RnBeads/ChAMP can per-
form quality control, remove probes with low signal or overlap-
ping with single-nucleotide polymorphisms (SNPs), and provide
a cleaned dataset giving absolute levels of methylation as β or
M values. The packages can also facilitate exploratory visualiza-
tion through principal component analysis or similar and allow
grouping of data prior to looking for differential methylation.
Probes showing substantial differences in methylation (�β) can
be identified and then ranked on the basis of a variety of param-
eters, including probability of occurrence (P-value), �β, false dis-
covery rate (FDR), or a combination of several of these. The pack-
ages can look for enriched gene sets using gene ontologies/GSEA
[19] and visualize differences for annotated categories of array
probe such as promoter and gene body.

While packages for array analysis provide genome-level data
such as whether promoters in general are losing or gaining
methylation, querying specific gene sets that might give more
biological insight cannot be easily done in this or other R pack-
ages with similar functionality without extracting the processed
dataset and writing bespoke code. Visualization of the data
against the genome map is also of great attraction for the wet-
lab biologist but is also not easily done within these packages.
While RnBeads can map methylation values to the genome as
customized tracks, this can only be carried out if a local in-
stance is installed on the user’s server, which requires substan-
tial investment for set-up and maintenance. ChAMP does not
currently provide tracks at all, to our knowledge. Typically, many
biologists have specific genes that are of interest to them, or they
may want to examine the area in which top sites are located
and determine whether adjacent probes are also losing or gain-
ing methylation. A ready way of assessing the degree to which
methylation is changing across a particular region and the ex-
act location of the probes also greatly facilitates the design of
gene-specific assays such as primer sets for pyrosequencing or
clonal analysis. It is also generally of interest to try and leverage
the enormous pool of publicly available data accessible through
UCSC Genome Browser tracks to explore possible novel correla-
tions between methylation changes in a particular dataset and
other genome characteristics such as replication timing, histone
modifications, or similar.

We therefore wished to develop a user-friendly non–
computationally intensive method of candidate feature inves-
tigation that avoided the command line but was more pow-
erful than browser-only interfaces. To this end we chose the
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Figure 1: Overview of CandiMeth workflow. When the CandiMeth workflow is started the user needs to specify as Inputs (left): (i) the type of R package used; (ii) the
methylation data, normally in the form of a differential methylation table generated by the package; (iii) a list of genes to be analysed; and (iv) a human genome build
to match the data to. The methylation data are then mapped (centre left) to the genome and sites overlapping features of interest analysed (centre right). The data are

then output quantitatively as Results and visually as Tracks (right).

Galaxy (Galaxy, RRID:SCR 006281) platform [20], which is a free
open-source environment for user-friendly and reproducible
bioinformatics [21]. It provides a variety of data manipulation
and analysis tools via a web interface with no prior installation
or dependency packages required, with results stored within
the Galaxy infrastructure and every action producing a new his-
tory entry so the original data are never compromised via de-
structive edits. Galaxy also allows users to aggregate analysis
steps into repeatable pipelines called workflows, which can be
easily shared, along with the histories, via URL or username.
These can allow biologists with little bioinformatics experience
to conduct complex analyses on their own data within a sys-
tem that has a low maintenance requirement and with little
worry over data storage or data corruption. Moreover, work-
flows can be published to a repository such as GitHub (RRID:
SCR 002630) or MyExperiment (RRID:SCR 001795) [22] or within
a scientific journal—further encouraging open data science and
reproducibility. Galaxy also provides many plugins such as inter-
active visualization software to view results, the option to export
results to genome browsers, and the option to configure tools, or
indeed an entire Galaxy instance, to the desired end-user needs.

Overview of workflow

The main process undertaken by CandiMeth is to take as in-
put the methylation data from an R pipeline such as RnBeads or
ChAMP and (i) visualize the data as tracks in the UCSC Genome
Browser and (ii) analyse the methylation differences relative to
genomic features specified by the user. The workflow comprises
3 main steps: Inputs, Feature Mapping, and Analysis (Fig. 1).
There are also 4 items required at input stage: the user must
(i) indicate the R package used with the keywords “RnBeads,”
“ChAMP,” or “Custom,” then supply (ii) the methylation data, (iii)
a list of the genes of interest, and (iv) specify the human genome
build to be used, e.g., hg19. The basic workflow for CandiMeth is
that the genes of interest are mapped to the reference genome
and then cross-referenced with the input methylation data to
get feature-specific statistics. The workflow can currently look
at either the promoters (−500 to +1 bp relative to transcription
start site; suffix “ P” on results) or gene bodies (the transcription
unit; “ GB”), or both parts of the gene together (“ all”). We have
found this to be a particularly useful split because the current
consensus is that promoters and gene bodies can show opposite

methylation patterns, with methylation at the promoter largely
associated with repression, whereas gene body methylation in-
stead is a feature of transcribed genes. Outputs are then grouped
in the history into 2 types, Results or Tracks (Fig. 1). The methy-
lation data from the R packages are output as a standard differ-
ential methylation table as routinely generated, and either a sin-
gle table comparing 2 groups, or several tables can be processed
at once as inputs, e.g., comparing different experimental condi-
tions with the control. Each comparison will result in a separate
table and tracks, grouped together and given a condition-specific
identifier to avoid confusion. The CandiMeth workflow, together
with the example datasets used and a step-by-step tutorial, are
available on GitHub [23]. CandiMeth is optimized to work on the
latest version of Galaxy (19.0) through the Galaxy website [20,
24], thus making it platform-independent. For users who have
their own instance of Galaxy, the workflow can be downloaded
and imported via a link on the GitHub page, where a .yaml file is
also available.

