
4302–4314 Nucleic Acids Research, 2022, Vol. 50, No. 8 Published online 22 April 2022
https://doi.org/10.1093/nar/gkac276

Coexpression reveals conserved gene programs that
co-vary with cell type across kingdoms
Megan Crow , Hamsini Suresh, John Lee and Jesse Gillis *

Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor NY,
USA

Received May 29, 2021; Revised March 30, 2022; Editorial Decision April 07, 2022; Accepted April 08, 2022

ABSTRACT

What makes a mouse a mouse, and not a hamster?
Differences in gene regulation between the two or-
ganisms play a critical role. Comparative analysis
of gene coexpression networks provides a general
framework for investigating the evolution of gene
regulation across species. Here, we compare co-
expression networks from 37 species and quantify
the conservation of gene activity 1) as a function of
evolutionary time, 2) across orthology prediction al-
gorithms, and 3) with reference to cell- and tissue-
specificity. We find that ancient genes are expressed
in multiple cell types and have well conserved co-
expression patterns, however they are expressed at
different levels across cell types. Thus, differential
regulation of ancient gene programs contributes to
transcriptional cell identity. We propose that this dif-
ferential regulation may play a role in cell diversifica-
tion in both the animal and plant kingdoms.

INTRODUCTION

Defining the genetic mechanisms that drive species diver-
gence is a longstanding and unachieved goal in evolution-
ary biology. With access to DNA sequences, comparative
genomics research has uncovered associations between gene
family conservation and the phenotypes that emerge in par-
ticular lineages (1–4). While this approach continues to shed
light on genome evolution (5), it provides at best an incom-
plete picture, omitting phenotypic differences that can be
driven by changes in gene regulation alone (6,7). A number
of studies have used functional genomics data to find reg-
ulatory differences between species (8–12). A common ap-
proach is to compare samples that are clearly homologous,
such as mammalian organs, and measure differences in gene
expression as the output of changing regulatory architec-
ture. Yet because of its dependence on shared anatomical
features, this approach is necessarily limited to more closely
related species: the leaves of a plant are not homologous to

the limbs of an animal. How then, can we compare the con-
servation of gene function across the tree of life? One answer
is coexpression – the patterns of gene activity that underlie
organismal similarities and differences.

In a coexpression network, genes are nodes and the edges
represent expression similarity between genes. Functionally
related genes are often adjacent in the network as their ex-
pression is coordinated across biological conditions, allow-
ing for the inference of gene regulatory modules through
clustering (13). Where two organisms have homologous tis-
sues, the pattern of gene variation across those tissues typ-
ically show conserved coexpression as groups of genes re-
lated to core molecular functions are expressed at vary-
ing levels across tissues, and tissue-specific genes are shared
(9,10,14). But even where the tissues are not homologous,
patterns of molecular variability will be conserved as gene
modules jointly vary in expression across conditions (15).
Evolution works, in part, by rewiring these subnetworks of
genes, creating novel regulatory relationships and, by infer-
ence, changes in function (see Figure 1 for a schematic) (6).
By comparing networks across a small number of model
species, previous work has demonstrated that deeply con-
served genes often have shared regulation (15–20). The in-
creasing availability of data from a range of non-model
species now permits investigation of shared and divergent
regulation at greater resolution and breadth (21). Moreover,
advances in single-cell RNA-sequencing create the oppor-
tunity to link observed patterns of conservation to mecha-
nisms of cell type diversity.

In this work, we build high-powered coexpression net-
works for 37 eukaryotic species and develop a measure
of shared gene activity called ‘coexpression conservation’.
We demonstrate that coexpression conservation tracks with
evolutionary distances, enabling the reconstruction of the
phylogenetic tree, and that it is significantly higher for or-
thologous gene pairs predicted by multiple algorithms and
with higher sequence conservation. By relating coexpres-
sion conservation to single-cell expression data (22–26), we
discover a fascinating association between so-called ‘ubiq-
uitous’ genes and cell identity. In addition to their strongly
conserved coexpression patterns, we find ‘ubiquitous’ genes
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Figure 1. Schematic to illustrate the variation of functional conservation with phylogenetic distance and lineage-specific gene gains and losses. (A) After
the first speciation event, species A loses a gene (red square), while species B* and B** undergo lineage-specific gene duplications (checkered red circles and
squares) after the second speciation event. Black lines indicate strength of coexpression between gene pairs within a species, and colored lines indicate the
extent of functional conservation between select orthologous genes across species. (B) Heatmaps of functional conservation between every pair of genes in
species B* and B** and in species B* and A indicate that functional conservation negatively correlates with phylogenetic distance. Gene modules retaining
a single-copy of genes and displaying high coexpression similarity across the species pair are highlighted by green boxes. Duplicated genes are highlighted
in purple boxes, and are labeled conserved or diverged based on their coexpression similarity post-duplication.

have gradient-like expression distributions across cell types
in both the mouse and model plant Arabidopsis thaliana.
These results suggest a mechanism of functional diversifica-
tion driven by up and down-regulation of deeply conserved
modules along a continuous gradient of activity.

