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ABSTRACT The fission yeast, Schizosaccharomyces pombe, is a popular eukaryal model
organism for cell division and cell cycle studies. With this extensive knowledge of its cell
and molecular biology, S. pombe also holds promise for use in metabolism research and
industrial applications. However, unlike the baker’s yeast, Saccharomyces cerevisiae, a major
workhorse in these areas, cell physiology and metabolism of S. pombe remain less explored.
One way to advance understanding of organism-specific metabolism is construction of
computational models and their use for hypothesis testing. To this end, we leverage
existing knowledge of S. cerevisiae to generate a manually curated high-quality reconstruction
of S. pombe’s metabolic network, including a proteome-constrained version of the model.
Using these models, we gain insights into the energy demands for growth, as well as
ribosome kinetics in S. pombe. Furthermore, we predict proteome composition and
identify growth-limiting constraints that determine optimal metabolic strategies under
different glucose availability regimes and reproduce experimentally determined meta-
bolic profiles. Notably, we find similarities in metabolic and proteome predictions of
S. pombe with S. cerevisiae, which indicate that similar cellular resource constraints operate
to dictate metabolic organization. With these cases, we show, on the one hand, how these
models provide an efficient means to transfer metabolic knowledge from a well-studied
to a lesser-studied organism, and on the other, how they can successfully be used
to explore the metabolic behavior and the role of resource allocation in driving different
strategies in fission yeast.

IMPORTANCE Our understanding of microbial metabolism relies mostly on the knowledge
we have obtained from a limited number of model organisms, and the diversity of metabo-
lism beyond the handful of model species thus remains largely unexplored in mechanistic
terms. Computational modeling of metabolic networks offers an attractive platform to
bridge the knowledge gap and gain new insights into physiology of lesser-studied organ-
isms. Here we showcase an example of successful knowledge transfer from the budding
yeast Saccharomyces cerevisiae to a popular model organism in molecular and cell biology,
fission yeast Schizosaccharomyces pombe, using computational models.
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The fission yeast Schizosaccharomyces pombe is a popular eukaryal model organism
for cell division and cell cycle studies. With this extensive knowledge of its cell and mo-

lecular biology, S. pombe also holds promise for use in metabolism research and industrial
applications. However, unlike the baker’s yeast Saccharomyces cerevisiae, a major workhorse
in these areas, cell physiology and metabolism of S. pombe remain much less explored.
While these two yeasts share some similarities, distinct differences in, e.g., cell cycle regula-
tion (1), mode of cell division (2), glucose transport (3) and utilizable carbon sources (4),
make S. pombe a highly complementary model for studies into eukaryotic metabolism. A
deeper understanding of S. pombe metabolism, therefore, offers opportunities to expand
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our knowledge of the larger eukaryal metabolic landscape. In this regard, computational
approaches can provide a useful means to leverage the extensive metabolic knowledge
from S. cerevisiae to explore S. pombemetabolism.

Computational approaches have become increasingly important to unravel and
understand metabolism in diverse species, ranging from bacteria to humans. Arguably
the most successful approaches in both applied and fundamental research are based
on genome-scale metabolic models (GEMs) (5). A GEM is a computable knowledgebase
that is essentially a compendium of all reactions of an organism: its metabolic poten-
tial, based on the genome sequence. GEMs have successfully been applied in diverse
settings, including the metabolic engineering of microorganisms (6, 7), studies of
human diseases or disease-causing pathogens (8, 9), drug development (10), and the
investigation of interactions within microbial communities (11). Furthermore, by pro-
viding a general framework based on the genome sequence of an organism, GEMs
allow for efficient transfer of metabolic knowledge between organisms.

GEMs of S. pombe have previously been constructed. However, several issues, including
incompatibility with current Systems Biology Markup Language (SBML) standards (12, 13), a
lack of gene-protein-reaction (GPR) associations, or automated reconstruction without addi-
tional curation (12, 14), significantly limited their utility. Furthermore, recent extensions of
the GEM framework to include regulation and resource allocation dynamics now enable the
exploration of complex metabolic behaviors such as the Crabtree-effect (analogous to the
Warburg-effect seen in human cells) that cannot be explained with conventional GEMs.

Thus, in this study, we exploited the extensive metabolic knowledge and modeling tool-
set available for S. cerevisiae to generate an updated computational toolbox for S. pombe,
consisting of a genome-scale metabolic model, pomGEM, and a resource allocation model,
pcPombe. We manually curated and calibrated both models using published experimental
data. We used the pcPombemodel to identify proteome constraints that dictate the growth
and metabolic strategy of S. pombe in glucose-limited chemostat cultures. We found that
behavior appears to be governed by constraints similar to those operating in S. cerevisiae.
These models provide essential tools to further expand knowledge of S. pombe’s metabo-
lism, specifically, and eukaryotic metabolism in general.

RESULTS
Reconstruction of the S. pombemetabolic network.We first aimed to create a manually

curated, high-quality reconstruction of the S. pombemetabolic network. Therefore, we coupled
automated reconstruction tools (using Saccharomyces cerevisiae metabolic reconstruction
Yeast8.3.3 model [15] as a template) with thorough manual curation (see Materials and
Methods) to construct the pomGEM, a manually curated GEM of S. pombe (Fig. 1A) that
meets current standards for annotation and reusability. Manual curation of newly recon-
structed GEMs is critical for accurate prediction of metabolic phenotypes. For example,
during the curation we removed the reactions of the glyoxylate cycle, a pathway that is
active in S. cerevisiae but absent in S. pombe (4), and the reason why S. pombe cannot uti-
lize two-carbon compounds for growth. In addition, we replaced the biomass objective
function (BOF) of the Yeast8.3.3 model with the BOF used in the SpoMBEL1693 model
(13), which is based on experimental measurements of S. pombe (Fig. 1B).

Next, we looked at the energetic parameters. First, we confirmed that the P/O ratio
(ATP produced per oxygen atom reduced) in the model is 1.28, consistent with experi-
mental measurements (16). In terms of ATP maintenance parameters, we kept the non-
growth-associated ATP maintenance (NGAM) demand at 0:7 mmol gDW21 h21 from
the Yeast8.3.3 model, in agreement with experimentally determined values for S.
pombe (0.66–0:83 mmol gDW21 h21) (16). Furthermore, we estimated the growth-
associated ATP maintenance (GAM) value (Fig. 1C). We used published experi-
mental measurements of growth yield on glucose (YX=S) in fully respiratory
glucose-limited cultures of S. pombe and varied the GAM value to achieve the
target yield YX=S ¼ 0:432 g biomass g glucoseð Þ21. The target Yx/s corresponded
to GAM ¼ 58:3 mmol gDW21, comparable with 55:3 mmol gDW21 in the Yeast8.3.3
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model. The pomGEMmodel showed very good agreement for the predicted flux values in
central carbon metabolism with measured fluxes in glucose-limited chemostat cultures at
D ¼ 0:1 h21 (21) (Fig. S1).

We benchmarked the pomGEM model by predicting growth on a panel of 21 single car-
bon sources (Fig. 1D, Table S1) and lethality of single-gene knockouts (KOs; Fig. 1E,
Table S2). Predictions of growth on single carbon sources were correct for all carbon sources
except one, ribose: Choi et al. (19) reported growth on ribose, but pomGEM predicted no
growth (false negative). It should be noted that the growth medium used for testing in the
study by Choi et al. (19) is not clearly defined, as such it cannot be unambiguously con-
cluded that this strain can grow on d-ribose as the sole carbon source. Of the predicted phe-
notypes, 69.9% of single-gene KOs were true predictions (match between model and experi-
mental data) for the entire data set, while false positives (viable only in silico) and false
negatives (viable only in vivo) were 22.0% and 8.1% of the data set, respectively. We, how-
ever, were not able to test the single-gene KOs on previously published reconstructions due
to inherent technical issues with these models.

