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Abstract

Background: Although visceral pain of gastrointestinal (GI) origin is the major complaint in patients with irritable bowel
syndrome (IBS) it remains poorly understood. Brain imaging studies suggest a defect in brain-gut communication in IBS with
a greater activation of central arousal circuits including the amygdala. Previously, we found that stereotaxic implantation of
corticosterone (CORT) onto the amygdala in rats induced anxiety and colonic hypersensitivity. In the present study we used
functional magnetic resonance imaging (fMRI) to identify specific brain sites activated in a rat model characterized by
anxiety and colonic hypersensitivity.

Methodology/Principal Findings: Anesthetized male rats received micropellets (30 mg each) of either CORT or cholesterol
(CHOL), to serve as a control, implanted stereotaxically on the dorsal margin of each amygdala. Seven days later, rats were
anesthetized and placed in the fMRI magnet (7T). A series of isobaric colorectal balloon distensions (CRD - 90s ‘off’, 30s ‘on’,
8 replicates) at two pressures (40 and 60 mmHg) were performed in a standard block-design. Cross correlation statistical
analysis was used to determine significant differences between distended and non-distended states in CORT and CHOL-
treated animals. Analysis of the imaging data demonstrated greater overall brain activation in response to CRD in rats with
CORT implants compared to CHOL controls. Additionally, CORT implants produced significant positive bilateral increases in
MRI signal in response to CRD in specific nuclei known as integration sites important in anxiety and pain perception.

Conclusions and Significance: These data indicate that chronic exposure of the amygdala to elevated levels of CORT
enhances overall brain activation in response to CRD, and identified other specific brain regions activated in response to
mechanical distension of the colon. These results demonstrate the feasibility of performing fMRI imaging in a rodent model
that supports clinical observations in IBS patients with enhanced amygdala activation and symptomatology of abdominal
pain and anxiety.
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Introduction

The role of the brain in the processing of information from the

viscera, including the gastrointestinal (GI) tract, remains poorly

understood. Clinical observations suggest that episodes of stress

worsen symptoms associated with irritable bowel syndrome (IBS),

a functional GI disorder characterized by episodes of abdominal

pain, diarrhea and/or constipation and there is a close overlap

between IBS and anxiety disorders [1–4]. Studies in patients with

IBS suggest that heightened pain sensation to intraluminal

distension of the colorectum may play a significant role in IBS

symptomatology [5–7]. Altered perception of visceral stimuli due

to afferent sensitization can occur due to abnormalities in

ascending visceral signal processing from the gut to the brain

[8,9]. In addition, activation of central mechanism(s) resulting in

colorectal hypersensitivity due to descending facilitation from the

brain induces remodeling of colorectal responsiveness to distension

and involves activation of supraspinal nuclei leading to sensitiza-

tion of spinal dorsal horn neurons [10–13]. Clinically, activation of

descending facilitatory pathways may play a role in the

exacerbation of IBS symptoms in response to stress and anxiety

[14,15]. The amygdala, as part of the limbic system, is involved in

the processing of visceral information, attention, emotion and

integrating the physical and psychological components of the stress

response. Additionally, the amygdala plays a crucial role in the

generation and development of fear and anxiety [16,17].

Specifically, the central nucleus of the amygdala (CeA) has been

shown to facilitate the activation of the hypothalamic-pituitary-
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adrenal axis in response to stress and increase the release of

corticotrophin releasing factor, adrenocorticotropic hormone, and

corticosterone (CORT) [18,19]. The CeA is also a major source of

efferent pathways from the amygdala [20], and electrical

stimulation of the CeA has been shown to modulate cardiovascular

[21], respiratory [22], and GI function [5].

In recent years to investigate how the brain controls the GI

tract, imaging studies using both functional magnetic resonance

imaging (fMRI) and positron emission tomography have demon-

strated that, in IBS patients, colorectal distension (CRD) activates

areas of the brain involved in emotional sensory processing,

particularly the amygdala, insula, and prefrontal cortex [23–25].