Coexpression conservation provides a data-driven esti-
mate of gene functional divergence across species. To fa-
cilitate its use, we have made all of our results available
for browsing and download via a webserver, CoCoBLAST
(https://gillisweb.cshl.edu/CoCoBLAST/, see Supplemen-
tary Note 2 for a quick-start guide). In addition to serving
conservation estimates for known orthologs, the webserver
allows users to find the most closely related genes between
two species based on coexpression rather than sequence.

METHODS

Analysis of public gene expression data

All analyses were performed in R version 3.6. Results are re-
ported as means +/− standard deviations unless otherwise
specified.

Aggregate coexpression networks were downloaded from
CoCoCoNet (21). Networks for individual datasets are
stored internally and are available on request. In brief, net-
works for each dataset are built by calculating the Spear-
man correlation between all pairs of genes based on read
counts, then ranking the correlation coefficients for all gene-

gene pairs, with NAs assigned the median rank. Aggregate
networks are generated by averaging rank standardized net-
works from individual datasets. To assess the connectivity of
GO groups we used the run neighbor voting function from
the EGAD R package (74), subsetting GO to terms with
10–1000 genes. For human tissue specificity analyses, pro-
cessed expression data from the GTEx project (v8, median
TPM per tissue) was downloaded from the GTEx Portal
(57). Tissue specificity was calculated as published (75).

The Tabula Muris Smart-seq2 expression matrix and
sample metadata were downloaded from FigShare and con-
verted to SingleCellExperiment objects for further process-
ing. For each tissue, counts were normalized for library
size and log2 transformed using the logNormCounts func-
tion from the scater package, yielding log counts per mil-
lion (CPM) for each cell, with no tissue-specific scaling fac-
tors (76). Cell type specificity was calculated as published
for each tissue (75), then cell type specificity scores were
averaged across tissues, excluding NAs. To visualize cells,
we used the t-SNE coordinates provided by the authors.
Within-cell type variance was calculated using the base R
function var on log CPM for each cell type in each tis-
sue separately, then averaged for each tissue, and averaged
across tissues. Across-cell type variance was calculated for
each tissue separately using the mean log CPM for each cell
type, then values were averaged across tissues. For Figure
6B, within and across-cell type variance were ranked and
standardized between 0–1 such that the highest variance
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genes would have a score of 1. The limma package (77) was
used to find marker genes with a log fold-change thresh-
old > 4 between each cell type and any other within its tis-
sue.

Arabidopsis thaliana root single-cell RNA-seq expres-
sion matrices were downloaded from the Gene Expres-
sion Omnibus (78) (GEO IDs: GSE116614, GSE121619,
GSE123818, GSE123013). Cluster assignments were down-
loaded from GEO for IDs GSE121619 and GSE123013,
and provided by the authors for IDs GSE123981 and
GSE116614. Counts were depth normalized and log2 trans-
formed using the logNormCounts function in the scater
package to yield log CPM. Cell type specificity was calcu-
lated on log CPM for each dataset separately, then averaged,
excluding NAs. Within-cell type variance was calculated on
log CPM for each cell type in each dataset separately, then
averaged across datasets. Across-cell type variance was cal-
culated for each dataset using the mean log CPM in each
cell type, then averaged across datasets. To visualize cells
from all studies, we first used MetaNeighbor (65) to find
replicable clusters, and subset individual datasets to clusters
replicating in at least one other study using an AUROC cut-
off of 0.7. We used the multiBatchNorm function from the
batchelor package for initial batch correction (79). Then,
we selected variable genes using the get variable genes func-
tion from MetaNeighbor and used fMNN in batchelor on
batch corrected data, subset to variable genes. This provided
principle components which were used for the UMAP pro-
jection of all cells (80) (20 components were used).

Yeast microarray data were downloaded from the Sac-
charomyces Genome Database (64). We included studies
with > 10 samples. After rank normalizing expression for
each sample, we calculated the variance of expression for
each gene that was measured in at least 80% of the datasets.
Variance was calculated for each dataset separately, then av-
eraged. For the analysis in Figure 6A, we considered all gene
pairs with coexpression conservation > 0.9 to be true posi-
tives and used the ranked average variance to predict these
for each species with the auroc analytic function in EGAD
(74).

Gene annotations and orthology

Gene function annotations were sourced from the Gene
Ontology (27). GO terms and gene associations were ob-
tained by merging data from the NCBI (ftp://ftp.ncbi.
nlm.nih.gov/gene/DATA/gene2go.gz) and Ensembl 99, ac-
cessed through biomaRt (81). Associations were propa-
gated based on ‘is a’ relationships between terms. In ad-
dition, essential gene annotations were obtained from the
MacArthur lab’s GitHub repository (https://github.com/
macarthur-lab/gene lists), originally sourced from Hart et
al (63). Yeast-human complementation data was down-
loaded from the supplement of Kachroo et al (53). Mouse
gene age estimates (58) were downloaded from the Marcotte
lab’s GitHub repository (https://github.com/marcottelab/
Gene-Ages) and A. thaliana gene age estimates were col-
lected from multiple sources (59–62).