We also performed a check on the reaction essentiality to compare the prediction
accuracy with the SpoMBEL1693model, where essentiality was assessed in terms of reactions
rather than genes. We determined the essentiality (see Materials and Methods) of 2,017
model reactions with gene-protein-reaction (GPRs) associations and mapped the GPRs with
the individual genes in the data set of gene KOs (Table S3). pomGEM showed a true prediction
rate of 74.7%, a good improvement (13.5%) on the true prediction rate achieved by
SpoMBEL1693 reconstruction (61.2%) (13).

Development of the proteome-constrained model of S. pombe. FBA-basedmodels
are powerful tools to investigate the potential of metabolic networks, but the ground assump-
tions of the method limit the prediction of metabolic phenotypes. As a rule, FBA predictions
will identify the metabolic strategy that leads to the highest biomass yield on the limiting
nutrient when optimization objective is maximization of growth rate. For instance, under
glucose-limited conditions, a GEM of S. cerevisiaewill always predict a high-yield ATP pro-
duction strategy, complete respiration of glucose to CO2 and water. In reality, cells will

FIG 1 Reconstruction of the pomGEM, the genome-scale metabolic model of S. pombe. (A) The
workflow of the reconstruction. (B) The composition of S. pombe biomass, defined in the pomGEM. (C)
Estimation of the GAM value. Glucose uptake flux was fixed to 1:0 mmol gDW21 h21 and the maximal
specific growth rate m (solid blue line) was predicted with varying GAM value. Growth yield on glucose
YX=S was computed based on the predicted specific growth rate. The target yield on glucose
[YX=S ¼ 0:432 g biomass g glucoseð Þ21] (dashed horizontal line) was computed as an average of
experimentally determined YX=S from glucose-limited cultures with D. 0:1 h21 (4, 16–18). (D and E)
Benchmarking of the pomGEM model. (D) Prediction of growth on single carbon sources (experimental
data from Choi et al. [19] and our measurements; see Table S1 for details); (E) Prediction of the lethality
of single gene KOs (experimental data from Kim et al. [20]). BOF, biomass objective function; GAM,
growth-associated maintenance; KO, knockout.
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switch to fermentation, a lower ATP-yield strategy, when the glycolytic flux increases
beyond a certain threshold. Thus, metabolic phenotypes that do not correspond to
the highest-yield strategy cannot be predicted with FBA unless additional constraints
are added that reflect physiological constraints (22).

An important constraint relates to the allocation of limited cellular resources. If metabolic
reaction-associated protein costs are accounted for, different condition-dependent modes
of growth, e.g., the switch between respiration and fermentation (23), can be reproduced.
GEMs therefore can be improved by introducing the concept of resource allocation: optimal
partitioning of the limited resources among the metabolic processes, based on the costs
of energy and biosynthetic resources (e.g., amino acids) needed for implementing each
metabolic pathway. Over the last 15 years, different extensions of GEMs were proposed
in order to predict optimal resource allocation in different microorganisms (24). Recently,
we introduced a proteome-constrained (pc-) model of S. cerevisiae (pcYeast) (25) that can
accurately predict low and high biomass yield strategies under different growth conditions.
In a similar spirit, we constructed pcPombe, a proteome-constrained model of S. pombe,
based on the pomGEMmodel (Fig. 2A).

The pcPombe model (model explained in detail in the Text S1) captures the interplay of
metabolism and cellular resource allocation by (i) coupling metabolic processes with respec-
tive protein demand, and (ii) coupling protein abundance with compartment-specific pro-
teome capacity constraints. Thus, we first extended the metabolic model by introducing
fine-grained descriptions of protein turnover (reactions protein synthesis, folding, degrada-
tion, and dilution by growth). Then, we compiled data from literature and/or specialized bio-
logical databases (see Materials and Methods and Text S1) to parametrize the pcPombe
model (e.g., kcat values, Fig. S2) and establish compartment-specific proteome constraints
with pcYeast as template (25). We then further calibrated the pcPombemodel with available
experimental data, as explained below.

Calibrating ATP maintenance and protein translation costs in pcPombe. A sub-
stantial amount (;40% in S. cerevisiae [26]) of ATP maintenance costs can be explained by
protein turnover processes. As these processes are now modeled explicitly in the pcPombe

FIG 2 Calibration of the proteome-constrained model of S. pombe, pcPombe. (A) The representation of different
layers of the pcPombe model. The metabolic model (pomGEM) is complemented with a fine-grained description
of protein turnover (reactions of protein translation, folding, degradation, and dilution by growth) and a set of
compartment-specific proteome constraints (corresponding to proteome capacity of plasma membrane, mitochondria,
and cytosol). (B) Representation of the glucose transport in S. cerevisiae and S. pombe, and the estimates of ATP
maintenance costs for both organisms. (C) Calibration of the peptide elongation rate. The “inactive” fraction of
ribosomes (U0

R) was estimated from the experimental data (black dashed line, linear fit of the experimental points),
and growth on varying levels of glucose was simulated with different ribosome kcat values. Glc, glucose.
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model, we used the measurements of biomass yield on glucose (Fig. 1C), to determine the
GAM value for the pcPombe model (Fig. 2B). We first explicitly split the ATP maintenance
into two components, cytosolic and mitochondrial ATP maintenance (GAM and mitoGAM,
respectively). We based this decision on the fact that mitochondria are special organelles;
they have a circular genome that stores a small number of protein-coding genes, and the
translate them using a distinct mitochondrial pool of ribosomes. In the model, the exact
number of mitochondria per cell is not specified, therefore a practical way to express the
maintenance costs is mmol ATP per gram of mitochondrial protein.

Although protein turnover cost is a major determinant of GAM, other processes,
which are often not explicitly modeled, can significantly influence this value. For example,
in S. cerevisiae, glucose enters the cell via facilitated diffusion, while di- or oligosaccharides
(maltose, maltotriose, raffinose, etc.) are imported into the cell through sugar: H1 symport,
leading to additional energetic costs of using these sugars for growth (27). However, in
S. pombe, glucose transporters are also sugar: H1 symporters, with a stoichiometry of 1:0.4 for
glucose and protons, respectively (3). We have thus modified the stoichiometry of glucose
import reactions in both pomGEM and pcPombe to reflect this.

The actual energetic costs here come from the fact that the protons, imported with
the sugar, must be pumped out of the cell by the plasma membrane H1-ATPases to
maintain the proton balance in the cell. If this energetic cost of glucose transport is not
accounted for, the growth rate will be significantly overestimated, especially during re-
spiratory growth when the mitochondrion is used, and this is a consequence of two
factors. First, by neglecting consumption of ATP by the H1-ATPase, more ATP will be
available for growth; in the model, correctly predicting the growth yield will then
require a much higher GAM value. Second, increased cytosolic proton availability in
the model will drive increased mitochondrial ATP synthase activity, leading to a higher
ATP yield, and hence a higher estimated GAM value. Therefore, we added an additional
constraint to the pcPombe model that couples glucose import to H1-export through
plasma membrane H1-ATPases (see discussion of this modeling step in Text S1 1.4),
thereby preventing incorrect use of these protons. With this additional constraint, we
then estimated the ATP maintenance value.