Although fMRI is a powerful tool for noninvasive imaging of brain

function studies, neuroimaging in small animals such as rats are

limited. However, brain imaging in rodent models offer many

advantages such as being able to track the course of a diseases and

examine the efficacy of novel treatments with control over relevant

factors and experimental conditions that are uncontrollable in

human studies. Previous studies to examine brain-gut communi-

cation and visceral pain pathways have used techniques ranging

from electrophysiology [26–28] and c-fos detection [29–31] to

behavioral analyses [32,33]. One study using fMRI was able to

detect brain areas activated by distension of the colorectal region

in normal adult anesthetized rats [30]. The aim of our study was to

use MRI signal to investigate the effect on supraspinal neuronal

processing of manipulation of the amygdala via exposure to

elevated levels of CORT shown previously to induce anxiety-like

behaviors and increase the sensitivity of the colorectum to luminal

distension after 7 days. Blood oxygenation level dependent

(BOLD) fMRI in the brain was measured using T2
*-weighted fast

low angle shot (FLASH) imaging at 7T and was performed before,

during and after CRD in rats with micropellet implants of CORT

or cholesterol (CHOL) as a control. To our knowledge this is the

first study to image specific brain regions in response to a defined

manipulation of the amygdala in an animal model that mimics

aspects of IBS and is characterized by heightened anxiety and

abdominal pain. Our results showed that there are significant

differences in brain activation in rats in response to modulation of

the amygdala via elevated levels of CORT. These results

complement recent studies from our group and support clinical

observations in which abnormalities in amygdala activation

appear common in IBS patients [24,32,34].

Results

Effect of CRD on Total CNS Activation in Rats with
Elevated Levels of Amygdala CORT

Initially we investigated whether repetitive CRD at 40 mmHg

and 60 mmHg causes any disruption of the colonic mucosa. In this

part of the study we used the same experimental design as that

employed in the fMRI investigation, and examined the histological

appearance of the colonic mucosa from rats that underwent CRD

and compared the findings to naı̈ve rats. Our results showed that 8

cycles of CRD at 40 mmHg and then 8 cycles at 60 mmHg caused

no significant alteration in the architecture of the colonic mucosa

compared to naı̈ve controls (Figure 1) in any colonic region

examined and confirmed that there was no change in the

histological score between control and treated rats (Score = 0 for

both groups in all regions).

In the current study we investigated total brain activation in

response to 40 and 60 mmHg of CRD in anesthetized rats with

bilateral implants of CORT placed stereotaxically on the dorsal

margin of the amygdala (Figure 2). At 40 mmHg, CRD induced

increases in CNS activation in control rats as illustrated in

Figure 3A. The data also showed increases in the total number of

activated pixels in CORT-implanted rats in response to CRD at

40 mmHg (Figure 3B). At a higher distension pressure of

60 mmHg there was an additional increase in the total number

of activated pixels in CHOL controls (Figure 4A). The 60 mmHg

CRD pressure also induced more total brain activation in rats with

CORT implants (Figure 4B). A careful comparison of the average

number of fMRI activated pixels between the 4 groups (CHOL,

40 mmHg – 28.2614.3 pixels or 60 mmHg – 173.0675.4 pixels

vs. CORT, 40 mmHg – 201.8682.3 or 60 mmHg – 317.06115.5

pixels, n = 6 per group) indicated a significant effect of group (2-

Way ANOVA, F = 4.442, P,0.05) and pressure (2-Way ANOVA,

F = 4.548, P,0.05) on brain activation. However, post-hoc tests

failed to demonstrate further significant interactions between the

groups. In addition, the data demonstrated a similar maximum

signal intensity change between the CORT and CHOL groups for

both the 40 and 60 mmHg pressures of luminal distension. A

typical time curve of fMRI signal intensity of all activated areas is

shown in Figure 5.

Specific Brain Nuclei Activated in Response to CRD in
Rats with Elevated Levels of Amygdala CORT

In view of our initial observation of a greater increase in total

brain activation in response to CRD in rats with elevated

amygdala CORT for 7 days, we attempted to systematically

examine specific brain nuclei that showed activation in CORT-

treated rats but not in CHOL-implanted rats to gain a more

complete picture of the central nuclei activated by CRD in the 2

groups. We focused our analysis to structures identified by fMRI as

activated in response to 40 mmHg CRD in CORT-implanted rats

but not activated in CHOL controls as these brain sites may be

pivotal for the sensitization of visceral responses (Table 1 and 2).

