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Abstract

Motivation: Drug combinations that simultaneously suppress multiple cancer driver signaling

pathways increase therapeutic options and may reduce drug resistance. We have developed a

computational systems biology tool, DrugComboExplorer, to identify driver signaling pathways

and predict synergistic drug combinations by integrating the knowledge embedded in vast

amounts of available pharmacogenomics and omics data.

Results: This tool generates driver signaling networks by processing DNA sequencing, gene copy

number, DNA methylation and RNA-seq data from individual cancer patients using an integrated

pipeline of algorithms, including bootstrap aggregating-based Markov random field, weighted co-

expression network analysis and supervised regulatory network learning. It uses a systems

pharmacology approach to infer the combinatorial drug efficacies and synergy mechanisms

through drug functional module-induced regulation of target expression analysis. Application of

our tool on diffuse large B-cell lymphoma and prostate cancer demonstrated how synergistic drug

combinations can be discovered to inhibit multiple driver signaling pathways. Compared with

existing computational approaches, DrugComboExplorer had higher prediction accuracy based on

in vitro experimental validation and probability concordance index. These results demonstrate that

our network-based drug efficacy screening approach can reliably prioritize synergistic drug combi-

nations for cancer and uncover potential mechanisms of drug synergy, warranting further studies

in individual cancer patients to derive personalized treatment plans.
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1 Introduction

Targeted cancer therapy has been developed as an effective way to

combat cancer (Green, 2004; Polyak and Garber, 2011), aiming to

inhibit or reverse the activation patterns of critical cancer signaling

pathways. However, dramatic initial positive response of many tar-

geted cancer therapies is often followed by development of drug re-

sistance. Pathway redundancies, feedback and crosstalk present in

cancer cells allow them to acquire this resistance, leading to treat-

ment failure (Bernards, 2012; Yamaguchi et al., 2014). Most inci-

dences of drug resistance arise from: (i) reactivation of the original

cancer driver pathways by gene mutation (Choi et al., 2010);

(ii) increased expression of drug-targeted genes (Poulikakos et al.,

2011; Shi et al., 2012) or their upstream and downstream genes

(Bivona et al., 2011; Little et al., 2011); or (iii) activation of bypass

pathways closely related to the original cancer driver pathways

(Engelman and Janne, 2008; Turke et al., 2010). Low prevalence of

druggable mutations often results in trials that mask efficacy in large

and unselected populations of patients. This highlights an unmet

need for more precision therapies (Chan and Hughes, 2014; Hirsh,

2015). No single cure has been found for any subset of metastatic

cancer. Combination therapy is among the most promising strategies

for improving cancer treatment, as it impedes cellular compensatory

mechanisms, which are often related to drug resistance.

Currently approved drug combinations are largely the result of

empirical clinical experience rather than rational design, and they

cover only a tiny fraction of the huge potential therapeutic space.