While the GAM values for the metabolic models of S. cerevisiae and S. pombe were
very similar, modification of the glucose transport mechanism resulted in a significant differ-
ence in the GAM values of the respective proteome-constrained models. In the end, we
determined values of 6 mmol gDW21 and 6 mmol g mitochondrial proteinð Þ21 for
GAM and mitoGAM, respectively (Fig. 2B). The estimated GAM value for pcPombe is thus
considerably smaller than the one for pcYeast (24 mmol gDW21) once the additional
energetic costs of glucose transport is accounted for (Fig. 2B). For mitoGAM, the same value
(6 mmol g mitochondrial proteinð Þ21) was used in both pcYeast and pcPombe.

Next, we assessed the peptide elongation rate of the cytosolic ribosomes and the
fraction of the proteome occupied by “inactive” ribosomes (U0

R) following Metzl-Raz et
al. (28) (Fig. 2C); we have shown that these two parameters are key for the pcYeast
model predictions (25). We used quantitative proteomics data from turbidostat experi-
ments in Edinburgh minimal media (EMM2) (2% glucose), supplemented with different
single nitrogen sources (29). First, we computed the fraction of “inactive” ribosomes
U0

R � 0:05 g g proteinð Þ21 (95% confidence interval, excluding the cultures grown
with tryptophan as a nitrogen source: 0.041–0.052) from the linear regression of the exper-
imental data points (Fig. 2C, black dashed line). Notably, the fraction of the “inactive” ribo-
somes is around 40% lower in S. pombe than in S. cerevisiae (U0

R � 0:08) (28). Next, we
estimated the peptide elongation rate in S. pombe, a parameter never reported in the litera-
ture (to the best of our knowledge). Thus, we ran a set of model simulations, where we var-
ied the peptide elongation rate kcat;ribo around the initial value of kcat;ribo ¼ 10:5 aa s21

from S. cerevisiae (28) (Fig. 2C). We concluded that the value of 10:5 aa s21 showed the
best agreement with the experimental data. This suggests that although S. cerevisiae and S.
pombe diverted in their evolutionary tracks relatively long time ago, their ribosomes seem
to have remained highly functionally conserved.
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Identifying growth-limiting proteome constraints in glucose-limited chemostats.
The key feature of the pcPombe model is the ability to predict multiple facets of microbial
physiology: flux distributions, proteome composition, and, most importantly, compart-
ment-specific proteome constraints that actively limit the maximal growth rate. Therefore,
as a use case example, we used the pcPombe model to identify the active constraints that
drive the physiology of S. pombe growing in glucose-limited chemostats at an increasing
dilution rate (Fig. 3).

We mimicked different extracellular glucose concentrations in the model by varying
the saturation factor of the glucose transporters (Text S1) and used binary search (25)
to find the maximal specific growth rate and corresponding flux distribution for every
value of the saturation factor (Fig. 3A). The predicted fluxes, based on external metabo-
lites, were also used to compute the physiological parameters (yield on glucose and
the respiratory quotient) of cell cultures (Fig. 3B and C).

Based on the active compartment-specific proteome constraints (Fig. 3D), we partition the
simulation (along the predicted specific growth rate) into three parts (shading in all the panels
of Fig. 3). First, at very slow growth, the only active (i.e., the constraint expression equals 1
in Fig. 3D) proteome constraint is carbon uptake (carbon transporter capacity). Carbon
transporter capacity remains the only active proteome constraint before the onset of ethanol
formation (critical growth ratemcrit ¼ 0:16 h21), during which a second active proteome con-
straint is encountered—the mitochondrial proteome capacity (see below).

As growth rate continues to increase, the active constraints change (blue shaded region
in Fig. 3), and so does the predicted metabolic behavior. At very fast growth rates, instead
of mitochondrial proteome capacity, the unspecified protein (UP) fraction, starts to limit
growth. The UP is a collective term that aggregates all proteins that do not contribute

FIG 3 Fluxes, physiological parameters, and active proteome constraints in glucose-limited growth of
S. pombe. (A) Main predicted fluxes from glucose-limited chemostats. (B and C) Physiological parameters
of the growth in glucose-limited chemostats. (B) Respiratory quotient, the ratio between the specific
fluxes of carbon dioxide and oxygen; (C) Growth yield on glucose, the ratio between growth rate and
glucose uptake. Experimental data (points) in panels A–C from de Jong-Gubbels et al. (4). (D) Active
proteome constraints, predicted by the pcPombe model. Shading of different growth regimes in panels
A–D corresponds to active proteome constraints, plotted in panel D.
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directly to biomass synthesis (i.e., metabolically inactive proteins) into a single artificial pro-
tein of average composition and length. The minimal UP mass fraction is, therefore, a
proxy for total cytosolic proteome capacity, which becomes an active constraint when the
UP fraction in the proteome reaches the minimal value that we estimated based on pro-
teomics data (29); at this minimal value, the cytosol is maximally filled with metabolically
active proteins. As a result, any increase in growth must be accompanied by trading of mi-
tochondrial proteins for cytosolic ones (Fig. 3D, “Mito. capacity” panel). Both the minimal
UP fraction and the maximal mitochondrial proteome capacity (Text S1) are estimated pa-
rameters, due to lack of supporting experimental data. We, however, believe that the
sequence of active proteome constraints (thus, also the fitted parameter values) is sup-
ported by literature data, coming from both S. cerevisiae and S. pombe.

First, we addressed the mitochondrial capacity being the constraint behind the
onset of ethanol formation. We tested our claims by increasing the minimal UP fraction to
the level that sets the UP minimum to be hit atm�

UP hit ¼ 0:16 h21 (¼ mcrit), and the glucose
transporters were fully saturated and mitochondrial capacity constraint was relaxed. The flux
predictions we acquired were considerably different from the experimental data of de Jong-
Gubbels et al. (4); a rapid increase in ethanol production was observed as the UP minimum
was hit, and the maximal growth rate was mmax ¼ 0:18 h21. We concluded that the flux
profile at the maximal growth rate mmax ¼ 0:18 h21 (which resembled experimental meas-
urements at m ¼ 0:29 h21), was highly unlikely to be correct, and therefore we discarded
such scenario. Next, we considered the active constraint (UP minimum) for growth in in glu-
cose excess. Malina and colleagues (30) determined that both S. cerevisiae and S. pombe allo-
cate a very similar fraction (and in both cases small,,5%) of the proteome to TCA cycle and
oxidative phosphorylation proteins. This suggests that the same constraints limit growth in
glucose excess, and we have previously shown that this constraint is the cytosolic proteome
capacity (25). Therefore, the active constraints at slower growth (onset of ethanol formation)
must be of a different nature, and knowledge of S. cerevisiae again pointed to mitochondrial
proteome capacity as the constraint limiting growth at that phase. We constructed the
pcPombemodel with these observations with S. cerevisiae in mind, and since we achieved a
good flux prediction, we argue that it is the active constraint under this growth regime.

When the predicted growth rate approaches the maximal predicted growth rate, growth
is no longer limited by carbon transporter capacity, and thus, only one constraint (minimal
UP mass fraction) remains active. In this state, excretion of additional overflow products
(e.g., pyruvate) is predicted, consistent with the behavior of S. cerevisiae at glucose excess
conditions. It should be noted that the predicted maximal growth rate in the EMM2medium
(mmax ¼ 0:29 h21) is dependent on the minimal UP fraction in the proteome, a parameter
we fit. However, we argue that our estimate is reasonable, since pcPombe correctly predicts
the maximal growth rate on the rich yeast extract with supplements (YES) medium with the
same parameter values (mmax ¼ 0:34 h21) (31). To summarize, here, we used the pcPombe
model together with the existing knowledge on S. cerevisiae to verify the identity of pro-
teome constraints, which actively limit growth in a condition-dependent manner.