Of particular interest, we found that areas involved in the

Figure 1. Histological appearance of the colonic mucosa from
rats in which the balloon catheter was distended for 8 cycles
‘on’ and 8 cycles ‘off’ at 40 and 60 mmHg. A), C) and E) are from
the proximal, medial and distal colon, respectively, of naı̈ve rats. B), D)
and F) are from the proximal, medial and distal colon, respectively, of
rats that underwent the distention protocol. All slides are at 646 and
the black bar represents 0.5 mm.
doi:10.1371/journal.pone.0008573.g001

fMRI of Colon Hypersensitivity
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processing of emotion and pain showed activation at 40 mmHg in

CORT-implanted animals but no activation in CHOL-implanted

controls. In CORT implanted rats, the 40 mmHg visceral stimulus

activated specific limbic structures including the hippocampal

complex and the hypothalamus. Additionally, brain regions that

form descending efferent pathways such as the basal ganglia

exhibited activation in MRI signal in CORT but not CHOL-

treated rats in response to 40 mmHg. CORT-treated rats also

displayed activation in the sensory processing areas such as the

somatosensory cortex during the 40 mmHg CRD that were not

activated at the same distension pressure in CHOL controls

(Figure 6A–B). As illustrated in figure 6C–D we show the nuclei

that were activated at 60 mmHg CRD following amygdala

CORT treatment but showed no activation in response the same

stimuli in CHOL-treated rats. In response to 60 mmHg animals

receiving CORT showed activated pixels in limbic areas such as

the cingulate cortex and sensory integration areas including the

thalamus. Additionally, brainstem structures involved in sensory-

motor integration including the pontine and reticular nuclei also

showed activation in response to 60 mmHg CRD in CORT-

treated animals but not CHOL controls (Table 1 and 2).

Our final analysis examined specific central sites that were not

activated in response to CRD at 40 mmHg but showed activation

at the higher distension pressure of 60 mmHg in both CHOL and

CORT treated rats (Table 1 and 2). This analysis demonstrated

that the amygdala, hippocampus and hypothalamus, important

regulators of autonomic and neuroendocrine function, showed

activation only at 60 mmHg in CHOL-treated rats (Figure 7A–B).

The pontine nuclei and thalamus showed activation at 60 mmHg

but not 40 mmHg in CORT-implanted animals (Figure 7C–D).

Interestingly, in CORT-treated rats, 60 mmHg distension also

correlated with increased activation of the raphe nuclei which

regulate serotonergic activity in the CNS.

Discussion

Stress and anxiety alter visceral perception and may play a role

in central pain amplification and the pathophysiology of IBS [15].

The current study used fMRI to identify areas of brain activation

in response to distension of the colorectum. Specifically we

investigated brain activation in response to CRD between rats

with bilateral amygdala implants of CORT and age and weight-

matched CHOL control rats. We provide evidence that elevated

CORT on the amygdala significantly increases brain activation in

response to CRD compared to that seen in CHOL-treated

controls. Taken together the results of the present study support

our hypothesis that exposure of the amygdala to elevated levels of

CORT leads to colonic hypersensitivity via enhanced activation of

specific central circuitry. Specifically, we showed that fMRI detects

areas of the brain activated by CRD. In the current study we were

able to show CNS activation in the CORT-treated animals in

response to distension pressure (40 and 60 mm Hg) was

significantly greater than that in CHOL controls. In light of the

recent findings by Lazovic et. al. [30], also in anesthetized rats,

where 40 mmHg distension pressures did not produce a significant

activation of the brain, we opted not to attempt lower distensions

pressures. The reason for the depressed threshold in the neuronal

activation in response to CRD between the two studies is unknown

but is unlikely to be related to the level of anesthesia since in both

studies the rats were anesthetized with chloral hydrate. Another

possible explanation may be related to the resolution of the images

since we used a 7T magnet whereas the earlier study employed a

3T magnet. In the current study, the highest distension pressure

that we employed was 60 mmHg, and we did not investigate CNS

Figure 2. Localization of the micropellets. A) Adapted coronal
diagrams from Paxinos and Watson [55] with the amygdala shaded. All
micropellets (CHOL - white circles; CORT - black triangles) were on the
dorsal margin of the amygdala between 1.80 and 3.14 mm caudal to
bregma. B) Representative RARE images from a typical experiment
showing the location of the micropellet over the dorsal margin of the
amygdala. Distance is relative to bregma and the white arrows indicate
the end of the cannula.
doi:10.1371/journal.pone.0008573.g002

fMRI of Colon Hypersensitivity
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Figure 3. Total brain activation at 40 mmHg CRD. A) Activation in all rats with CHOL-containing micropellets. B) Activation in all rats with
CORT-containing micropellets. For both A) and B), the total number of pixels per slice is shown in the histogram below the slice. The scale for r (0.4,
blue to 0.7, red) is also provided. As illustrated, there was greater activation in rats with CORT micropellets in each slice.
doi:10.1371/journal.pone.0008573.g003