OrthoDB (28) was used for orthology mapping. In brief,
we search for the most recent phylogenetic split for each
pair of species then obtain inferred orthology groups for all

genes descending from a common ancestor. Orthologs were
filtered to either include only one-to-one relationships, or to
include all N-to-M orthologous pairs. We also downloaded
orthology information from the Alliance of Genome Re-
sources (38) for assessment with our N-to-M coexpression
conservation method, detailed below. We de-duplicated the
information so that each gene pair appeared only once,
rather than having a direction from a source-target species.
Pairs from all algorithms were considered the ‘universe’ of
possible orthologs. Species divergence times were sourced
from TimeTree (82).

Coexpression conservation

For each pair of species to be compared, we filter aggregate
coexpression networks to include known orthologous genes
(see Supplementary Figure S2 for the number of genes be-
tween each pair of species), then we compare each gene’s
top 10 coexpression partners across species to quantify gene
similarity. We treat this as a supervised learning task, us-
ing the ranks of the coexpression values from one species
to predict the top 10 coexpression partners from the second
species, and then repeating this task in the opposite direc-
tion, finally averaging the scores. We refer to this as a mea-
sure of ‘coexpression conservation’ and note that it is for-
mally equivalent to the average area under the receiver op-
erator characteristic curve (AUROC). Note that the choice
of top 10 genes is arbitrary, however we have found that
our results are robust to the precise number of top genes
as we can correctly reconstruct phylogenetic relationships
across a wide range of top gene pairings (see Supplementary
Note 1).

To generalize this to the case of N-to-M orthologs, we de-
scribe the analysis in greater detail: Consider a gene A1 in
species 1 that has two orthologs in species 2 – genes B1 and
B2. First, the top ten genes exhibiting the highest coexpres-
sion with A1 are chosen. All possible orthologs in species
2 for the set of top 10s of A1 are shortlisted as the ‘trans-
lated top 10s’. Note that since each gene in species 1 can
now have one or more orthologs in species 2, the translated
top 10s can vary in length. Additionally, some of the top
ten coexpressed genes in species 1 may map to the same or-
thologs in species 2, but we only consider a unique list of
orthologs in the translated top 10s for each gene in species
1. This task is repeated in the opposite direction, where the
ranks of coexpression values of genes in species 2 are used to
predict the top coexpression partners of genes from species
1. Scores from both directions are averaged, thereby provid-
ing a measure of overall coexpression conservation.

RESULTS

Establishing meta-analytic coexpression networks as a tool
for comparative genomics

Changes in phenotype between species can be encoded in
changing patterns of gene network connectivity (Figure 1).
Reliable estimates of species-specific gene coexpression pat-
terns provide a backbone for comparative analysis of reg-
ulatory divergence. In previous work, we generated high-
powered coexpression networks from 14 species by aggre-
gating RNA-sequencing data across hundreds of individ-
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ual experiments (21). We have recently expanded this re-
source to include 37 species, greatly increasing our cover-
age of mammals, invertebrates and plants (Supplementary
Figure S1). In the following, we establish the power and ro-
bustness of the subset of networks that have functional an-
notations in the Gene Ontology (GO) (27) (Figure 2).

As a first validation, we find that species-specific net-
works built from multiple datasets (‘aggregate’ networks)
have strong connections between genes from the same GO
group, and that these connections are significantly stronger
than those found in networks from individual datasets (Fig-
ure 2B, neighbor voting mean Area Under the Receiver-
Operating characteristic Curve (AUROC) individual net-
works = 0.63, mean AUROC aggregates = 0.76, Wilcoxon
P < 10–8, n = 14 species). To evaluate the robustness of the
aggregate networks, we bootstrapped the aggregation pro-
cedure 10 times, then used the ranked edges in the boot-
strapped networks to predict the top 1% of edges in the
reference aggregate networks (Figure 2C). Performance at
this task was close to perfect (mean AUROC = 0.996 +/−
0.002), while variability between bootstrapped and refer-
ence aggregate networks declined as a function of the num-
ber of experiments and samples as expected (Spearman cor-
relation coefficient = −0.83 for experiments, −0.86 for sam-
ples). We also confirmed that this held true in our larger
corpus of 37 total networks (Supplementary Figure S1B).
In sum, these results indicate that aggregate networks are
statistically robust and biologically meaningful, with strong
connections between functionally related genes.