Example outputs

To illustrate the type of analysis that can be done, Fig. 2 shows
outputs from 1 of the example dataset runs. Here we used as in-
put 1 of our previously published differential methylation tables
generated by RnBeads (NCBI Gene Expression Omnibus [GEO]
identifier GSE90012; the table is also given as Suppl. Table 1)
[25]. The experiment compared wild-type hTERT1604 human fi-
broblast cells (WT) and a clonal derivative with a stable knock-
down (KD) of the maintenance DNA methyltransferase DNMT1
(d8 KD), which gave large alterations in DNA methylation lev-
els, very suitable for the purpose of illustration here. The second
item needed for CandiMeth, namely, features of interest, was
in this case a set of microRNA (MIR) genes not analysed in the
original article, which was input here simply as a list of names
(given in Supp. File 2). CandiMeth first mapped the MIR locations
to the human genome (in this case hg19), then analysed the co-
occurrence of probes at these locations. The results appeared in
Galaxy as 2 grouped sets of datasets (Fig. 2A): “Mir Cluster | hg19
all | CandiMeth Results” and “CandiMeth Tracks.”

The Results set contained an output table for each condition,
namely, KD (d8) and WT cells (Fig. 2B, first 5 rows of each shown).
Each table consisted of 7 numbered columns. It should be noted
here that methylation values from the array are expressed as a

https://scicrunch.org/resolver/RRID:SCR_006281
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Figure 2: Case Study 1: analysing new genes in a published dataset. Our previously published dataset GSE90012 using RnBeads to compare methylation levels in

cells deficient in DNA methyltransferase 1 (d8 KD) with wild type (WT) was reanalysed for methylation levels at microRNA (MIR) using CandiMeth. (A) The workflow
generated 2 grouped sets of outputs (white boxes at left) on completion, “Mir Cluster | hg 19 all | CandiMeth Results” containing links to the tabular quantitative data
and “CandiMeth Tracks” with links to the tracks on UCSC (B) CandiMeth Results box expanded: a separate dataset for each cell line is generated showing the list of

candidates, probe coverage, median, and a variety of other statistics for each gene analysed (top 5 rows only shown). (C) CandiMeth Tracks: UCSC Genome Browser
view, accessible via the eye symbols on the Galaxy history shown in (A): (From the top down) Scale bar, size of region in kilobases of DNA; chr1, chromosome number
and exact coordinates from the hg19 genome build. (1–4) CandiMeth tracks: (1) Mean beta d8, absolute methylation track reflecting array output going from 1, no
methylation, to 1,000, fully methylated, e.g., 811 = 81.1%, maximum and minimum indicated at left; (2) Mean beta WT, absolute methylation in WT; (3) delta d8vsWT,

a differential methylation track showing proportional change going from −1.0 (100% loss, red) to +1.0 (100% gain, blue), e.g., −0.155 = loss of 15.5% compared to WT;
(4) FDR D8, a significance score track showing only those sites whose differential methylation meets the cut-off criterion of a 0.05 false discovery rate. (5–7) Examples
of some of the tracks available through the UCSC Genome Browser, which can be aligned and directly compared to CandiMeth tracks: (5) HAIB Methyl450, data on
comparative methylation from ENCODE projects; (6) Pyro, the BLAT tool in UCSC, which can be used to find primers for pyroassays to cover 1 or multiple CG; (7) RefSeq

track, showing the location of the top 2 MIR from (B).

number from 1 (no methylation) to 1,000 (fully or 100% methy-
lated) to facilitate visualization. The numbered columns corre-
spond to (1) Feature, the candidate region of interest, in this case
each of the MIR in the initial list; (2) Probes, the number of ar-
ray probes that are found in the specified feature; (3) Median,
the methylation value that is the median of all probes mapping
to that feature, e.g., 626.208/1,000 is the median of all probes at
MIR1185–1, or 62.6% methylated; (4) Mean, the mean methyla-
tion value across all probes; (5) SD, the standard deviation; (6)
Max, the maximum probe value seen in the feature; and (7) Min,
the minimum probe value (Fig. 2B). It can be seen that methy-
lation values are much lower in the DNA methyltransferase-
depleted cells (d8) for each miR compared to the parental or WT
cells, e.g., MIR1185–1 62.6% median methylation in d8 vs 72.2% in

KD. It can be seen that, while usually in reasonable agreement, in
some cases the median and mean vary substantially, and hav-
ing data on the numbers of probes can be useful for deciding
confidence in the results and on any threshold to be applied.

In the Tracks folder CandiMeth also generated 4 tracks on the
UCSC Genome Browser (Fig. 2C, 1–4), which can be visualized by
clicking on the eye icon on the Galaxy datasets under CandiMeth
Tracks in Fig. 2A (clicking on each track overlaid it on the previ-
ous one to generate the cumulative view shown).