Maximal growth rate of S. pombe is defined by limited proteome access.We observed
that the maximal experimentally determined growth rate of S. pombe in a minimal medium
(mmax ¼ 0:30 h21) is substantially lower than the maximal growth rate of the S. cerevisiae
CEN.PK strain (Verduyn medium [32] with glucose as carbon source; mmax ¼ 0:40 h21 [25]).
We speculate that the lower maximal growth rate is an outcome of lower protein density in
S. pombe biomass, and S. cerevisiae has a “higher budget” to accommodate proteins, needed
for faster growth. S. pombe exhibits a constant protein density of 0.43 g gDWð Þ21 (4), while
in S. cerevisiae, the respective value is growth rate-dependent and is reported to be 0.505
g gDWð Þ21 at m ¼ 0:375 h21 (33). Although different in absolute amounts, similar pro-
teome partitioning at the maximal growth rate suggests that the maximal growth is limited
by similar constraints.

The design of the pc-models allows for the inspection of proteome allocation in a fine-
grained manner; for every enzyme that supports growth by a catalyzing a metabolic flux, a
corresponding minimal protein demand can be computed for the (hypothetical) case that
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all proteins work at their maximal rate: v ¼ ei½ � � kcat;i. At slow growth with low metabolic
fluxes, the minimal protein demand will be low. Typically, under these conditions, cells
express metabolic proteins at higher levels compared to the minimal predicted protein
demand (25, 34). Yet, the difference decreases with increasing growth rate for S. cerevisiae
(25), with a major exception of ribosomal proteins (because ribosomal parameters are fit-
ted explicitly; Fig. 2C). To illustrate the predicted proteome partitioning, we looked into
the predictions of pcPombe at the maximal predicted growth rate and compared the mini-
mal predicted protein demand with experimental data (30) (Fig. 4).

We used a manually curated proteome annotation set (Table S3) to map proteins to
different functional groups or pathways. To avoid comparing .30 pathways with small
proteome fractions, we grouped pathways into a handful of coarse-grained clusters
(Fig. 4), with the exception of glycolysis, which is directly compared as a single path-
way instead of being lumped with the rest of the catabolic (e.g., pentose phosphate
pathway, TCA cycle, and oxidative phosphorylation) proteins. For additional insights, we also
considered the proteome composition of S. cerevisiae and compared it to that of S. pombe.
Both models predicted and experimentally determined proteome fractions; most of these
coarse-grained clusters occupy comparable-sized proteome fractions in both organisms.
Also, the deviations between predicted minimal protein demand and experimental protein
fraction have similar patterns in both organisms. When looking at predictions, a significant
deviation from experimental data is seen in the proteome fraction involved in the metabo-
lism of carbohydrates. The experimentally determined fraction of glycolytic enzymes is 2-
fold higher than the predicted minimal demand.

This result is not completely surprising, since we observed a similar result (ca. 2-fold) in pre-
viously published proteome data of S. cerevisiae cultures at the maximal growth rate in mini-
mal medium (batch cultures with excess glucose) (25). It appears, therefore, that both these
yeasts have an overcapacity of glycolytic enzymes that is not needed to support the maximal
growth rate; why this is the case, is currently not understood. Overall, we observed that the
proteome partitioning at maximal growth is similar between S. pombe and S. cerevisiae. This
supports the inference that the maximal growth under nutrient excess is limited by a similar
constraint in both organisms. Following the predictions of proteome-constrained models, we
suggest that this constraint is total proteome capacity.

FIG 4 Proteome composition of S. pombe and S. cerevisiae at maximal growth rate. Experimentally measured proteome composition (left bars)
and predicted minimal protein level (right bars) represented as proteome mass fractions, in g g proteinð Þ21 . Experimental data for both S.
pombe and S. cerevisiae were taken from Malina et al. (30), and model predictions for S. cerevisiae were taken from Elsemman et al. (25).
Experimentally determined proteome composition in the figure corresponds to the average of measurements reported in Malina et al. (30).
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DISCUSSION

In this study, we used metabolic modeling and data from the well-studied budding
yeast, S. cerevisiae, to gain insights into the metabolism and physiology of the distantly
related fission yeast, S. pombe. As a result, we presented a computational toolbox to investi-
gate fission yeast metabolism at genome scale. Two types of models, in our view, are required
to cover this need: a genome-scale metabolic model (metabolic potential) and a proteome-
constrained (pc-) model (resource allocation).

Here, we first developed a manually curated and calibrated GEM, pomGEM, based on a
metabolic model of budding yeast S. cerevisiae (15) (Fig. 1). As an outcome of the model
calibration, in this manuscript we provide for the first time a comprehensive and data-sup-
ported estimate of growth-associated maintenance (GAM) costs of S. pombe (Fig. 1C). An
earlier proposed GAM value of 17:37 mmol gDW21 (13) corresponds to an unrealistically
high yield of biomass on glucose in aerobic settings, while our proposed value
(58:3 mmol gDW21) corresponds well with existing experimental data. Moreover, the GAM
value we estimated is very close to that reported for S. cerevisiae (55:3 mmol gDW21) (35),
further supporting our estimate over previous estimates (13).

We benchmarked the pomGEM model by first predicting growth on single carbon
sources (with only one false-negative, Fig. 1D), lethal single-gene KOs (Fig. 1E), and single-
reaction KOs (Table S3). For the latter, the fraction of true predictions was approximately
75%, a good improvement on the previously reported model (61.2%) (13). In our study, we
applied a rather stringent threshold for the viability of single-reaction KOs, considering the
reaction essential if the predicted growth rate was below 90% of the wild-type value. We,
thus, tested a different threshold (essential when the growth rate is zero) and arrived at
effectively the same true prediction rate (74.7% vs 74.8% at zero growth threshold). This sug-
gests that the overall performance of the pomGEMmodel in this regard is robust.

However, in the study by Sohn et al. (13), these authors of the SpoMBEL1693 model
reported an increase in the true prediction rate of up to 82.7% after significant manual
curation. Here, the authors “reconciled” the false predictions, which arise from, e.g.,
duplicate reactions present in other compartments, or dead-end pathways, to achieve
the higher true prediction rate. However, such an ad hoc approach requires supporting
experimental data to resolve every false prediction reliably. Nonetheless, following the
evolution of true prediction rates of the S. cerevisiae models (90.3% in Yeast8 vs 83.6%
in Yeast4) (36), in terms of genes, or the latest GEM of E. coli (.90%) (37), it is antici-
pated that with more experimental data, future iterations of pomGEM will similarly lead
to further improvements in the true prediction rate.

On the basis of pomGEM and using pcYeast as template (25), we reconstructed
(Fig. 2A) and calibrated (Fig. 2B and C) a proteome-constrained metabolic model of S.
pombe, pcPombe. We first identified a major ATP maintenance component: plasma
membrane H1-ATPase activity, required to export protons that are imported through
glucose/H1 symport (Fig. 2B). We also estimated the peptide elongation rate of cyto-
solic ribosomes and found it to be similar to the rate reported for S. cerevisiae (Fig. 2C).