Comparing ortholog coexpression neighborhoods quantifies
the conservation of gene activity

Having established the robustness of our networks, we next
explore the degree to which they can be used for cross-
species comparisons. Our analysis focuses on characterizing
the degree to which pairs of orthologs have retained sim-
ilar coexpression patterns, or ‘neighborhoods’ in the net-
works. We use OrthoDB (28) to map orthologs since it is the
world-leader by comprehensiveness across organisms. For
each pair of species, we search for the most recent phylo-
genetic split, then obtain inferred orthology groups for all
genes descended from the common ancestor.

To measure the similarity of ortholog neighborhoods be-
tween two species, we first subset networks to include only
one-to-one orthologs between that species pair (e.g. pig and
yeast as shown in the schematic, Figure 3A; note that the
number of 1:1 orthologs between each pair of species can
be found in Supplementary Figure S2A). Next, each gene’s
neighborhood is defined by ranking all edges associated
with it, and then the ranks of the gene’s top 10 coexpressed
gene pairs are compared across species (see Methods for de-
tails). This is expressed as an AUROC and so it ranges from
0–1, with 1 meaning perfect conservation, 0.5 consistent
with random re-ordering of neighborhoods, and 0 mean-
ing that coexpression partners have inverted from being the
top ranked to bottom ranked across species. We refer to this
score as ‘coexpression conservation’ or ‘gene neighborhood
conservation’.

As a first biological validation of our approach, we find
that the conservation of gene neighborhoods is strongly

negatively associated with phylogenetic distances between
species, demonstrated in Figure 3B with respect to dis-
tance from human (Spearman correlation coefficient =
−0.95). We also find that coexpression conservation is sen-
sitive to the amount of underlying data as expected, with
strong performance achieved with the inclusion of twenty
datasets and scores plateauing beyond this point (Figure
3C, mean individual networks = 0.55+/−0.04, mean 20-
dataset aggregate = 0.68+/−0.08, Wilcoxon P < 0.002,
n = 7 species). To evaluate the sensitivity of coexpres-
sion neighborhoods to differences in data preprocessing,
we used our yeast compendium as a test case. We split
the data into two partitions and generated aggregate net-
works for each across a range of commonly used methods
(see Supplementary Note 1 for details), then we assessed
the degree to which the same gene’s coexpression neighbor-
hood was preserved across the two networks. While gene
neighborhood preservation is generally high for all meth-
ods, we find that our previously established network build-
ing best practices (29) are among the best for this pur-
pose. All together, these results provide strong validation of
both the network building and coexpression conservation
methods.

One-to-one orthologs are frequently used for compara-
tive genomics analyses (e.g.30,31), however, as species grow
more distant to one another, there are fewer one-to-one or-
thologs for comparison, particularly in the plant kingdom,
where genome duplication events are common (32). To ex-
plore more distant and complex relationships, we general-
ized our method to be able to compare groups of orthologs,
i.e. all genes descended from a single gene in a common
ancestor, including lineage-specific duplicates (see Supple-
mentary Figure S2B for the number of many-to-many or-
thologs between all species pairs and Supplementary Figure
S3 for a schematic). As validation, we assessed the conser-
vation of groups of orthologs descended from the last com-
mon ancestor of all eukaryotes. We find that coexpression
conservation scores for many-to-many (aka N-to-M) or-
thologs are strongly associated with phylogenetic distances
between species (Figure 3D). Expanding out to the entire
set of species in our compendium, we find that the average
N-M score lets us reconstruct the phylogenetic tree (Supple-
mentary Figure S4), though distances among plant species
are not preserved. We note that these results are robust to
the precise size of the gene neighborhoods used to calculate
coexpression conservation, with neighborhood sizes rang-
ing from 5–500 yielding nearly identical phylogenetic trees
(Supplementary Note 1).

We next evaluated all N-to-M orthologs defined in the
last common ancestor between each pair of species, finding
that one-to-one orthologs have higher coexpression conser-
vation than N-to-M orthologs on average (Figure 3E, mean
1-to-1 = 0.79 +/− 0.14, mean N-to-M = 0.59 +/− 0.14,
Wilcoxon P < 10–16). Notably, we also find cases where N-
to-M orthologs differ strongly by coexpression conserva-
tion, with ∼7% of all N-to-M groups containing orthologs
with scores > 0.7 and <0.5. An example of this is shown
in Figure 3F. Here, we see that human VWA5A shares a
large fraction of its coexpression neighborhood with mouse
Vwa5a, but that it is quite distinct from mouse AW551984
which exists only in the muroid lineage.
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Figure 2. Aggregate coexpression networks are a powerful tool for comparative genomics. (A) In this work we examine coexpression across species from
3 kingdoms: plants, animals and fungi. Here we focus on the subset of species with GO annotations. The dendrogram shows phylogenetic relationships
between these species, and the barplots indicate the number of datasets used to build aggregate coexpression networks. (B) Circles show the mean GO
prediction performance for individual networks (+/− standard deviation) while triangles indicate aggregate network performance. (C) Aggregate robustness
is high across all species, with variation dependent on n.