fMRI of Colon Hypersensitivity
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Figure 4. Total brain activation at 60 mmHg CRD. A) Activation in all rats with CHOL-containing micropellets. B) Activation in all rats with
CORT-containing micropellets. For both A) and B), the total number of pixels per slice is shown in the histogram below the slice. The scale for r (0.4,
blue to 0.7, red) is also provided. As illustrated, there was greater activation in rats with CORT micropellets in each slice.
doi:10.1371/journal.pone.0008573.g004

fMRI of Colon Hypersensitivity
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activation at higher distension pressures of 80 mmHg since there

have been some reports that this level of CRD leads to

sensitization of a visceromotor behavioral response, indicative of

colorectal hypersensitivity that may be related to a local

inflammatory response due to mucosal damage [35]. We found

in the current study that repetitive CRD at 40 and 60 mmHg does

not induce damage to the colonic mucosa thus eliminating the

possibility that peripheral afferent sensitization was responsible for

the enhanced brain activation.

A significant advance made in the current study was the

enhanced brain activation in response to CRD in rats with

CORT-containing micropellets placed stereotaxically on the

dorsal margin of the amygdala. Thus, when taken together, we

believe that this study provides pivotal data supporting the

hypothesis that the amygdala is an important nucleus for the

sensitization of neuronal sensory circuits that are involved in the

induction of colonic hypersensitivity. The findings from the

current study demonstrate a positive BOLD signal change in

specific brain regions in response to elevated levels of CORT on

the amygdala. Despite the size of the rat brain compared the

human brain the use of a 7T magnet allowed us to distinguish

specific brain nuclei but not sub-nuclei within that structure as

seen with techniques such as c-fos and 2-deoxyglucose [36]. Here

we show that CRD activated specific nuclei in both the CORT

and CHOL controls. These areas include a collection of cortical

Figure 5. Change in signal intensity with CRD. The solid line
represents the averaged fMRI signal intensity over the time-course of
the distension paradigm (dashed-line represents deflation or inflation
state of the colorectal balloon) for a typical experiment. As shown there
is a rapid increase in signal intensity with balloon inflation indicating
that the activated areas are due to the colonic stimulus.
doi:10.1371/journal.pone.0008573.g005

Table 1. Nuclei activated in ventral axial slices 1–4 (Bregma
29.6–26.0 mm).

Distension Pressure 40 mmHg 60 mmHg

Nuclei CHOL CORT CHOL CORT

Amygdala 0.560.5 5.563.5 10.064.0 6.764.6

Basal Ganglia NA 6.563.1 3.562.2 6.562.7

Cerebellum*{ NA 20.269.2 20.8610.8 37.3616.0

Cochlear Nuclei* NA 0.560.3 NA 2.861.6

Ectorhinal Cortex* NA 0.860.5 NA 5.062.7

Entorhinal Cortex NA 3.061.4 3.061.8 4.864.1

Facial Nucleus 0.560.5 0.760.4 0.360.3 1.760.9

Hippocampus 1.061.0 5.362.8 13.768.8 21.7610.1

Hypothalamus 2.561.6 2.761.1 10.365.9 11.265.1

Inferior Colliculus* NA 0.360.3 0.260.2 1.360.5

Insular Cortex NA 2.261.0 0.560.5 3.262.6

Internal Capsule NA 0.260.2 0.260.2 1.761.1

Lateral Lemniscus NA 0.360.3 1.261.2 2.762.1

Olfactory Nuclei 0.360.3 2.062.0 0.760.5 2.361.5

Perirhinal Cortex* NA 4.262.0 0.760.7 5.762.6

Piriform Cortex NA 0.860.8 1.761.7 2.762.5

Pontine Nuclei 0.360.3 3.061.8 3.363.0 9.264.7

Raphe Nuclei 0.760.7 0.360.3 2.261.4 3.561.6

Reticular Nuclei 0.560.5 6.563.2 6.3+4.1 14.267.1

Somatosensory Cortex NA 0.360.3 NA 1.360.7

Tegmental Nuclei 0.860.8 1.761.1 1.260.8 6.062.5

Temporal Assoc. Cortex NA NA NA 4.362.7

Thalamus NA 0.560.5 1.761.3 2.761.8

Trigeminal Nuclei 1.060.7 3.861.9 3.762.4 5.762.9

Values listed are mean6SEM for pixels with r$0.4, n = 6/group. NA = no
activation.
*P,0.05 between groups.
{P,0.05, between pressures, 2-way ANOVA.
doi:10.1371/journal.pone.0008573.t001

Table 2. Nuclei activated in dorsal axial slices 5–8 (Bregma
24.8–21.2 mm).