We used the pcPombemodel to simulate the physiology of S. pombe in glucose-limited
chemostats at different dilution rates (Fig. 3) and identified proteome constraints that
actively limit growth. Despite a large evolutionary distance, constraints similar to those
recently described for S. cerevisiae (25) were shown to dictate growth behaviors, with a mi-
tochondrial proteome capacity limitation ultimately driving a switch from respiration to
fermentation. Finally, we looked at the predicted minimal proteome demand at the maxi-
mal growth rate of S. pombe in minimal medium and compared it to experimental meas-
urements (Fig. 4). For many coarse-grained proteome clusters, minimal predicted demands
were comparable, and the prediction outcome was similar to that of S. cerevisiae at maxi-
mal growth rate in minimal medium. Such agreement suggests that the growth in nutrient
excess is limited by similar constraints in both organisms, in this case, total proteome
capacity constraint. A notable exception in predicted minimal demand versus experimental
data was seen for glycolysis, where an experimentally determined proteome fraction was 2-
fold higher than the minimal predicted demand. This result suggests a large over-capacity
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of glycolytic enzymes, also found for S. cerevisiae (25). However, the reason for this over-
capacity remains to be resolved.

Quantitative differences in proteome composition, especially at individual protein level,
between the model and experimental measurements (likewise large or small), can be influ-
enced by several factors. First, we consider the minimal protein demand in the model. This
assumption ignores any preparatory protein expression, and the predicted protein abun-
dance is highly dependent on the kcat values. The effects of other kinetic factors are also not
accounted for, e.g., suboptimal saturation of enzymes and feedback effects (positive and
negative alike) in the biochemical pathways. Therefore, protein “underutilization” (or “reserve
capacity”) is a frequently observed prediction of resource allocation models (25, 34). Second,
GEMs consider only proteins with direct metabolic function (plus those directly related to
protein turnover, in the pcPombe model). Thus, some proteins will be unaccounted for
when mapping them to annotated pathways. Improved GPR annotations in future versions
of pomGEM would reduce such “lost”mappings.

Throughout the manuscript, we considered very few applications of the computational
toolbox, and only a handful of data sources. This is because the predictive power of the cur-
rent pomGEM and pcPombemodels is severely hampered by a lack of consistent, high-qual-
ity experimental data sets needed to calibrate and validate the models. The hope is that our
current effort to provide a computational tool to study S. pombe’smetabolism will stimulate
an iterative cycle of hypothesis generation, experimental testing, and model refinement. For
S. cerevisiae, its genome-scale model is already in its 8th iteration, with efforts beginning
almost two decades ago (35). Throughout the years, essential modeling parameters, such as
the GAM value (35), growth rate-dependent biomass composition (33), ribosome peptide
elongation rate (28), and a large panel of kinetic parameters (15, 38), were determined. Thus,
by aggregating a vast amount of existing literature data, and acquiring new experimental
data sets (physiological data and proteomics), a proteome-constrained model of S. cerevisiae
(pcYeast) was created and could be successfully tested in a number of scenarios, as seen in
studies by Elsemman et al. (25) and Grigaitis et al. (unpublished).

Existing experimental data sets of S. pombe, unfortunately, are not as comprehensive.
Although many of the data sets are of high-quality, they consider only one aspect of cell
growth, for instance, exometabolite fluxes (4), or proteome composition (29). For modeling
purposes, systemic experiments, which cover several layers of information at once (e.g., sam-
pling from the same cultures to quantify bulk biomass composition, exometabolite fluxes,
and proteome composition), as well as testing current predictions on active proteome con-
straints by, e.g., titrating expression of nonfunctional proteins targeted to specific cell com-
partments (e.g., cytoplasm, cell membrane, etc.), as has been done for E. coli (39), or by test-
ing optimal protein allocation with evolution experiments (as performed in Lactococcus
lactis [40]) will be extremely useful. Performing such experiments and subsequent model
refinements will have great influence on the predictive power of the pomGEM and pcPombe
models and will pave the way toward deeper understanding of metabolism and resource
allocation of fission yeast Schizosaccharomyces pombe.

Lastly, recent studies suggested S. pombe could find novel applications in biotechnology,
including winemaking (41) and flavor formation during food fermentations (42), but also as
a possible cell factory (43). S. pombe’s ability to grow in environments with low water activ-
ity, high alcohol content, very low pH, and a wide range of temperatures (44) make it an
attractive, and perhaps underutilized, biotechnological tool. However, identifying metabolic
engineering targets and predicting outcomes is a major challenge without a robust compu-
tational framework. The pomGEM model we present here, therefore, is a powerful tool that
can be used to efficiently explore, in silico, S. pombe’s metabolic potential, to identify meta-
bolic engineering targets, and to design and optimize medium for different applications.
These analyses can be complemented by studies with pcPombe, directed at the metabolic
and physiological determinants of growth behavior under different growth conditions.

MATERIALS ANDMETHODS
Determination of growth on different carbon sources. Schizosaccharomyces pombe strain CBS1042

(Westerdijk Fungal Biodiversity Institute, The Netherlands) was used to determine growth capacity on
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different individual carbon sources. Glycerol stocks were prepared from cells grown to saturation in
yeast extract peptone dextrose (YPD) medium and stored at 280°C. All cultures were performed at 30°C
using EMM2 (45) as a base medium. All carbon source concentrations are expressed as carbon mol (C-
mM) and were added to a final concentration of 600 C-mM (e.g., 100 mM glucose, 50 mM sucrose,
200 mM pyruvate, etc.). Growth experiments were carried out using a SpectraMax Plus 384 microplate
reader (Molecular Devices, Silicon Valley, California). A standardized procedure was used for revival and
inoculation of cultures. Briefly, glycerol stocks were revived by 100� diluted inoculation into EMM2 with
600 C-mM glucose. After approximately 7 h, overnight cultures were again diluted and inoculated into
EMM2 1 glucose to a final OD600 of 0.02. The next day, fresh media containing the carbon sources to be
tested (Table S1) were inoculated to a final OD600 of 0.01. After 6 h, cultures were again diluted (final
OD600 of 0.01) using the same medium and transferred to 96-well microtiter plates. Per carbon source,
10 technical replicates were included (300 mL per well), along with 5 negative controls (growth medium
with carbon source, no cells). Temperature was set to 30°C and double orbital shaking at 600 rpm was
used. OD values were recorded in 5-min intervals at 600 nm for approximately 80 h.

Reconstruction of the metabolic network of Schizosaccharomyces pombe. The metabolic network
of S. pombe was reconstructed with CBMPy MetaDraft (46), using the reference proteome sequence
from PomBase (47) and Yeast8.3.3 (15) as the template model. Model simulations, as well as manual
refinement and gap-filling were performed in CBMPy 0.8.2 (48) under the Python 3.9 environment with
IBM ILOG CPLEX 20.10 as the linear program (LP) solver.

Mapping essential reactions to gene lethality. Essential reactions in the model were determined
by computing the predicted growth rate with a single reaction being blocked (lower and upper flux bounds
set to 0.0) for all reactions in the model. If blocked flux through a reaction resulted in a predicted growth rate
90% or lower of the maximal (wild-type) growth rate, we considered such reaction essential; otherwise, the mu-
tant is considered viable. Only reactions with existing gene-protein-reaction (GPR) associations were considered
and compared with experimental data. For GPRs containing an “OR” clause, the experimentally determined
essentiality must match for all listed genes (or combinations of) to be assigned either “viable” or “essential.” For
GPRs containing an “AND” clause, reaction was assigned “essential” if at least one of the genes was experimen-
tally determined to be essential; “viable” was assigned the same way as for “OR” clauses. Conflicting results or
missing essentiality experiments were labeled “ambiguous” and not considered further.

Reconstruction and simulations of the proteome-constrained model. The detailed description of
reconstruction of the proteome-constrained model of S. pombe is provided in the Text S1. We used the reference
proteome of S. pombe from UniProt (49). The kinetic data (enzyme turnover values) were collected from the
BRENDA database (50). For every enzymatic complex with an Enzyme Commission (EC) number, we queried the
BRENDA database for a value from the wild-type enzymes. When available, values from S. cerevisiae or S. pombe
were preferentially selected. Otherwise, the highest value for a wild-type enzyme in mesophilic conditions (and
close-to-growth conditions of S. cerevisiae or S. pombe) was taken. When no kcat value was available, we assumed
kcat ¼ 50 s21 as a default value (close to the median kcat , Fig. S2). If the experimentally determined kcat value
was lower than 2=3 s21, we set this value.