These results indicate that coexpression neighborhoods
can be usefully compared across species to provide a mea-
sure of ortholog conservation, and even of species diver-
gence. Distinguishing orthologs by differential coexpression
conservation may provide a route forward for discovering
genes with ‘the same’ function across species (a.k.a. ‘func-
tional analogs’), an idea we discuss in the following section.

Conservation of gene activity is associated with ortholog con-
fidence and can predict functional analogs

Our conservation analysis is made possible by the use of
OrthoDB to define orthologous genes. However, orthology
prediction is an active area of research in genomics (33,34),
and relying on a single algorithm has known limitations
(35–37). How would our results change if we used a different
reference? In the following, we take advantage of orthology
information from the Alliance of Genome Resources (38)
which has predictions from 12 independent sources (39–
50) for humans and 6 common model organisms. We as-
sess algorithms with respect to gene neighborhood conser-
vation, and we explore how coexpression conservation can
be applied to predict functional analogs between human
and yeast.

The majority of algorithms within the Alliance of
Genome Resources database (9/12) have high concordance
across their orthology predictions (Figure 4A, mean Jac-
card = 0.7), with exceptions attributable to differences in
species coverage (e.g. HGNC only includes human orthol-
ogy information). In keeping with their overall similarity,
we find that average coexpression conservation scores for
these 9 algorithms are close to tied (mean = 0.74 +/− 0.009,
Supplementary Table S1) and although OrthoDB is fairly
distinct in its predictions (mean Jaccard index = 0.18), it

performs very close to this average (0.73 +/− 0.13). Re-
markably, even though the algorithms are tied on average,
we find that where they agree, conservation of gene coex-
pression is preferentially high: for almost all pairs of species,
ortholog neighborhood conservation is correlated with the
number of algorithms that predict the relationship (human-
worm shown as an example in Figure 4B, all correlations
in Figure 4C). The only exceptions to this rule are among
the three mammals, where conservation of gene coexpres-
sion is almost uniformly high. Because orthology prediction
is easier for long genes and those under stronger selection
(51), we tested the association between ortholog common-
ality across species and these features. Using human and
worm as an example, we compared percent sequence sim-
ilarity and gene length to ortholog commonality across al-
gorithms. As expected, we find that sequence similarity is
positively associated with commonality across algorithms
(Supplementary Figure S5), but we do not see a relation-
ship between length and ortholog commonality. Together,
this indicates that constrained genes of varying lengths are
among those that are predicted across multiple algorithms.
It is interesting to note that this also correlates with conser-
vation of coexpression relationships.

A primary application of orthology prediction is to
infer shared function across species. Benchmarks recur-
rently find a precision-recall trade-off across algorithms
(37,52), with little evidence that any one approach outper-
forms another (34). By incorporating functional informa-
tion directly, coexpression conservation scores may improve
sequence-based inference. For example, recent work has
found that human genes with similar coexpression patterns
can compensate for the loss of their yeast orthologs in com-
plementation screens (53,54). Here we find that coexpres-
sion conservation scores from our independent data (RNA-



Nucleic Acids Research, 2022, Vol. 50, No. 8 4307

Figure 3. Divergence in gene coexpression correlates with phylogeny. (A) Method schematic. Circles represent genes and line thickness indicates strength of
coexpression between one target gene (red) and all others. For each target gene in pig, we identify the set of pig genes that are maximally coexpressed with
it, shown in blue. We evaluate how conserved this coexpression pattern is in yeast, then repeat the task in the other direction. Genes with high coexpression
to the target in both species are highlighted in the gray ovals. Coexpression conservation is reported as the average AUROC in both directions (i.e. pig-yeast
and yeast-pig). (B) Points show mean coexpression conservation for 1-to-1 orthologs between human and each other species. Coexpression conservation
is negatively correlated with phylogenetic distance (rho = −0.95, P < 10–6). (C) Mean coexpression conservation for 1-to-1 orthologs between human and
each species are plotted against the number of networks included in the aggregate network. Performance increases with additional data. (D) Boxplots show
coexpression conservation for 492 orthologous groups defined at the last common ancestor of all eukaryotes, plotted with respect to species divergence
times. As in panel B, coexpression is more conserved among more recently diverged species. (E) Boxplots show coexpression conservation scores. 1-to-1
orthologs are more conserved than N-to-M orthologs (Wilcoxon P < 10–16). (F) Coexpression profiles for a 1-to-2 human-mouse ortholog group. The
human gene VWA5A has a strongly conserved coexpression profile with mouse Vwa5a (left, conservation AUROC = 0.83) but not with mouse AW551984
(right, AUROC = 0.46).

seq rather than microarray) and our analysis method are
predictive of this effect (Figure 4D). However, we also find
that certain pairs of complementing orthologs have very
low coexpression conservation, with the two lowest scor-
ing pairs excluded from the Alliance of Genome Resources
database (Supplementary Table S2).