Distension Pressure 40 mmHg 60 mmHg

Nuclei CHOL CORT CHOL CORT

Basal Ganglia 1.261.2 0.860.5 3.562.9 2.761.6

Cerebellum 8.065.2 39.3618.6 29.8613.4 53.5618.4

Cingulate Cortex 0.860.8 4.262.5 1.861.3 4.562.2

Corpus Callosum NA 1.761.7 NA 3.262.4

Ectorhinal Cortex NA 5.763.3 4.261.9 7.563.5

Entorhinal Cortex NA 10.264.3 6.063.3 6.062.9

Habenular Nucleus NA 2.061.3 1.061.0 1.060.7

Hippocampus 0.760.7 17.7611.6 7.564.5 17.767.8

Inferior Colliculus 0.360.3 4.562.1 1.761.7 3.561.7

Insular Cortex NA NA 0.360.3 0.260.2

Internal Capsule 0.360.3 NA 0.760.4 NA

Motor Cortex* 0.560.5 1.860.7 0.260.2 2.260.7

Orbitofrontal Cortex NA NA NA 2.361.7

Perirhinal Cortex NA 8.563.4 7.363.9 7.863.0

Prelimbic Cortex NA 1.261.2 NA 2.761.7

Pretectal Nucleus NA 0.560.5 2.562.0 2.061.4

Retrosplenial Cortex 8.265.2 18.367.7 11.563.7 12.064.2

Septal Nucleus NA 2.862.5 NA 1.561.1

Somatosensory Cortex* NA 4.361.7 3.562.6 6.562.1

Superior Colliculus*{ NA 2.061.6 0.760.7 8.362.5

Temporal Assoc. Cortex NA 2.061.4 1.861.2 4.561.9

Thalamus NA 3.061.7 4.062.5 3.561.6

Values listed are mean6SEM for pixels with r$0.4, n = 6/group. NA = no
activation.
*P,0.05 between groups.
{P,0.05, between pressures, 2-way ANOVA.
doi:10.1371/journal.pone.0008573.t002
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and subcortical structures identified in human brain imaging

studies as the pain matrix. This central network includes the

thalamus, amygdala, cingulate cortex, basal ganglia, cerebellum

and somatosensory cortex [37–39]. The current study demon-

strates that, not only does luminal distension activate these

structures in rodents, but also that CORT administration leads to

a greater increase in the activation of these structures as well as the

recruitment of other brain areas that were not activated in CHOL

controls. A specific brain area activated in our study with

particular relevance to visceral sensitivity is the hypothalamus

which is known to be involved in emotional expression and the

regulation of behavioral, neuroendocrine, and autonomic func-

tions; however, this structure also contains visceral motor areas

and plays an important role in modulating ascending nociceptive

transmission. Specifically, the hypothalamus has diffuse connec-

tions to brainstem areas regulating visceral pain processing

including the periaqueductal gray, raphe nuclei, and locus

coeruleus [40]. Another structure important for visceral sensory

processing is the cingulate cortex, which is involved in the

awareness and perception of internal bodily states and contains

specific subareas for integrating visceral sensation [41]. The

cingulate also has direct connections to the amygdala, periaque-

ductal grey, and orbitofrontal cortex [42]. Taken together our

observations in rodents [32,34] support clinical observations in

which abnormalities in amygdala activation appear common in

IBS patients [24]. In the current study negative BOLD signal

changes have not been analyzed since the interpretation of

deactivation remains rather controversial, however they represent

an area for future research investigation in the current animal

model.