Tracks 1 and 2 are absolute methylation (raw β) tracks, de-
noted as “Mean beta” in CandiMeth outputs. These show the
methylation per probe for all probes in the differential methyla-
tion table that passed quality control and other screening steps
in RnBeads, and not just the feature-specific (here MIR) probes,
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as we have found that the genomic methylation context is very
valuable to consider when looking at features. In other words,
even if Promoters is selected at input, the tracks will show all
probes, including those in the gene body and other regions.
Track 1 is the DNMT1-depleted cell line (“Mean beta d8”) data,
and Track 2 is from the WT cells (“Mean beta WT”).

Track 3 is the �β track (“Delta d8vsWT”) showing the differ-
ence between methyltransferase-deficient and WT cells. These
are BedGraph files like Tracks 1 and 2, but because methylation
can be higher or lower in 1 sample versus another, the visualiza-
tion is different from the absolute methylation tracks. Instead,
gains in methylation in the experimental condition are shown
as blue columns above the zero (no change) line, and losses are
shown as red columns below the line, with a change of +1 be-
ing 100% increase and −1 being −100%, i.e., an array probe going
from 100% methylated to 0% methylated. The Delta track also
allows the user to see how many array probes in a region are
showing large differences in methylation and whether a differ-
entially methylated region (DMR) identified by RnBeads extends
farther than originally estimated [26]. Note that this track shows
all differences in methylation, however small: the FDR-corrected
probes are shown in the next track.

Last, an FDR-corrected track (“FDR D8,” Track 4) was also pro-
duced: this only showed information for those probes where
the R package has assessed the FDR to be <0.05 because this
is a statistical cut-off implemented by many array users. This
is an excellent method for visualizing only CG that have high-
confidence differences in methylation between samples. Here,
only a single probe passed the FDR threshold and is shown: the
absolute methylation level at the probe is given because P-values
would not scale correctly.

One of the most powerful features of using this approach is
that data can easily and more intuitively be compared to other
UCSC tracks (Fig. 2C, 5–7). The specific CpG site can be identified
in UCSC, e.g., by right-clicking on the column on the track, or
by typing the CG identity into the UCSC browser search window,
which will then pull out a track with the site highlighted, in this
case the ENCODE project’s HAIB Methyl450 (Fig. 2C, Track 5). A
particularly useful tool in this context is UCSC’s BLAT, which can
be used to help ensure that primers designed to verify methyla-
tion differences at specific regions of interest by pyrosequenc-
ing or similar do indeed overlap the crucial sites (Fig. 2C Track
6, Pyro), in this case the FDR-significant site. Off-the-rack as-
says for each CG on the EPIC array can also now be purchased
commercially. Other UCSC tracks shown in Fig. 2C include the
RefSeq track (Track 7), invaluable for identifying well-curated
genes rather than predicted or rare products. These tracks were
all overlaid on the CandiMeth tracks, allowing the user to see
whether methylation changes were located in or near any of
these features. These are examples only; any track available
through UCSC or that can be called through Galaxy can poten-
tially be aligned with the CandiMeth tracks.

Data preparation and inputs

A complete User Guide document with step-by-step tutorials
is available [23]; here we describe more general features of the
workflow. As indicated, CandiMeth runs in the Galaxy environ-
ment: users must first create an account and copy the Can-
diMeth test history and workflows to their account, as explained
in the Guide. Once these simple steps have been carried out the
first time, they do not need to be repeated. When CandiMeth is
being run, the initial window will look as shown in Fig. 3: the
workflow occupies the central window, while the example data

and datasets required for the workflow are in the History win-
dow at right; the left window Tools will not be used. Upon initial-
ization, the workflow window will look as shown, with 1 Yes/No
choice and 4 fields (numbered 1–4) to fill in. We recommend sav-
ing the outputs of CandiMeth to a new history when initiating
the pipeline. This will (i) make it possible to continue working on
other tasks while CandiMeth is running in the background—the
workflow can take a while to run depending on server usage and
(ii) segregate the current job from the reference datasets in the
CandiMeth initial history, which avoids cluttering the initial his-
tory or causing problems if a particular run fails and generates
incompletely processed datasets. The 4 fields are the 4 forms
of inputs required, as indicated in the example above and dealt
with below.

Input Type 1: R package used
CandiMeth works downstream of R-based packages that are de-
signed to process epigenome-wide datasets. The 2 most popular
packages (by Bioconductor download) ChAMP and RnBeads both
automatically generate tabular data outputs that are suitable
as input for CandiMeth without further processing, but the ta-
bles are in slightly different formats. Therefore, CandiMeth users
should select either “RnBeads” or “ChAMP” when asked which R
package was used. CandiMeth also supports other packages via
a “Custom” keyword.

Input Type 2: Differential methylation table
The user needs to identify the location of, or upload directly, a
copy of the output table from the R package containing the dif-
ferential methylation data. For RnBeads this can be found via the
html interface by opening “differential methylation html” and
choosing the desired comparison table. Once uploaded, the dif-
ferential methylation table must be converted to a dataset col-
lection through a 1-step operation (see the User Guide [23, 27]),
which allows all the data from the table to be processed at once.
An example table is available in dataset collection format in the
CandiMeth default history; the raw table itself is also available
as Supp. Table 1. In addition, an example ChAMP output is also
available as Suppl. Table 5 in the CandiMeth History.