59-UTR sequences and proteome annotations (composition of macromolecular complexes, Gene
Ontology terms, etc.) were collected from PomBase (47). The pcPombe model was simulated using
CBMPy 0.8.2 (48) under the Python 3.9 environment with IBM ILOG CPLEX 20.10 and SoPlex 4.0 (51) as
the low- and high-precision LP solver, respectively.

Data availability. Experimental data on growth of S. pombe on different carbon sources is provided
in Table S1. The pomGEMmodel, pcPombemodel, and the materials used to generate the pcPombe model,
together with information required to generate the figures of this manuscript, are available on Zenodo
https://doi.org/10.5281/zenodo.6513462.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, PDF file, 0.1 MB.
FIG S1, EPS file, 0.2 MB.
FIG S2, EPS file, 0.05 MB.
TABLE S1, XLS file, 0.03 MB.
TABLE S2, XLS file, 0.1 MB.
TABLE S3, XLS file, 0.4 MB.

ACKNOWLEDGMENTS
We thank Istvan T. Kleijn (Imperial College London, the United Kingdom) for sharing

unpublished transcriptomics and proteomics data and discussions, Brett G. Olivier for his
help on the modeling software, and Julius Battjes for discussions. We thank SURFsara for the
HPC resources through access to the Lisa Compute Cluster.

P.G. and B.T. acknowledge support by Marie Skłodowska-Curie Actions ITN “SynCrop”
(grant agreement no. 764591). E.V.P.-K. and B.T. acknowledge funding from the Netherlands
Organization for Scientific Research (grant no. ALWTF.2015.4).

Computational Models of S. pombeMetabolism mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00423-22 11

https://doi.org/10.5281/zenodo.6513462
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00423-22


The project is partly organized by and executed under the auspices of TiFN, a public-private
partnership on precompetitive research in food and nutrition. Among other sources declared,
funding for this research (to E.V.P.-K. and B.T.) was obtained from Friesland Campina, CSK Food
Enrichment and The Netherlands Organization for Scientific Research.

The authors have declared that no competing interests exist in the writing of this
publication.

REFERENCES
1. Forsburg SL, Nurse P. 1991. Cell cycle regulation in the yeasts Saccharo-

myces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7:
227–256. https://doi.org/10.1146/annurev.cb.07.110191.001303.

2. Hoffman CS, Wood V, Fantes PA. 2015. An ancient yeast for young geneti-
cists: a primer on the Schizosaccharomyces pombemodel system. Genetics
201:403–423. https://doi.org/10.1534/genetics.115.181503.

3. Hofer M, Nassar FR. 1987. Aerobic and anaerobic uptake of sugars in Schizo-
saccharomyces pombe. Microbiology 133:2163–2172. https://doi.org/10.1099/
00221287-133-8-2163.

4. de Jong-Gubbels P, van Dijken JP, Pronk JT. 1996. Metabolic fluxes in
chernostat cultures of Schizosaccharomyces pombe grown on mixtures
of glucose and ethanol. Microbiology 142:1399–1407. https://doi.org/10
.1099/13500872-142-6-1399.

5. Fang X, Lloyd CJ, Palsson BO. 2020. Reconstructing organisms in silico: ge-
nome-scale models and their emerging applications. Nat Rev Microbiol
18:731–743. https://doi.org/10.1038/s41579-020-00440-4.

6. McAnulty MJ, Yen JY, Freedman BG, Senger RS. 2012. Genome-scale modeling
using flux ratio constraints to enable metabolic engineering of clostridial me-
tabolism in silico. BMC Syst Biol 6:42. https://doi.org/10.1186/1752-0509-6-42.

7. Mishra P, Lee N-R, Lakshmanan M, Kim M, Kim B-G, Lee D-Y. 2018. Genome-
scale model-driven strain design for dicarboxylic acid production in Yarrowia
lipolytica. BMC Syst Biol 12:12. https://doi.org/10.1186/s12918-018-0542-5.

8. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME,
Wheeler P, Klamt S, Kierzek AM, McFadden J. 2007. GSMN-TB: a web-
based genome-scale network model of Mycobacterium tuberculosis me-
tabolism. Genome Biol 8:R89. https://doi.org/10.1186/gb-2007-8-5-r89.

9. Branco dos Santos F, Olivier BG, Boele J, Smessaert V, De Rop P, Krumpochova
P, Klau GW, Giera M, Dehottay P, Teusink B, Goffin P. 2017. Probing the ge-
nome-scale metabolic landscape of Bordetella pertussis, the causative agent
of whooping cough. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM
.01528-17.

10. Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. 2011.
Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug target-
ing and discovery. Mol Syst Biol 7:460. https://doi.org/10.1038/msb.2010.115.

11. Dukovski I, Baji�c D, Chacón JM, Quintin M, Vila JCC, Sulheim S, Pacheco
AR, Bernstein DB, Riehl WJ, Korolev KS, Sanchez A, Harcombe WR, Segrè
D. 2021. A metabolic modeling platform for the computation of microbial eco-
systems in time and space (COMETS). Nat Protoc 16:5030–5082. https://doi.org/
10.1038/s41596-021-00593-3.

12. Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Oja M, Holm
L, Penttilä M, Rousu J, Arvas M. 2014. Comparative genome-scale reconstruc-
tion of gapless metabolic networks for present and ancestral species. PLoS
Comput Biol 10:e1003465. https://doi.org/10.1371/journal.pcbi.1003465.

13. Sohn SB, Kim TY, Lee JH, Lee SY. 2012. Genome-scale metabolic model of
the fission yeast Schizosaccharomyces pombe and the reconciliation of in
silico/in vivo mutant growth. BMC Syst Biol 6:49. https://doi.org/10.1186/
1752-0509-6-49.

14. Lu H, Li F, Yuan L, Domenzain I, Yu R, Wang H, Li G, Chen Y, Ji B, Kerkhoven
EJ, Nielsen J. 2021. Yeast metabolic innovations emerged via expanded
metabolic network and gene positive selection. Mol Syst Biol 17. https://doi
.org/10.15252/msb.202110427.

15. Lu H, Li F, Sánchez BJ, Zhu Z, Li G, Domenzain I, Marcišauskas S, Anton
PM, Lappa D, Lieven C, Beber ME, Sonnenschein N, Kerkhoven EJ,
Nielsen J. 2019. A consensus S. cerevisiae metabolic model Yeast8 and
its ecosystem for comprehensively probing cellular metabolism. Nat
Commun 10:3586. https://doi.org/10.1038/s41467-019-11581-3.

16. de Queiroz JH, Uribelarrea J-L, Pareilleux A. 1993. Estimation of the energetic
biomass yield and efficiency of oxidative phosphorylation in cell-recycle cultures
of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 39:609–614. https://
doi.org/10.1007/BF00205061.

17. Uribelarrea J-L, De Queiroz JH, Pareilleux A. 1997. Growth ofschizosaccharo-
myces pombe on glucose-malte mixtures in continuous cell-recycle cultures

kinetics of substrate utilization. Appl Biochem Biotechnol 66:69–81. https://
doi.org/10.1007/BF02788808.

18. Uribelarrea JL, De Queiroz H, Goma G, Pareilleux A. 1993. Carbon and
energy balances in cell-recycle cultures ofSchizosaccharomyces pombe.
Biotechnol Bioeng 42:729–736. https://doi.org/10.1002/bit.260420608.