Although real-time fMRI has been reported in conscious rats by

the team of Ferris and co-workers [43–45] who acclimated rats to

the experimental conditions within the fMRI magnet as

demonstrated by a reduction in the elevation in plasma CORT

and motor movements, many technical and ethical challenges exist

in performing experiments in unanesthetized rats using our

experimental paradigm. To perform CRD in awake rats, they

must be restrained in the fMRI magnet which is problematic in

Fischer-344 (F344) rats for two important reasons: firstly there is a

strong relationship between stress and the stimulation of visceral

hypersensitivity in response to the stress provoking situations, and

secondly F344 rats display a vulnerability to repeated stress since

they do not habituate to the stressor whereas Sprague Dawley rats

show a gradual decrease in the HPA axis following repeated

Figure 6. Specific nuclei activated in rats with CORT micropel-
lets but not activated in rats with CHOL micropellets by
40 mmHg or 60 mmHg CRD. Illustrated data is from an individual
rat representative of the median activation for either CORT (A and C) or
CHOL (B and D). In the CORT treated rat, specific nuclei showing
activation by CRD at 40 mmHg include the hypothalamus (HYPO), basal
ganglia (BG), hippocampal complex (HIPP) and somatosensory cortex
(SSC). In CORT-treated rat, specific nuclei showing activation by CRD at
60 mmHg include reticular nuclei (RET), pontine nuclei (PONT),
thalamus (THAL) and the cingulate cortex (CC). The scale for r (0.4,
blue to 0.7, red) is also provided.
doi:10.1371/journal.pone.0008573.g006

Figure 7. Specific nuclei activated by 60 mmHg CRD but not at
40 mmHg CRD in rats with either CORT or CHOL micropellets.
Illustrated data is from an individual rat representative of the median
activation. In the CHOL (A - 60 mmHg, B - 40 mmHg) treated rat,
specific nuclei showing activation by CRD only at 60 mmHg include the
hypothalamus (HYPO), the amygdala (AMYG) and hippocampal
complex (HIPP). In the CORT (C – 60 mmHg, D – 40 mmHg) treated
rat, specific nuclei showing activation by CRD only at 60 mmHg include
the raphe (RAPH), pontine nuclei (PONT) and thalamus (THAL). The scale
for r (0.4, blue to 0.7, red) is also provided.
doi:10.1371/journal.pone.0008573.g007

fMRI of Colon Hypersensitivity
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restraint stress [46]. In light of these significant issues, we

performed experiments in anesthetized animals, and given the

robust nature of the BOLD signal intensity in our anesthetized

animals in response to CRD we consider that studies on awake,

restrained rats will likely yield data that is confounded by the

effects of motion artifact during the distension procedure, stress

due to the restraint and the inability to habituate F344 to the

stressor. Recent studies claimed to have performed functional

brain activation in unrestrained conscious rats in response to CRD

[47], however the results from these studies must be treated with

caution. Specifically, a limitation in the interpretation of these

studies is that although [14C]-iodoantipyrine was injected after the

onset of CRD in the conscious rats, the brain images were taken

from autoradiographic analysis from the same animals following

euthanization, which may have had an effect on the distribution of

this marker. In the current study our experimental procedure of

performing real-time imaging rather than post-mortem analysis of

brain slices offers many significant and obvious advantages,

however there are factors that may affect interpretation of our

findings including potential changes in cerebral metabolism and

blood flow due to the anesthetic that is required to avoid

movement artifacts. Moreover, BOLD imaging is not a direct

measure of neuronal activity; instead a measure of oxygen

utilization, which we assume correlates with metabolic activity.

We consider our findings with 40 mmHg to have produced

some pivotal data related to the central sites that may be involved

in central sensitization despite the absence of data using lower

distension pressures. However, in our model it is important to

mention that central disinhibition of afferent signaling can also

occur which would result in the same ‘hypersensitive’ response.

Furthermore, a limitation of the current study is that although our

study provides objective data for the existence of neuronal

hypersensitivity, the structure-function relationship of these

activated regions was beyond the scope of the current study.

There are a number of important aspects of our model that

support the validity of our conclusions. The first relates to the

specificity of the observed responses to the amygdala. Although the

micropellet was placed stereotaxically on the dorsal margin of the

amygdala and ensures that the CORT bathes the central

amygdala without physical damage to the structure, the possibility

exists that other areas adjacent to the amygdala that express

steroid receptors such as the hippocampus and caudate putamen,

could be involved in our responses due to spread of the CORT

from the micropellet. However, in our previous study we

systematically performed a series of ‘off-site’ controls to examine

the effect of elevated CORT in areas adjacent to the amygdala

and found that the effects were specific to the central amygdala

and not due to diffusion to adjacent brain regions [32].

Furthermore, to substantiate our claim that the steroid micropellet

remained confined to the area of the implant, others have shown a

diffusion distance of 750 mm for a 30 mg micropellet [19] and

900 mm for a 150 mg cannula of CORT [48]. Moreover, although

there is a close relationship between the amygdala and the

ventrocaudal caudate putamen, previous studies using autoradi-

ography have shown limited binding of CORT [49], due to

minimal expression of GR with no appreciable MR in the

ventrocaudal caudate putamen [50]. Finally, although CRD can

trigger contraction of the anal sphincter, and contraction of this

sphincter also induces brain fMRI activity, in the current study

external anal sphincter contraction was not measured but the level

of fMRI activity was likely identical in both CORT and CHOL-

treated rats in response to CRD.