If the custom option is chosen at Input 1 above, the user
can input a data frame of any origin as long as it follows the
default CandiMeth format, namely: Chromosome; Start; cgid;
mean.X; mean.Y; the difference between the 2 groups; and the
FDR-corrected P-value (where X and Y equal the names of the
experimental and control groups, respectively). Data frames can
also be rearranged in Galaxy using the text manipulation tools
“cut” and “join” within the Galaxy tool panel to produce an ac-
ceptable input table. We hope to extend the number of prefor-
matted options beyond RnBeads and ChAMP to reduce the need
for custom inputs in future.

Input Type 3: Gene features of interest
Here the user can choose which features they want to investi-
gate. This can be done in a customized fashion, but commonly
biologists initially want to see how much methylation is present
across well-defined genomic features such as genes. This can
easily be done in CandiMeth by following the commands >Get
Data >upload File >paste/Fetch and then typing the official gene
names, 1 per line, into the window that opens there (see Step-
by-Step Guide). Alternatively, they can be uploaded as a list in
a tab-delimited file format at this step. To facilitate initial trials,
the MIR gene names used above have been preloaded into the
default CandiMeth history for use and are also supplied as Supp.
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Figure 3: User Interface for the workflow. Screenshot of the workflow start window (middle pane) that appears on right-clicking >CandiMeth>Run. The right-hand side
shows the CandiMeth starting history, where preloaded data used with the workflow can be found, together with any user-uploaded datasets. Galaxy tools (left) are
not used. For the workflow the user chooses whether to save results to a new history (recommended), then specifies (1) which R package was used to pre-process the

data, e.g., RnBeads; (2) the dataset collection table of pre-processed data—available sets will appear in the drop-down menu; (3) a list of the genes/other features of
interest to analyse; and (4) the reference genome to be mapped to, e.g., hg19. Once all 4 have been decided, the user clicks on the blue “Run workflow” button at top
right to initiate a run.

Table 2. The features associated with the gene names are then
mapped to the genome using the genomic data discussed next.

Input Type 4: Genome information
An important part of the CandiMeth workflow is the parsed hu-
man genome information used to assign array probes to vari-
ous genomic features. Example human genome build informa-
tion used for the mapping part of the CandiMeth pipeline can be
found within the CandiMeth history (right-hand pane in Fig. 3).
The data provided here cover 2 genome assemblies, hg19/hg38,
and will aid the mapping of candidate features to promoters,
whole gene body region, or both (hg19 all option) as defined by
RefSeq [28].

Using CandiMeth, users can query RefSeq-defined genes or
repeats to obtain the same types of information as can be ob-
tained by analysis in an R package. One advantage here how-
ever is that the simultaneous visualization allows the user to
inspect the match between probe location and gene structure
for candidate regions of interest: e.g., the initial screen may
indicate changes in promoter methylation from the manifest-
defined promoter, when inspection shows that all of the probes
lie in the first exon of a single-exon gene and therefore are in
fact gene body, the discrepancy being due to the definition of
promoter in the manifest. CandiMeth allows the user to refine
or alter the promoter definition to exclude bases downstream
of the transcriptional start site, for example, and re-evaluate.
An approximation of promoter areas of these RefSeq genes was
generated for the example data analysis and was defined as the
region from 500 bp upstream to the first base (−500→ +1 bp)
and is available in the CandiMeth history [29] mentioned above.
Similarly, probes were also parsed into gene body and repeat cat-
egories for CandiMeth to facilitate user analysis of effects over

these types of genomic intervals for their candidate genes of in-
terest.

Processing steps

Fig. 4 shows a workflow editor view of CandiMeth: different sec-
tions have been numbered for ease of reference here.

1. Inputs: Inputs are indicated at left; R package used to generate
the table (1.1), differential methylation table (1.2), features of
interest (1.3), and parsed genome information specific to that
type of interval, e.g., promoters (1.4). Once the 4 input types
have been decided (see aforementioned examples) the work-
flow proceeds as follows.

2. Generation of a standardized data frame between RnBeads
and ChAMP: First the CSV file output from the R package
is processed by converting the delimiters used into tabs
(2.1), then the keyword identifier for that package (either
“RnBeads,” “ChAMP,” or “Custom”) added to the differential
methylation table (2.2) to form an extra column. A table is
then output showing the chr, start, cgid, mean methylation
between control and experimental groups, the difference be-
tween these experimental groups, and FDR-corrected P-value
(2.3). Subsequently, the end coordinates for each cg site are
calculated and added to this table (2.4), so the data can be
configured to run on UCSC Genome Browser at a later stage
in the workflow.

3,4. Track generation and naming: Differential Table inputs from
RnBeads (1.2) are converted into a variety of tracks compat-
ible with UCSC Genome Browser. These include 2 absolute
methylation tracks (3.4, 3.5) in this case, 1 FDR track showing
only FDR significant sites (3.1), and 1 �β track (3.3) showing
the difference in β-value between the 2 absolute methylation
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Figure 4: Galaxy Workflow Editor View of CandiMeth. Detailed view of the workflow using the editing tool in Galaxy. Steps in the workflow have been grouped for

clarity. (1) Inputs: here the user indicates which R package was used to analyse their array using the keywords “RnBeads,” “ChAMP,” or “Custom” (1.1), identifies the
differential methylation table resulting from this R package (1.2) and the genomic features that they wish to analyse (1.3), and specifies the desired genome build
(1.4). (2) Standardizing the input data: Using the R package information in 1.1 and the differential methylation table in 1.2, CandiMeth generates a table showing the
chromosome location, start, end, mean methylation in the control and experimental groups, the difference between these groups, and the FDR-adjusted P-value. (3)