Altogether, these results highlight that confidence in
sequence-based orthology is reflected by similarity in gene
coexpression relationships. Although ortholog confidence
may also be associated with underlying gene properties,
such as mutational constraint, these results suggest that a
wisdom-of-the-crowds approach may be beneficial for or-
tholog prediction. Since our results rely only on OrthoDB,
they likely represent a lower limit for gene activity conser-
vation which would only improve with the use of meta-
orthology methods (55).

Genes expressed in all cell types have conserved coexpression
relationships

Above, we established that the conservation of gene coex-
pression tracks with phylogeny as expected, and that one-
to-one orthologs are more likely to have similar coexpres-
sion neighborhoods than those that have duplicated. We

also find evidence of strong divergence within orthogroups,
which has long been postulated to be an evolutionary mech-
anism for cell diversification (56).

By leveraging coexpression relationships we can 1) extend
these observations to any species pair of interest without re-
quiring knowledge of homologous tissues or cell types, and
2) identify conserved relationships between genes, reflect-
ing conserved regulation and function. Importantly, we can
investigate the role of conserved gene activity in cell phe-
notypes by taking advantage of single-cell RNA-seq data.
We use comprehensive single-cell RNA-seq data from the
Tabula Muris project for mouse (22), and four single-cell
RNA-seq datasets from A. thaliana root (23–26) as refer-
ences for cell-type specific expression (Figure 5A, see Meth-
ods for details), and we use data from the Genotype-Tissue
Expression Project (GTEx) (57) as a reference for human
tissue-specific expression.

Consistent with previous research, we find that genes ex-
pressed ubiquitously across tissues have higher coexpres-
sion conservation than those with tissue-specific expression
(Supplementary Figure S6, Spearman correlation coeffi-
cient = −0.37 +/− 0.08). Expanding this analysis to cell
types, we again see the same pattern, with cell-type speci-
ficity associated with decreased coexpression conservation
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Figure 4. Gene coexpression conservation is associated with ortholog concordance across algorithms and can predict human-yeast functional analogs. (A)
Heatmap of algorithm concordance. The majority of algorithms (9/12) make similar predictions, with outliers arising from selection biases (i.e. inclusion
of only a subset of species). (B) Mean conservation for human-worm orthologs is plotted against the number of algorithms predicting the relationship.
Conservation of gene neighborhoods correlates with ortholog confidence. (C) Bars show the correlation between the number of algorithms and conserva-
tion of neighborhoods for each gene pair, binned into three divergence times. Conservation correlates with ortholog confidence for pairs of species that
diverged > 100MYA but not for more recently diverged species. (D) Cumulative success of human-yeast complementation is plotted as a function of gene
activity conservation. Human genes with conserved gene neighborhoods are likely to compensate for loss of their yeast orthologs.

in both A. thaliana and mouse (Figure 5B, mouse Spear-
man correlation coefficient = −0.50 +/− 0.04, Arabidopsis
= −0.26 +/− 0.07). We note that this trend holds across
all species pairs used to calculate conservation of coexpres-
sion neighborhoods. We also confirm that cell type-specific
expression and coexpression conservation are both associ-
ated with estimates of gene age in both kingdoms (Sup-
plementary Figure S6, mouse cell-type specificity vs. gene
age (58) Spearman correlation coefficient = 0.47, coexpres-
sion conservation vs. gene age = −0.15 +/− 0.1 across 13
species pairs, Arabidopsis cell-type specificity vs. gene age
(59–62) Spearman correlation = 0.27 +/− 0.1, coexpres-
sion conservation vs. gene age = −0.23 +/− 0.05, averaged
across 6 gene age estimates and 13 species pairs). Conser-
vation of gene neighborhoods is also significantly higher
for orthologs of genes known to be essential in human (63)
(Supplementary Figure S6, essential = 0.83 +/− 0.1, non-
essential = 0.69 +/− 0.08, Wilcoxon P < 0.01, n = 13
species compared to human).

Ubiquitous genes are likely to have higher expression lev-
els than those that are tissue- or cell type-specific. To de-
termine whether expression level is sufficient to explain the
differences in coexpression conservation between ubiqui-
tous and cell type specific genes, we performed two con-
trol experiments. Because orthologous genes can have dif-
ferent expression levels across species, in the first experi-
ment we compared gene neighborhoods within species after
splitting our compendium into 10 partitions and generat-
ing aggregate networks for each. We find that gene neigh-
borhood preservation is weakly but positively associated
with gene expression level (mean Pearson correlation = 0.2,
Figure 5C and Supplementary Note 1). Genes which are
highly expressed have preserved coexpression neighbor-
hoods, but because most genes show relatively high coex-
pression preservation, the relationship is not that strong.
As a second test, we used human as an index case, and
compared the relationship between human gene expression
levels and coexpression conservation with mouse, chicken,
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Figure 5. Ubiquitously expressed genes have strongly conserved coexpression patterns that are not explained by expression level alone. (A) Plots of mouse
and Arabidopsis scRNA-seq data, with examples of constitutive (left) vs. cell-type specific expression (right), color indicates expression level. (B) Coex-
pression conservation is plotted with respect to cell type specificity for mouse (top) and Arabidopsis (bottom). Lines are loess fits on mean values for
each species, +/− SD. Cell type specificity is negatively associated with conservation of gene neighborhoods. (C) Pearson correlation of within-species
average expression with neighborhood preservation. (Inset) Representative scatterplot showing the relationship between expression level and coexpres-
sion preservation within yeast. Because most genes show strong coexpression preservation (x-axis) there is a weak relationship between expression level
and coexpression preservation. (D) Human gene expression level is plotted with respect to coexpression conservation for six representative species. No
relationship is observed.