In conclusion, the present study provides evidence of increased

brain activation, measured as increased MRI signal, in response to

CRD in rats, following exposure of the amygdala to elevated levels

of CORT for 7 days. Our findings demonstrate that CRD lead to

activation of the brain in specific regions known to be involved in

somatosensory processing, and that exaggerated brain activation

in CORT-implanted animals is suggestive of heightened sensitivity

of the brain-gut axis in response to modulation of the amygdala. In

light of data from IBS patients demonstrating increased activation

in many of the same brain regions that we have observed in the

current study, we speculate that our findings in a rodent model

may imply that abnormal amygdala activity is a key component to

enhanced brain activation involved in the development of anxiety

and gut hypersensitivity in IBS.

Materials and Methods

Ethics Statement
All experiments were in compliance with the National Institute

of Health Guide for Care and Use of Laboratory Animals and the

International Association for the Study of Pain Research

Guidelines. The Animal Care and Use Subcommittee at both

the Oklahoma City Veterans Affairs Medical Center and the

Oklahoma Medical Research Foundation approved all the

experimental procedures.

Animals
Experiments were performed on male F344 rats weighing 250–

310 g and 13–15 wk of age purchased from Charles River

Laboratories (Wilmington, MA) and housed under standard

conditions with 12-h light/dark cycle with unrestricted access to

chow and water. Rats remained in the animal facility for at least 7

days before the experimental procedure, and all experiments were

performed at the same time each day. Experiments were

performed in a total of 6 rats per experimental group (CORT

40 and 60 mmHg; CHOL 40 and 60 mmHg). A sample size of 6

in each group was determined to have 90% power to detect the

expected difference between means (two group Satterthwaite t-test

with a 0.05 two-sided significance level) [32].

Stereotaxic Surgery
Animals had micropellets (30 mg - diameter of 0.3 mm with a

height of 1.0 mm) of either CORT or CHOL placed bilaterally on

the dorsal margin of the CeA under ketamine (100 mg/kg

intraperitoneal (IP)) and xylazine (10 mg/kg IP) anesthesia as

previously described [32,34]. Animals were then allowed seven

days for recovery, during which time their behavior was observed

to ensure that they were not in distress.

Localization of Stereotaxic Implant
During the imaging protocol, high-resolution anatomical images

(RARE imaging sequence, field of view 2.462.4 cm2, matrix size

2566256) were obtained to illustrate the position of the

micropellets of CORT or CHOL, as shown in Figure 2B.

Following the imaging protocol, animals were euthanized and

brains rapidly removed and frozen in chilled 2-methylbutane

(Fisher Scientific, Fair Lawn, NJ). Brains were then stored at

280uC until cryosectioning. Serial coronal cross-sections (50 mm)

were cryosectioned (Bright OTF, Fairfield, NJ) at 220uC and

mounted onto slides followed by verification of micropellet

placement by light microscopy.

Colorectal Distension
A 5-cm latex balloon catheter was constructed as described

previously [32]. The balloon was then inserted via the anal canal

8 cm into the colon and secured with surgical tape around the tail
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following choral hydrate anesthesia. CRD was performed by

inflating the balloon using a constant pressure barostat (Model

IIR, G&J Electronics, Toronto, Canada) synchronized to the

fMRI magnet. A series of 8 phasic CRD was performed at

distension pressures of 40 mmHg and then 8 phasic CRD at

60 mmHg for 30 s each (‘on’) with a 90 s deflation (0 mmHg –

‘off’) between distension periods.

Histology
To determine whether CRD had any effect on the colonic

mucosa, we performed the identical distension protocol in a

subgroup of rats (n = 3). Naive rats (n = 3) in which a balloon was

neither inserted nor distended served as controls. Three 1 cm

tissue segments from each rat were collected from the proximal

(1 cm distal to cecum), medial (8 cm proximal to rectum) and

distal (2 cm proximal to rectum) colon. Tissues were fixed in 4%

buffered formalin, processed, embedded in paraffin and sectioned

at 5 mm thickness. They were stained with haematoxylin and eosin

and assessed for inflammation by a blinded observer under a light

microscope. Inflammatory parameters were scored using the

following criteria: 0–2 for ulceration and fibrosis and 0–3 for

inflammatory infiltration and depth of lesion [51]. A score of 0

designated no visible signs of pathology in the tissue.