Track generation: maps the data on absolute as well as differential methylation from the table to the genome build. (4) Track naming: generates unambiguous labels
for each type of track. (5) Merging of tracks and names: this ensures logical labelling and grouping of tracks. (6) Feature mapping: this maps the specific features to
the same genome build. (7) Compilation of feature methylation: this parses the data in the tracks to only examine the features of interest. (8) Output Tables: these

contain summary statistics on the features of interest and are 1 major output. (9) Output Tracks: the user can also see the mapping on which the summary statistics
are based, which allows them to see areas adjacent to the features of interest, and overlay other UCSC tracks, as well as use tools such as BLAT.

tracks. Track and results names (4.1–4.4) are also generated
from the differential table inputs: this is an important step
because both absolute methylation data for individual sam-
ples and a number of types of comparison data must be sep-
arated and given logical and intuitive names to allow easy
identification among the multiple output datasets. The work-
flow uses a number of pre-existing tools available in Galaxy
to carry out these steps (Table 1).

5. Merging of tracks and names: Following track creation (3),
the resultant tracks and their names are merged into sepa-
rate dataset collections (5.1–5–4) and then collapsed into sin-
gular dataset collections (5.5, 5.6), one for all comparative
tracks (5.5), one for all comparative track names, and one
for all absolute methylation (mean β) tracks (5.4) with their
associated names (5.7). The mean β tracks will be used for
feature investigation later in the workflow. The results here
are compilations containing information on methylation at
each probe across the genome in each sample, or the dif-
ferences in methylation at specific probes between pairs of
samples.

6. Feature mapping: Features of interest (1.3) input by the user
such as a particular set of genes are joined (6.1) to the spec-
ified genome release information (1.4) using the Paste tool.
The gene features of interest are overlapped with the genome
release information to obtain the desired genome intervals
using AWK (6.2). Any repeated columns or rows that are no
longer required are discarded and unique records extracted
(6.3). The output here is a set of genomic coordinates match-
ing only the specific features of interest, e.g., a specific set of
genes.

7. Compilation of methylation data for features: The dataset col-
lection containing now correctly named absolute methyla-
tion tracks (5.7) is now joined with the mapped features of in-
terest (7). This allows the generation of feature-specific statis-
tics.

8,9 Outputs: Feature-specific statistics such as mean methyla-
tion over all probes in each feature, median, maximum, etc.
(see below), are tabulated and form 1 major output (8). The
comparative tracks (generated in 3) are also given unambigu-
ous final names, collated, and output as a dataset collection
called “CandiMeth Tracks” (9, with green stars marking final
output states).

Output files

The CandiMeth workflow produced as indicated above under Ex-
ample outputs 2 main types of output files:

Tables
Results tables all follow the same layout: feature name, probe
coverage, median methylation, mean methylation, standard de-
viation, maximum, and minimum. A partial example of a tab-
ular output for the set of miRs used in the example above is
shown in Fig. 2B (first 5 lines) and given in full in Suppl. Ta-
ble 3. Methylation values for the features can then be plotted
within Galaxy via their integrated visualization software or the
Table can be exported and downloaded then plotted within the
user’s preferred visualization software such as Prism or Excel as
desired.
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Table 1: List of Galaxy tools used

Tool name Tool ID Version CandiMeth step Reference

Convert delimiters to TAB convert characters 1.0.0 2.1 [30]
Add column to an existing dataset add value 1.0.0 2.2 [31]
Text transformation with SED tp sed tool 1.1.1 2.3 [32]
Compute an expression on every row column maker 1.2.0 2.4 [33]
Merge collections into single list of datasets MERGE COLLECTIONS 1.0.0 5 [34]
Relabel list identifiers from contents of a file RELABEL FROM FILE 1.0.0 5.7/9 [35]
Collapse Collection into single dataset in order of
collection

collapse dataset 4.1.0 5.5/5.6 [36]

Paste 2 files side by side Paste1 1.0.0 6.1 [37]
Text reformatting using AWK tp awk tool 1.1.1 6.2 [38]
Unique occurences of each record tp sorted uniq 1.1.0 6.3 [39]
Join the intervals of 2 datasets side by side tp easyjoin tool 1.0.0 7 [40]
Group data by a column and perform aggregate
operations on other columns

Grouping1 2.1.4 8 [41]

Tracks
CandiMeth produced 4 different tracks from the differential
methylation table input in the first step, of 3 different kinds (ab-
solute methylation, relative differences in methylation [�β], and
FDR-significant methylation difference), as shown in the exam-
ple above for a cell line system.

Findings

The utility of the CandiMeth workflow may be best illustrated by
some case studies.

Case Study 1: Application to array results from model
systems

One straightforward use of CandiMeth that has found common
use in our laboratory and among collaborators is to test a specific
gene set, as illustrated by the MIR example above (Fig. 2). To do
this, the user only has to specify a list of the names of the genes
they are interested in, together with the genome release, then
upload a table containing differential methylation data. This can
either be one generated by the bioinformatics team in-house;
one that was supplied, typically when array services are brought
in; or one that was generated from publicly available array data
such as our dataset GSE90012 described previously [42] and used
above.