19. Choi G-W, Um H-J, Kim M, Kim Y, Kang H-W, Chung B-W, Kim Y-H. 2010.
Isolation and characterization of ethanol-producing Schizosaccharomy-
ces pombe CHFY0201. J Microbiol Biotechnol 20:828–834.

20. Kim D-U, Hayles J, Kim D, Wood V, Park H-O, WonM, Yoo H-S, Duhig T, NamM,
Palmer G, Han S, Jeffery L, Baek S-T, Lee H, Shim YS, Lee M, Kim L, Heo K-S, Noh
EJ, Lee A-R, Jang Y-J, Chung K-S, Choi S-J, Park J-Y, Park Y, Kim HM, Park S-K,
Park H-J, Kang E-J, Kim HB, Kang H-S, Park H-M, Kim K, Song K, Song KB, Nurse
P, Hoe K-L. 2010. Analysis of a genome-wide set of gene deletions in the fission
yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623. https://doi.org/
10.1038/nbt.1628.

21. Klein T, Heinzle E, Schneider K. 2013. Metabolic fluxes in Schizosaccharomyces
pombe grown on glucose and mixtures of glycerol and acetate. Appl Micro-
biol Biotechnol 97:5013–5026. https://doi.org/10.1007/s00253-013-4718-z.

22. de Groot DH, Lischke J, Muolo R, Planqué R, Bruggeman FJ, Teusink B. 2020.
The commonmessage of constraint-based optimization approaches: overflow
metabolism is caused by two growth-limiting constraints. Cell Mol Life Sci 77:
441–453. https://doi.org/10.1007/s00018-019-03380-2.

23. Chen Y, Nielsen J. 2019. Energy metabolism controls phenotypes by pro-
tein efficiency and allocation. Proc Natl Acad Sci U S A 116:17592–17597.
https://doi.org/10.1073/pnas.1906569116.

24. De Becker K, Totis N, Bernaerts K, Waldherr S. 2022. Using resource constraints
derived from genomic and proteomic data in metabolic network models. Curr
Opin Syst Biol 29:100400. https://doi.org/10.1016/j.coisb.2021.100400.

25. Elsemman IE, Rodriguez Prado A, Grigaitis P, Garcia Albornoz M, Harman
V, Holman SW, van Heerden J, Bruggeman FJ, Bisschops MMM, Sonnenschein
N, Hubbard S, Beynon R, Daran-Lapujade P, Nielsen J, Teusink B. 2022. Whole-
cell modeling in yeast predicts compartment-specific proteome constraints
that drive metabolic strategies. Nat Commun 13:801. https://doi.org/10.1038/
s41467-022-28467-6.

26. Lahtvee P-J, Sánchez BJ, Smialowska A, Kasvandik S, Elsemman IE, Gatto
F, Nielsen J. 2017. Absolute quantification of protein and mRNA abundan-
ces demonstrate variability in gene-specific translation efficiency in yeast.
Cell Syst 4:495–504. e5. https://doi.org/10.1016/j.cels.2017.03.003.

27. Weusthuis RA, Adams H, Scheffers WA, van Dijken JP. 1993. Energetics
and kinetics of maltose transport in Saccharomyces cerevisiae: a continu-
ous culture study. Appl Environ Microbiol 59:3102–3109. https://doi.org/
10.1128/aem.59.9.3102-3109.1993.

28. Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. 2017. Princi-
ples of cellular resource allocation revealed by condition-dependent pro-
teome profiling. Elife 6:e28034. https://doi.org/10.7554/eLife.28034.

29. Kleijn IT, Martínez-Segura A, Bertaux F, Saint M, Kramer H, Shahrezaei V,
Marguerat S. 2022. Growth-rate-dependent and nutrient-specific gene expres-
sion resource allocation in fission yeast. Life Sci Alliance 5:e202101223. https://
doi.org/10.26508/lsa.202101223.

30. Malina C, Yu R, Björkeroth J, Kerkhoven EJ, Nielsen J. 2021. Adaptations inmetab-
olism and protein translation give rise to the Crabtree effect in yeast. Proc Natl
Acad Sci U S A 118:e2112836118. https://doi.org/10.1073/pnas.2112836118.

31. Durão P, Amicone M, Perfeito L, Gordo I. 2021. Competition dynamics in
long-term propagations of Schizosaccharomyces pombe strain commun-
ities. Ecol Evol 11:15085–15097. https://doi.org/10.1002/ece3.8191.

32. Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1992. Effect of benzoic
acid on metabolic fluxes in yeasts: a continuous-culture study on the regula-
tion of respiration and alcoholic fermentation. Yeast 8:501–517. https://doi
.org/10.1002/yea.320080703.

33. Canelas AB, Ras C, ten Pierick A, van Gulik WM, Heijnen JJ. 2011. An in vivo
data-driven framework for classification and quantification of enzyme kinetics

Computational Models of S. pombeMetabolism mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00423-22 12

https://doi.org/10.1146/annurev.cb.07.110191.001303
https://doi.org/10.1534/genetics.115.181503
https://doi.org/10.1099/00221287-133-8-2163
https://doi.org/10.1099/00221287-133-8-2163
https://doi.org/10.1099/13500872-142-6-1399
https://doi.org/10.1099/13500872-142-6-1399
https://doi.org/10.1038/s41579-020-00440-4
https://doi.org/10.1186/1752-0509-6-42
https://doi.org/10.1186/s12918-018-0542-5
https://doi.org/10.1186/gb-2007-8-5-r89
https://doi.org/10.1128/AEM.01528-17
https://doi.org/10.1128/AEM.01528-17
https://doi.org/10.1038/msb.2010.115
https://doi.org/10.1038/s41596-021-00593-3
https://doi.org/10.1038/s41596-021-00593-3
https://doi.org/10.1371/journal.pcbi.1003465
https://doi.org/10.1186/1752-0509-6-49
https://doi.org/10.1186/1752-0509-6-49
https://doi.org/10.15252/msb.202110427
https://doi.org/10.15252/msb.202110427
https://doi.org/10.1038/s41467-019-11581-3
https://doi.org/10.1007/BF00205061
https://doi.org/10.1007/BF00205061
https://doi.org/10.1007/BF02788808
https://doi.org/10.1007/BF02788808
https://doi.org/10.1002/bit.260420608
https://doi.org/10.1038/nbt.1628
https://doi.org/10.1038/nbt.1628
https://doi.org/10.1007/s00253-013-4718-z
https://doi.org/10.1007/s00018-019-03380-2
https://doi.org/10.1073/pnas.1906569116
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1038/s41467-022-28467-6
https://doi.org/10.1038/s41467-022-28467-6
https://doi.org/10.1016/j.cels.2017.03.003
https://doi.org/10.1128/aem.59.9.3102-3109.1993
https://doi.org/10.1128/aem.59.9.3102-3109.1993
https://doi.org/10.7554/eLife.28034
https://doi.org/10.26508/lsa.202101223
https://doi.org/10.26508/lsa.202101223
https://doi.org/10.1073/pnas.2112836118
https://doi.org/10.1002/ece3.8191
https://doi.org/10.1002/yea.320080703
https://doi.org/10.1002/yea.320080703
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00423-22


and determination of apparent thermodynamic data. Metab Eng 13:294–306.
https://doi.org/10.1016/j.ymben.2011.02.005.

34. O'Brien EJ, Utrilla J, Palsson BO. 2016. Quantification and classification of E. coli
proteome utilization and unused protein costs across environments. PLoS
Comput Biol 12:e1004998. https://doi.org/10.1371/journal.pcbi.1004998.