zebrafish, fruitfly, yeast and arabidopsis. We find no rela-
tionship between human expression levels and coexpression
conservation (mean Spearman correlation = 0.04, Figure
5D and Supplementary Note 1).

In summary, gene-gene relationships are less well con-
served among younger and more cell type-specific genes,
and this cannot be explained by their expression level
alone.

Conserved coexpression links ubiquitous genes to cellular di-
versity

Our compendium of networks includes one single-celled or-
ganism, the budding yeast Saccharomyces cerevisiae. To ex-

plore how these results might generalize to a species without
cell types, we performed a meta-analysis of yeast microarray
expression data (64), using bulk expression variance as an
analog for expression in all cell states since they are strongly
correlated (Supplementary Figure S4). Consistent with our
findings in plants and animals, we find that expression vari-
ability in yeast is predictive of coexpression conservation
(Figure 6A, mean AUROC = 0.77 +/− 0.04 SD).

Because variability occurs in the absence of cell type
variation in yeast (it may reflect temporal or state varia-
tion), we wondered whether we could find a similar effect
in multicellular organisms when holding cell type constant.
Our expectation is that cells of the same type may vary
by cell cycle phase, nascency, or activation state, for exam-
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Figure 6. Genes with conserved coexpression patterns are expressed in continuous gradients across cell types, suggesting an ancient mechanism of cell type
divergence. (A) Expression variance is associated with conservation of gene neighborhoods. (Top) Expression variance across > 200 yeast datasets predicts
coexpression conservation. TPR = true positive rate, FPR = false positive rate. ROC curves for all species were binned along x-axis, mean +/− SD is
plotted. (Bottom) Coexpression conservation is plotted with respect to within-cell type variance in mouse, with loess fits on mean values for each species.
(B) Across vs. within-cell type variance in mouse is plotted. Colors indicate local point density. The space can be broken into three regions: genes with
high-within and high-across variance are typically more ancient, those that are low/low are more recent, and markers have high-across and low-within cell
type variance. Due to their high conservation of coexpression patterns, high/high genes may have conserved functions vis-à-vis cell identity. (C) Examples
of continuous (top) vs. marker-like (bottom) expression in mouse (left) and Arabidopsis (right). MSC = mesenchymal stem cell, QC = quiescent center.
The conserved gene with high within- and across-cell type variance is more continuous across cell types, whereas the markers (high/low) are either on or
off. (D) Schematic illustrating the difference between marker-like and continuous expression across cell types. See Supplementary Figure S7 for additional
discussion.

ple. Strikingly, after calculating expression variation within
each cell type in Tabula Muris, we find that the most vari-
able genes have the most strongly conserved coexpression
patterns (Figure 6A). In other words, while their coexpres-
sion partners remain consistent, their expression levels vary
dramatically within and across cells. These properties sug-
gest that such genes contribute to aspects of cell identity
that require tightly coordinated signaling, like differences
in size or metabolic activity. As deeply conserved features,
they would differ between cell types by degree, rather than
being present or absent, meaning that cells of different types
would have overlapping expression distributions but with
different mean values or ‘set points’ (e.g. see Schematic,
Figure 6D and Supplementary Figure S7). These features

would be expected to generalize across kingdoms more than
poorly conserved marker genes (Figure 6B).

One example of a gene that might contribute to cell iden-
tity by dialing its expression up and down is Rpl12, a com-
ponent of the large ribosomal subunit 60S in mouse. This
gene is among the most variably expressed genes within and
across cell types (mean standardized rank within = 0.83,
across = 0.97) but its expression distribution across cell
types is continuous, with different cell types having distinct
mean levels of the gene and overlapping expression distribu-
tions (Figure 6C). Given that Rpl12 is a component of the
ribosome, we speculate that differences in protein synthe-
sis rate could contribute to differences in cell phenotypes.
Notably, we find a similar pattern of continuous expression
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when we look at an Arabidopsis ortholog of Rpl12 (Fig-
ure 6C). This pattern is in stark contrast to more typical
marker genes, which tend to have high variance across cell
types, and lower variance within cell types because they are
switch-like in their expression patterns. Two examples are
shown in Figure 6C: Cd19, which is exclusively expressed
by mouse B-cells and is conserved only among mammals
(mean standardized rank within = 0.55, across = 0.97); and
EXPA7, which is exclusive to Arabidopsis root trichoblasts
and is conserved only among eudicots (mean standardized
rank within = 0.77, across = 0.99).