Case Study 2: Application to EWAS study outputs

A major application of methylation array technology is in
epigenome-wide association studies (EWAS). CandiMeth can
provide a very useful tool for quickly examining in detail and
quantifying methylation differences around candidate regions
identified either by the R-based packages or from the litera-
ture. Fig. 5 shows the application of this approach to an EWAS
that we have recently published containing data from 86 partic-
ipants divided into 45 receiving placebo and 41 receiving folic
acid supplementation during trimesters 2 and 3 of pregnancy
to assess the potential positive effects of prolonging this vita-
min supplementation beyond the currently recommended peri-
conception and first trimester periods [26]. Output differential
methylation tables from RnBeads were used as input for Can-
diMeth, together with the names of the top candidate promoters
reported earlier. This produced a collection of outputs (Fig. 5A)
including a set of tabular Results for the 2 groups Placebo and

Treatment, as well as a set of Tracks. The latter included abso-
lute mean β, �β, and an FDR track, although the latter returned
the message “#No FDR significant sites” (not shown), often the
case for EWAS if the sample set was small or the perturbation
mild. Clicking through to the tabular results (Fig. 5B) showed ta-
bles indicating the number of probes present at each promoter
and mean methylation, revealing, e.g., that median methylation
at the CES1 promoter is 2.5% lower in folic acid–treated partici-
pants than placebo (666.142 – 641.100 = 25.042/1,000 = 0.025, or
2.5%).

Examination of the CandiMeth Tracks (Fig. 5C) was however
also informative here. This BedGraph track type is set by default
to scale to the maximum loss and gain on visualization, so that
when the UCSC browser is opened on a genomic region of in-
terest, not only are the maximum loss and gain shown, but the
graph is scaled to these, meaning that even when small differ-
ences in methylation occur, as typically seen in epidemiologi-
cal studies, the areas of the genome with the greatest changes
can be easily identified at a glance. In-house testing has found
�β tracks to be particularly useful because it can easily be seen
whether a feature contains any probes with methylation differ-
ences between samples big enough to assess by other means—
e.g., pyrosequencing can accurately assess differences in methy-
lation >5%. It can be easily seen from the �β (Track 3) that
the biggest loss of methylation was 7% (–0.071). The cluster-
ing of sites losing methylation at the promoter is also striking
(boxed in green) compared to the rest of the gene, suggestive
of a step-change in methylation at this important regulatory el-
ement rather than a point source. The seamless integration of
BLAT [43] meant that designing primers to verify methylation
changes could be done very intuitively and the area covered by
the assay mapped against the methylation data to confirm that
the assay could confirm methylation levels at the exact same
location (Fig. 5C Track 4 “Pyro”).

It was also seen from the absolute methylation levels in the
samples (Tracks 1, 2, values for promoters given in Fig. 5B) that
loss of methylation at the CES1 promoter occurred against a
background of high methylation at this region, which suggested
that this control element is normally methylated and silenced,
a type that often responds to even small losses of methylation.
Additional data to corroborate this could be obtained by examin-
ing chromatin state data available through the ChomHMM track
in UCSC (Fig. 5C, Track 6), which showed that the promoter falls
into the “poised promoter” category (colour-coded pink) and is
regulated in part by polycomb-group proteins (grey shading). A
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Figure 5: Case Study 2: Using CandiMeth to mine EWAS data. Example data from an EWAS dataset comparing 45 placebo and 41 treated samples from a randomized

controlled trial of a folic acid intervention during the second and third trimester of pregnancy. (A) Output Results and Tracks from the workflow when the RnBeads
differential methylation table and a list of the top-ranked differentially methylated promoters were used as inputs. (B) Summary statistics generated by the workflow
indicates the number of probes and methylation values (from 1 to 1,000) for the top promoters. (C) Tracks view for the CES1 locus showing the absolute levels of
methylation (Tracks 1, 2) as well as the most differentially methylated probes (Track 3) located at the promoter (boxed in green). Comparison to ChromHMM data in

UCSC (Track 6) shows this to be a poised promoter (pink). Identification of individual CG (numbered in Track 8) facilitated the design of a pyrosequencing assay (Track
4) covering the CG to be validated in the laboratory.

low likelihood of SNPs at the pyroassay region could be con-
firmed by examination of the Common SNPs dataset (Fig. 5C,
Track 7) and individual CpGs labelled by searching using the
UCSC query window, and their status in other public datasets
highlighted if desired (Fig. 5C, Track 8). Thus CandiMeth allowed
quick examination of candidate regions, quantification of differ-
ences specifically at these, the assessment of sites that could
be verified in the laboratory, exclusion of confounding SNPs,
and eased assay design and gave additional valuable insights
through mining of UCSC datasets using only a few simple inputs
and no coding.