35. Famili I, Forster J, Nielsen J, Palsson BO. 2003. Saccharomyces cerevisiae
phenotypes can be predicted by using constraint-based analysis of a ge-
nome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100:
13134–13139. https://doi.org/10.1073/pnas.2235812100.

36. Dobson PD, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir
P, Lu C, Swainston N, Dunn WB, Fisher P, Hull D, Brown M, Oshota O,
Stanford NJ, Kell DB, King RD, Oliver SG, Stevens RD, Mendes P.
2010. Further developments towards a genome-scale metabolic
model of yeast. BMC Syst Biol 4:145. https://doi.org/10.1186/1752
-0509-4-145.

37. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, Takeuchi R, Nomura
W, Zhang Z, Mori H, Feist AM, Palsson BO. 2017. iML1515, a knowledgebase
that computes Escherichia coli traits. Nat Biotechnol 35:904–908. https://doi
.org/10.1038/nbt.3956.

38. Nilsson A, Nielsen J. 2016. Metabolic trade-offs in yeast are caused by
F1F0-ATP synthase. Sci Rep 6:22264. https://doi.org/10.1038/srep22264.

39. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010. Interde-
pendence of cell growth and gene expression: origins and consequences.
Science 330:1099–1102. https://doi.org/10.1126/science.1192588.

40. Chen Y, Pelt-KleinJan E, Olst B, Douwenga S, Boeren S, Bachmann H,
Molenaar D, Nielsen J, Teusink B. 2021. Proteome constraints reveal tar-
gets for improving microbial fitness in nutrient-rich environments. Mol
Syst Biol 17. https://doi.org/10.15252/msb.202010093.

41. Benito Á, Jeffares D, Palomero F, Calderón F, Bai F-Y, Bähler J, Benito S.
2016. Selected Schizosaccharomyces pombe strains have characteristics that
are beneficial for winemaking. PLoS One 11:e0151102. https://doi.org/10.1371/
journal.pone.0151102.

42. Du H, Song Z, Zhang M, Nie Y, Xu Y. 2021. The deletion of Schizosaccharo-
myces pombe decreased the production of flavor-related metabolites
during traditional Baijiu fermentation. Food Res Int 140:109872. https://
doi.org/10.1016/j.foodres.2020.109872.

43. Madhavan A, Arun KB, Sindhu R, Krishnamoorthy J, Reshmy R, Sirohi R,
Pugazhendi A, Awasthi MK, Szakacs G, Binod P. 2021. Customized yeast cell

factories for biopharmaceuticals: from cell engineering to process scale up.
Microb Cell Fact 20:124. https://doi.org/10.1186/s12934-021-01617-z.

44. Loira I, Morata A, Palomero F, González C, Suárez-Lepe J. 2018. Schizosac-
charomyces pombe: a promising biotechnology for modulating wine compo-
sition. Fermentation 4:70. https://doi.org/10.3390/fermentation4030070.

45. Hagan IM, Grallert A, Simanis V. 2016. Synchronizing progression of Schizosac-
charomyces pombe cells fromG2 through repeated rounds ofmitosis and S phase
with cdc25-22 arrest release. Cold Spring Harb Protoc 2016:pdb.prot091264.
https://doi.org/10.1101/pdb.prot091264.

46. Olivier BG, Mendoza S, Molenaar D, Teusink B. 2020. MetaDraft Release: 0
.9.5 (v0.9.5). Zenodo. https://zenodo.org/record/4291058. Accessed 14
December 2021.

47. Lock A, Rutherford K, Harris MA, Hayles J, Oliver SG, Bähler J, Wood V.
2019. PomBase 2018: user-driven reimplementation of the fission yeast
database provides rapid and intuitive access to diverse, interconnected
information. Nucleic Acids Res 47:D821–D827. https://doi.org/10.1093/
nar/gky961.

48. Olivier B, Gottstein W, Molenaar D, Teusink B. 2021. CBMPy release 0.8.2
(0.8.2). Zenodo. https://zenodo.org/record/5546608. Accessed 14 December
2021.

49. Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E,
Bowler-Barnett EH, Britto R, Bursteinas B, Bye-A-Jee H, Coetzee R, Cukura A, Da
Silva A, Denny P, Dogan T, Ebenezer T, Fan J, Castro LG, Garmiri P, Georghiou G,
Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen
P, Joshi V, Jyothi D, Lock A, Lopez R, Luciani A, Luo J, Lussi Y, MacDougall A,
Madeira F, Mahmoudy M, Menchi M, Mishra A, Moulang K, Nightingale A,
Oliveira CS, Pundir S, Qi G, Raj S, Rice D, Lopez MR, Saidi R, Sampson J, The Uni-
Prot Consortium, et al. 2021. UniProt: the universal protein knowledgebase in
2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100.

50. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, Neumann-
Schaal M, Jahn D, Schomburg D. 2021. BRENDA, the ELIXIR core data
resource in 2021: new developments and updates. Nucleic Acids Res 49:
D498–D508. https://doi.org/10.1093/nar/gkaa1025.

51. Gleixner A, Bastubbe M, Eifler L, Gally T, Gamrath G, Gottwald RL, Hendel
G, Hojny C, Koch T, Lübbecke M, Maher SJ, Miltenberger M, Müller B, Pfetsch
M, Puchert C, Rehfeldt D, Schlösser F, Schubert C, Serrano F, Shinano Y,
Viernickel JM, Walter M, Wegscheider F, Witt JT, Witzig J. 2018. The SCIP Opti-
mization Suite 6.0. 18–26. ZIB, Takustr. Zuse Institute Berlin 7:14195. https://
research.tue.nl/en/publications/the-scip-optimization-suite-60.

Computational Models of S. pombeMetabolism mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00423-22 13

https://doi.org/10.1016/j.ymben.2011.02.005
https://doi.org/10.1371/journal.pcbi.1004998
https://doi.org/10.1073/pnas.2235812100
https://doi.org/10.1186/1752-0509-4-145
https://doi.org/10.1186/1752-0509-4-145
https://doi.org/10.1038/nbt.3956
https://doi.org/10.1038/nbt.3956
https://doi.org/10.1038/srep22264
https://doi.org/10.1126/science.1192588
https://doi.org/10.15252/msb.202010093
https://doi.org/10.1371/journal.pone.0151102
https://doi.org/10.1371/journal.pone.0151102
https://doi.org/10.1016/j.foodres.2020.109872
https://doi.org/10.1016/j.foodres.2020.109872
https://doi.org/10.1186/s12934-021-01617-z
https://doi.org/10.3390/fermentation4030070
https://doi.org/10.1101/pdb.prot091264
https://zenodo.org/record/4291058
https://doi.org/10.1093/nar/gky961
https://doi.org/10.1093/nar/gky961
https://zenodo.org/record/5546608
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1025
https://research.tue.nl/en/publications/the-scip-optimization-suite-60
https://research.tue.nl/en/publications/the-scip-optimization-suite-60
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00423-22

	RESULTS
	Reconstruction of the S. pombe metabolic network.
	Development of the proteome-constrained model of S. pombe.
	Calibrating ATP maintenance and protein translation costs in pcPombe.
	Identifying growth-limiting proteome constraints in glucose-limited chemostats.
	Maximal growth rate of S. pombe is defined by limited proteome access.

	DISCUSSION
	MATERIALS AND METHODS
	Determination of growth on different carbon sources.
	Reconstruction of the metabolic network of Schizosaccharomyces pombe.
	Mapping essential reactions to gene lethality.
	Reconstruction and simulations of the proteome-constrained model.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