Reliable prediction of drug combinations for a specific cancer is

extremely challenging, however. Some supervised machine learning

models have been proposed to integrate the genomics profiles of

tumor and pharmacological profiles of drugs. For example, Preuer

et al. (2018) proposed a deep neural network model, DeepSynergy,

to predict effective drug combinations using the gene expression

data of 39 cancer cell lines and the chemical features of 38 anti-

cancer drugs. DeepSynergy showed an improvement of 7.2% over

other machine learning techniques such as support vector machine

and Elastic Nets. However, these methods request large number of

known synergistic drug combinations and they usually cannot pro-

vide an interpretation of potential mechanism of synergy of specific

drug combinations (black box). Pathway-based models with the

ability to discover the molecular mechanism of disease were then

proposed for drug combination prediction. For example,

Combinatorial Drug Assembler (CDA) (Lee et al., 2012) was devel-

oped to identify drug combinations whose affected signaling path-

ways overlap with disease-enriched signaling pathways and to select

signaling pathways based on gene set enrichment analysis of path-

ways using differentially expressed genes. Since tumor driver genes

are not well defined, CDA leads to biased selection of drug combina-

tions that do not inhibit cancer driver pathways. TIMMA (Tang

et al., 2013), another drug combination prediction approach, selects

combinations that target multiple survival pathways of a given can-

cer by integrating drug screening data and drug target interactions

into a target inhibition network framework. These survival path-

ways were constructed based on empirical selection, ignoring much

valuable information provided by genomics data, such as gene

mutations, of the disease under investigation. Furthermore, TIMMA

is not designed for scalability in searching for larger drug combin-

atory space due to its limitation of using single drug screening assay

data as an input. On the other hand, pharmacological data, such as

drug indications and side effects (Huang et al., 2014; Zhao et al.,

2011), have been used to predict effective drug combinations, illus-

trated by a number of synergistic drug combinations reported for

various diseases (Jia et al., 2009; Liu et al., 2010). These approaches

are not generalizable and lack experimental validation. In addition,

ordinary differential equations-based models have been used to en-

code a fixed pathway as a system to simulate the response of cancer

cells to drug combinations (Iadevaia et al., 2010; Nelander et al.,

2008). These approaches, however, ignore important gene or path-

way features, such as gene mutation status and pathway crosstalk

(Al-Lazikani et al., 2012), and reliable parameter estimation

becomes infeasible when the number of genes in the pathway

reaches tens or hundreds.

To fill the gap, we developed the DrugComboExplorer, a com-

putational systems biology tool that concurrently integrates pharma-

cogenomics profiles of 5585 drugs and bioactive compounds from

the NIH LINCS program (Library of Integrated Network-based

Cellular Signatures) and genomic profiles for specific cancer types

(i.e. signaling pathways, interactome and pharmacological data).

This tool adopts a data-driven strategy to uncover novel regulatory

signaling pathway mechanisms (i.e. driver signaling networks) by

integrating multi-omics data of cancer patients and performs large-

scale drug combination prediction (15 593 320 available drug com-

binations). We conducted validation experiments using cell viability

assays to evaluate the predictive power of DrugComboExplorer

with applications on subtypes of B-cell lymphoma and prostate can-

cer (PCa). We confirmed that DrugComboExplorer can reliably pri-

oritize potential drug combinations and identify cancer driver

pathways underlying the synergistic drug combinations.

2 Materials and methods

2.1 Overview of DrugComboExplorer
DrugComboExplorer aims to identify candidate drug combinations

targeting cancer driver signaling networks and consists of two compo-

nents: identification of the driver signaling networks (Fig. 1A) and

evaluation of the targeting effects of drug combinations on the driver

signaling networks (Fig. 1B). It employs an algorithm based on non-

parametric, bootstrapping-based simulated annealing (NPBSA) to

identify robust dysregulated signaling networks with high statistical

confidence by integrating DNA-seq, gene copy number, DNA methy-

lation and RNA-seq data of specific cancer patients with interactome

data (Fig. 1A). NPBSA explores sub-networks from individual driver

(seed) genes identified from the frequently mutated or copy number

amplified genes from DNA-seq and gene copy number data of cancer

patients. It grows the subnetwork by adding in the neighbor genes of

current network genes therein to increase a pre-defined network score

until an optimum score for the current subnetwork is achieved.

By applying NPBSA on the RNA-seq (or methylation) data, we will

generate transcriptome- (or methylation-)based driver networks.
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A co-expression network was generated based on RNA-seq data of

specific cancer patients by analyzing co-expression measures of each

gene pair. A gene regulation network was derived by integrating

RNA-seq data of cancer patients and transcription factor-target inter-

actions using a supervised regulatory network algorithm, SIRENE

(Mordelet and Vert, 2008). The dysregulated signaling networks

identified from the transcriptome and methylation profiles, the

co-expression network, and gene regulation network were then com-

bined into the driver signaling networks to predict drug combina-

tions. See Supplementary File S1 for details about the driver networks

identification approach.

Figure 1B shows synergistic drug combination prediction based

on pharmacogenomics data and the identified dysregulated driver

networks. First, we extracted the signatures of treatment transcrip-

tional responses (genomic profiling of cancer cell lines treated with

specific drugs or bioactive compounds from the LINCS project) on

each driver signaling network. We clustered those drugs into func-

tional clusters (modules) based on drug–drug similarities. Second,

we decomposed the signatures of each drug functional module

(a matrix) into a weight matrix and an effect matrix using the

Bayesian factor regression model (BFRM) (Bayarri et al., 2003;

Carvalho et al., 2008). Third, we predicted off-targets of drugs using

bipartite network projection on the drug–drug similarity network.