Case Study 3: Analysis of methylation at genomic
repeats such as LINE1

Many studies looking for epigenetic changes also try to as-
sess DNA methylation outside of the coding regions. One com-
mon approach is to assess methylation at a highly repetitive
interspersed repeat such as LINE1, which is found scattered
throughout the genome at ∼500,000 copies, so in theory sam-

pling methylation across many locations. This normally has to
be done using a separate wet-lab assay such as pyrosequencing
because the 450 K and EPIC arrays are designed to cover genes
and their associated control elements, not repetitive DNA. How-
ever, as has been noted elsewhere [29, 42], a substantial num-
ber of probes on the arrays, particularly the EPIC, nevertheless
fall within repeats such as LINEs and SINEs. Taking advantage of
this, we parsed data from the RepeatMasker track on UCSC to al-
low mapping and quantification of methylation at the major re-
peat classes using array data (Fig. 6A). By simply listing the cate-
gories of repeat given by RepeatMasker (as in Suppl. Table 4), it is
possible to obtain summary statistics indicating the numbers of
probes overlapping the respective elements, together with me-
dian methylation, and so forth, from any differential methyla-
tion table, in this case from our experiment comparing WT and
DNMT1-deficient cell lines (Fig. 6B). It can be seen from the ta-
bles that very substantial numbers of probes on the EPIC map
to the various repeat classes, with ∼20,000 probes in LINE ele-
ments spread across the genome, and equal numbers in SINE
elements, with satellite repeats near centromeres showing the
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Figure 6: Case Study 3: Analysis of LINEs and SINEs. Use of CandiMeth to give an overview of methylation at repetitive elements. (A) Data on repeat location and type

from the RepeatMasker track on UCSC has been parsed and made available through the workflow: users can therefore simply type in the name(s) of a class of repeats
as a query. (B) Example outputs showing probe coverage of repeats on the EPIC array and methylation statistics for each repeat class in a DNMT1 knockdown cell line
(d16 KD) versus WT. (C) Tables from B were exported, median methylation levels converted to percent, and then graphed to highlight differences between the 2 cell
lines: decreases in methylation are seen at some (LINE, SINE, satellite) but not other repeats (low complexity, simple).

lowest coverage, at ∼1,000. The summary data were exported to
Excel and graphed to highlight where the greatest differences
lay (Fig. 6C), which showed that satellite sequences appear to be
most demethylated on average, with notable decreases at LINE
and long terminal repeat (LTR)-containing elements too, which
would include endogenous retroviruses for example, whereas
low-complexity and simple repeats show almost no changes,
despite good probe coverage (Fig. 6B). Thus CandiMeth allowed
straightforward assessment of repeat methylation across the
genome without the need for wet-lab analysis and gave novel
insights into the differential effects of DNMT1 loss on individ-
ual repetitive DNA classes.

Case Study 4: Analysis of methylation changes seen at
a large complex gene locus in multiple samples using
parallel processing in CandiMeth

A powerful feature of CandiMeth is the ability to process data
from multiple differential methylation analyses at once. To illus-
trate this, we took 3 sets of comparisons between the indepen-
dently derived DNMT1 KD cell lines described earlier (d8, d10,
and d16), each of which had been compared to the parental WT

cell line, and processed them simultaneously. In our earlier pub-
lication [25] we had found differences between the variable A
and B classes and the variable C class of exons at the impor-
tant neurodevelopmental gene cluster Protocadherin β (PCDHB),
with the A and B classes showing severe loss of methylation but
no change at the C class. This highlighted differences between
these classes, which indicate (i) a hyper-dependence on DNMT1
for maintenance of methylation levels and (ii) a potential dif-
ference in methylation dependence that may track with allele
usage because the A and B classes show monoallelic expression
but not the C class. Here, we wished to examine the neighbour-
ing PCDHG locus, which has a similar structure, and see whether
the same effect could be seen there.

We therefore generated a candidate region list containing
the names of the γ -cluster genes and input this as our can-
didate feature list input to CandiMeth, together with the 3
differential methylation tables from RnBeads (d8 vs WT, d10
vs WT, d16 vs WT). All 3 sets are processed at once (Fig. 7A,
left) and give as outputs data on absolute methylation levels
in each KD line as well as the WT parental line (which will not
vary), from which summary tables were derived specific to the
PCDHG exons; example data for 1 A and 1 C exon in each cell
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Figure 7: Case Study 4: Parsing data from a complex gene locus using parallel processing. Analysis of methylation at variable exons in the large (∼200 kb) clustered

Protocadherin γ (PCDHG) locus on human chromosome 5. (A) Results: changes at the variable exons across 3 independent cell lines deficient in DNMT1 (d8, d10, d16)
were scored using the RnBeads tables comparing each to WT as input, together with a list of variable exon names. Example quantitative outputs are shown at right
for WT and knockdown (KD) cells. (B) Tracks: part of the output set of tracks is shown, which included mean β, differential methylation, and FDR significant sites (not
shown) for all cell lines, generated simultaneously in 1 run. (C) The UCSC browser view available by following the links in (B). The region covering the A and B class

variable exons appears to show more loss of methylation while the C class appear to show predominantly gains; however, this is not exclusive and many probes lie
between exons. (D, E) Data on probes that lie solely in exons and not introns, obtained through Results (B), were exported and grouped as indicated. The numbers
were then converted back into β-values and graphed. This confirmed that methylation was lost on average at the A and B class exons, while the C class predominantly
gained methylation. ∗∗∗P < 0.001, ∗P < 0.05 by Kruskal-Wallis test.
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line only are shown (Fig. 7A, right). Interestingly, the summary
statistics indicated that, while levels of methylation appeared
to be decreased across A and B class variable exons at this
locus too (e.g., PCDHGA1 63.8% median methylation in WT vs
50.9%, 55.1%, and 46% in d8, d10, and d16, respectively), median
methylation at C class variable exons appeared to be increasing
rather than remaining constant (e.g., PCDHGC3 86.5% in WT vs
89.1%, 89.1%, and 88.9% in d8, d10, and d16).