Functional Magnetic Resonance Imaging
Imaging was performed on a 7T Bruker MRI spectrometer

(Biospec, Bruker Biospin, Billerica, MA) with a gradient coil (S116,

Bruker Biospin). Prior to imaging, rats were anesthetized with

chloral hydrate (400 mg/kg IP). To ensure a similar level of

anesthesia across animals and within the same animal during the

course of a single experiment an IP Teflon catheter (BD Insyte

Autoguard, BD Medical Systems, Sandy, UT) was attached to an

injection line for delivering additional anesthetic (40 mg/kg) if

indicated by an increase in respiration rate by more than 20

breaths/min from the start of the experiment via monitoring

respiration on a monitor (Model 1025, SA Instruments, Inc., Stony

Brook, NY) via a transducer placed under the rat. The balloon

catheter was then inserted and attached to the barostat with tygon

tubing (4/160 ID, 5/160 OD). Following balloon catheter

insertion, the rats were placed in a positioning frame and in the

imaging coil (receive only quadrature surface coil and multirung

volume coil for excitation). The barostat was interfaced to the

MRI system console (MRI Interface, G & J Electronics, Inc.) to

synchronize distention and deflation cycles with image acquisition.

The fMRI paradigm consisted of 8 inflation and deflation cycles

consisting of a 90 s baseline period with the balloon deflated (‘off’),

during which time 9 images were acquired, followed by a 30 s

activation or inflation period (‘on’), during which 3 images were

obtained, for a total of 16 min and 96 images for each pressure (40

or 60 mmHg). The desired pressure of CRD was achieved by

rapidly inflating (,5 s) the balloon controlled by the barostat.

fMRI Image Selection
To minimize signal loss due to susceptibility artifacts at air-tissue

interfaces (sinus cavities), the axial plane was chosen. Eight axial

(1.2 mm thick) slices were positioned relative to bregma at the

following dorsoventral distances: 29.6, 28.4, 27.2, 26.0, 24.8,

23.6, 22.4 and 21.2 mm. Anatomical T2-weighted images

(effective TE/TR = 50.78/2500 ms, field of view 464 cm2, matrix

size 1286128, 8 averages) were acquired in 5.3 min using the

rapid acquisition with relaxation enhancement imagining se-

quence. Functional images were obtained using a T2
*-weighted

FLASH (effective TE/TR = 14/160 ms, 64664 matrix, 1 average)

10.24 s for one image, with the same slice position, slice thickness,

and field of view as the anatomical images.

Data and Statistical Analysis
Post processing and analysis of fMRI data were performed using

the CCHIPS software [52]. Image co-registration and motion

corrections were achieved with a pyramid co-registration algo-

rithm [53]. Areas of activation in different regions acquired during

8 ‘off’ cycles and 8 ‘on’ cycles was cross-correlated with an

idealized wave representative of the stimulation paradigm [54]. A

cross-correlation coefficient (r) value of the pixels higher than

r$0.4 is considered statistically significant (corresponding to

P,0.0001), and is shown as different color-coded pixels repre-

senting activation on the image. Brain areas that contained

activated pixels were identified based on a stereotaxic atlas [55],

i.e. images were overlaid with the neuroanatomical image for

nuclei identification. Total numbers of activated pixels for brain

structures that extended over more than one slice were determined

by adding activated pixels per each slice. Total brain activation in

CORT and CHOL-treated animals was assessed at each pressure

in terms of the total number of activated pixels per animal. Since a

Bartlett’s test for variance indicated a significant difference in

variance between groups, to compare total brain activation

between the CORT and CHOL groups in different brain nuclei,

the total pixels per nuclei were logarithmically transformed (with

no activation treated as 0). The transformed data was then

subjected to a two-way analysis of variance (ANOVA) (group and

pressure) followed by a Bonferroni post-hoc analysis (GraphPad

Prism v. 4.0c for Mac, San Deigo, CA). The non-transformed data

for individual nuclei were expressed as mean6standard error of

the mean (SEM).

Drugs and Chemicals
CHOL, CORT and choral hydrate were obtained from Sigma-

Aldrich (St. Louis, MO). CHOL and CORT were placed in the

brain as micropellets of the dry powder of the chemical. Choral

hydrate was dissolved in sterile saline to a concentration of

100 mg/mL (wt/vol). Ketamine (100 mg/mL vial) was obtained

from Phoenix Pharmaceutical (St. Joseph, MO) and administered

in combination with xylazine (20 mg/mL vial) acquired from

Hospira (Lake Forest, IL).
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