In summary, our combined analysis of single-cell RNA-
seq and yeast expression variation shows that while cell
type- or tissue-specific marker genes are generally not well
conserved, genes with high expression variability are deeply
conserved at both a sequence level and in terms of their co-
expression patterns. These genes may contribute to contin-
uous aspects of cell transcriptional identity in both single-
celled and multicellular organisms.

DISCUSSION

By combining sequence-based orthology predictions with
robust estimates of gene coexpression neighborhoods, we
have developed a measure of gene conservation that can
be calculated between any pair of species. Our study is the
largest of its kind to date, making use of data from hun-
dreds of individual studies, and measuring the conservation
of gene-gene relationships across very long diverged species.
We find that coexpression conservation is associated with
phylogenetic distances, expectations of conservation based
on gene family size, and sequence similarity. Moreover, tak-
ing advantage of the recent explosion in single-cell data, we
identify commonalities between the forces that drive con-
servation in both single-celled and multi-cellular organisms.
The genes that vary most – both within cells of the same type
and across cells of different types or states – show deeply
conserved patterns of coexpression, suggesting their funda-
mental role in eukaryotic cell function and identity.

Previous research to investigate the changing gene ex-
pression landscape across species highlighted the relative
lack of conservation among tissue and cell type-specific
genes (9,12). Here, we confirm these previous findings, but
also extend them. Genes with cell type specific expression
have more poorly conserved coexpression patterns than
those that are expressed in cells of all types, as previously
described. Yet genes expressed in all cell types not only
have strongly conserved coexpression patterns, but they also
show differences in expression level across cell types. Vari-
ation in activity across cell types is likely what drives their
strong coexpression within networks.

What does this mean for cellular evolution and multicel-
lularity? We hypothesize that these genes work in tightly co-
ordinated modules to tune non-negotiable aspects of cel-
lular identity, like cell size, or metabolic rate, generating
diversity that allows cells to respond to varying environ-
ments. With these diverse populations established, evolu-
tion could then use novel genomic variation to mark cell
types and refine their organismal roles. Further work to ex-
plore this hypothesis is necessary, including additional anal-
yses of single-cell data from long diverged species. However,

we note that this will require targeted investigation, as typ-
ical single-cell analyses are designed to identify genes that
are strongly variable across cell types (i.e. markers) rather
than subtler continuous signals. Cell identity is known to
be broadly distributed across the transcriptome, and this
allows low-depth single-cell RNA-seq to find expected cell
clusters even when individual marker genes are not sampled
(65–67). Determining the relative contributions of switch-
like versus continuous expression to cell identity will be in-
formative for updating empirical and mechanistic models of
cell type.

This work is at the intersection of transcriptomics and
orthology prediction, and improvements in both will allow
for increasing precision of coexpression conservation. To
generate robust co-expression networks, we require a min-
imum of 20 independent datasets with at least 10 samples
each. Based on our current estimates of available data, we
expect that a modest number of species can be added on
an ongoing basis as these thresholds are met. The ability to
move substantially beyond that will require efforts to pro-
file the transcriptomes of a greater diversity of organisms,
similar to the goals of the Genome10K project for genome
sequences (68). However, a necessary consequence of using
bulk RNA-seq data from heterogenous samples is that net-
works are better powered for genes that are expressed in all
cells, and our results make it clear that tissue-specific net-
works (69) cannot overcome this as genes expressed in all
cell types will continue to dominate. Instead, future work
to develop cell-type specific coexpression networks (70), in-
cluding methods to map cell identities across distantly re-
lated species (71), and/or to selectively sample the tran-
scriptome for genes with lower expression (72), could be
routes forward. Regarding orthology, we find that our con-
servation measure is correlated with the number of algo-
rithms that predict the orthology relationship. Orthology
algorithms are notoriously difficult to benchmark given the
lack of gold-standard data (i.e. we lack genomes for the last
common ancestors of extant species (37)). Our results sug-
gest that a wisdom-of-the-crowds approach combined with
robust functional genomics data could improve on baseline
predictions (73). Functional genomics data is likely to be
particularly valuable for orthologs with low sequence simi-
larity.

Defining the regulatory mechanisms that allow for evolu-
tionary divergence is a central goal in biology. Our method
and data now provide a clear route forward for investigat-
ing these mechanisms with both breadth (across species)
and depth (genome-wide). We invite users to explore and re-
use our results through our webserver, CoCoBLAST (https:
//gillisweb.cshl.edu/CoCoBLAST/). Inspired by BLAST, it
uses Conserved Coexpression to find genes with the most
similar coexpression patterns across the tree of life.

MATERIALS & CORRESPONDENCE

Correspondence and material requests should be addressed
to Jesse Gillis.
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