CandiMeth additionally generated Tracks outputs including
the full range of tracks for each input table (absolute methyla-
tion in WT and each KD, �β and FDR for each vs WT). In Fig. 7C
we show the differential methylation (�β) tracks, from which it
appeared that methylation was largely lost across the region of
the gene containing the A and B class variable exons (Fig. 7C,
region boxed in red), although some gains (blue peaks) could be
seen particularly in the d10 track. Additionally, given the size of
the region (∼200 kb) it cannot be assessed whether many of the
probes lie in the introns rather than the exons themselves. For
the C class exons (Fig. 7C, blue box at right) most changes ap-
peared to be gains (blue) although peak sizes were smaller and
interspersed with some individual large losses in red. To resolve
the exact nature of the changes seen, the tabular data (Fig. 7A)
were exported and median values across all A and B exons vs
WT generated, converted back to β-value to allow direct com-
parison to previous results [26], and plotted (Fig. 7D). This clearly
showed a general loss of methylation at A and B class exons in
all 3 cell lines (P < 0.001 vs WT by Kruskal-Wallis test), although
the effect was least marked in the d10 cell line. When values
were averaged in a similar fashion across the C class variable ex-
ons, however (Fig. 7E), we saw a clear gain of methylation in all
3 cell lines (P < 0.05, Kruskal-Wallis test). The reason this effect
was not noted before is likely to be because our previous exam-
ination of the C class exons at PCDHG used the FDR-significant
probes only, and as can be seen the magnitude of the gains at
the C class exons is much smaller than the losses at the A and
B classes (compare scales in Fig. 7D and E).

The analysis thus confirmed and extended observations
from our previous study that the A and B class variable exons
at the clustered protocadherin loci are hypersensitive to loss of
DNMT1 across multiple independently derived cell lines, sug-
gesting a strong dependence on this enzyme for maintenance
of epigenetic state at this important neurodevelopmental locus.
Furthermore, we have uncovered new evidence for differences
between the A and B exons and the C exons, which may reflect
divergent transcriptional control, or an increased transcription
across the C class exons in response to loss of DNMT1, in line
with observations that intragenic DNA methylation is associated
with transcription at active loci [9, 43]. In terms of CandiMeth
functionality, the study highlights the ability of the workflow to
process multiple comparisons in parallel and the value of being
able to directly compare the visual outputs and the quantitative
data where complex genetic loci are being examined, giving in-
sights into the underlying biology.

Conclusions and Future Directions

CandiMeth provides a user-friendly non–computationally inten-
sive method of candidate feature investigation. With a mini-
mum of training and no coding, users of CandiMeth can set up
and run quite advanced exploratory and confirmatory analyses
and use the rich set of existing data in UCSC to formulate and
test hypotheses regarding the methylation changes ntat they are
seeing.

In future versions, we hope to add support for further methy-
lation processing pipelines and continue to grow the CandiMeth
history with additional genomic data such as DNA hypersensi-
tivity sites. In addition to the current pipeline, we also wish to
make CandiMeth more intuitive via the creation of a Galaxy tool
that would allow the pipeline to be extended to whole-genome
bisulphite sequencing or RNA-sequencing data and would also
allow further analysis options for those with a private instance
of Galaxy.

Availability of Supporting Source Code and
Requirements

Project Name: CandiMeth
Project home page: https://github.com/sjthursby/CandiMeth
Operating system: www.usegalaxy.org
License: GNU GPL

Availability of Supporting Data and Materials

All supporting data and materials are available in the GigaScience
GigaDB database [30].

Supplementary Materials

Supplementary File 1: CandiMeth User Guide. A complete Guide
to setting up and using CandiMeth, including some background
on Galaxy and UCSC browser, how to import the workflow and
example files, tutorials on the use of the example data, and fur-
ther guidance and instruction.
Supplementary Table 1: Example Differential Methylation Table
generated by RnBeads from GSE90012 for input to CandiMeth.
Table comparing wild-type hTERT1604 human fibroblasts (WT)
and a clonally derived daughter cell line with depleted lev-
els of DNA methyltransferase 1 (d8) from GEO database entry
GSE90012, used as Input 2 to CandiMeth in Case Study 1 (Fig. 2).
Supplementary Table 2: MIR gene list used to query data from
GSE90012. List of human microRNA genes (MIR) used as Input 3
to CandiMeth in Case Study 1.
Supplementary Table 3: Methylation summary for MIR genes de-
rived by CandiMeth. Full table of Results for MIR methylation in
GSE90012 WT vs DNMT1-depleted (d8) cells given as output from
CandiMeth (Fig. 2B).
Supplementary Table 4: Classes of repetitive DNA sequence that
can be analysed. List of repetitive DNA classes as given by Re-
peatMasker and that can be used as Input 3 by CandiMeth to
query datasets, as in Case Study 3 (Fig. 6).
Supplementary Table 5: Example Differential Methylation Table
from ChAMP. Example data in ChAMP format for use in tutorial
as Input 2 in CandiMeth.
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