According to the weights of drug targets or off-targets in the weight

matrix, we extracted the targeted effects of each drug on all genes in

the driver signaling networks. Thus, we obtained a drug-induced

gene expression profile for each drug on each driver signaling net-

work. Fourth, drug combinations were ranked according to their

targeted effect scores by quantifying the collaborative targeted

effects (CTE) on the same driver signaling networks and the comple-

mentary targeted effects (CPTE) of the drug combination on differ-

ent driver signaling network modules using the drug-induced gene

expression profiles of the given drug combination. The sum of CTE

and CPTE of a drug combination represents the total synergistic

effects of that combination. Finally, we uncovered the potential syn-

ergistic mechanism of drug combinations by mapping drug pair-

affected targets and off-targets back onto the driver disease signaling

networks.

2.2 Drug off-target prediction based on drug–drug func-

tional network
We obtained the information on drug–drug similarities from the

STITCH database (Kuhn et al., 2012) and derived a drug–drug net-

work by linking two drugs with similarity larger than 0. Known

drug–target interactions were collected from DrugBank (Law et al.,

2014), therapeutic target database (Chen et al., 2002), and

compound-protein interactions from STITCH database with a confi-

dence score higher than 0.7. We developed a drug–target prediction

method derived from the recommendation algorithm (Zhou et al.,

2010) for the bipartite network as follows. Let D ¼ fd1; d2; . . . ;dmg
denote the drugs, T ¼ ft1; t2; . . . ; tqg their known targets and the

Fig. 1. The workflow of DrugComboExplorer includes two major components: (A) systematic overview of applying NPBSA on four different types of genomics

data to identify driver signaling pathways in cancer. There are five steps in this component, Step 1: to identify the seed (driver) genes from the frequently mutated

and copy number variation genes using the DNA-seq and copy number data of specific cancer patients; Step 2: to explore networks from the seed genes by inte-

grating the RNA-seq profiles and pathway knowledge from known pathway databases and generate a gene co-expression network and a gene regulatory net-

work using the RNA-seq profiles; Step 3: to explore networks from the seed genes by integrating the methylation profiles and pathway data; Step 4: to combine

the networks generated from the RNA-seq profiles together; Step 5: to combine the networks generated from the RNA-seq data and from the methylation data to-

gether. Herein, the color legend shows how the node color represents the fold change. (B) Identification of synergistic drug combinations and the underlying

mechanisms based on the pharmacogenomics data and the identified dysregulated driver networks. There are five steps in this component, Step 1: extraction of

the drug treated gene expression profiles with genes from the identified driver networks only from the NIH LINCS data; Step 2: to use a Bayesian factor regres-

sion approach to factorize the treatment profiles into weight matrices and effect matrices; Step 3: generation of the driver network signatures for each of the

drugs; Step 4: evaluation of the synergistic targeting effects of drug combinations on alternative driver signaling networks; Step 5: ranking of the drug combina-

tions according to their quantitative synergistic effects
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similarity matrix between the drugs. We linked the drug–target

interactions if a drug is associated with a target, and then formed a

bipartite graph G, which can be described as an adjacent matrix

A ¼ faijgq�m with aij ¼ 1, if ti is connected to dj; otherwise, aij ¼ 0.

A bipartite network projection technique was applied on the G

through a two-phase resource transfer within G, and this process

defined a transition matrix T from drug i to drug j and was defined

as: T ij ¼ 1
Cði;jÞ

Xq

l¼1

ailajl

kðxlÞ with Cði; jÞ ¼ kðtiÞ1�kkðtjÞk and kðtiÞ is the

degree of the ti node in the bipartite network; the recommendation

matrix R is computed as: R ¼ T �A where R describes the associ-

ation probability between the drugs and their targets. To apply the

drug–drug similarities for more precise prediction, we extended the

Cði; jÞ to be:

Cði; jÞ ¼ kðtiÞ1�kkðtjÞk=St

where

St ¼

Xq

l¼1

Xm
k¼1

ðailajkSdlkÞ

Xq

l¼1

Xm
k¼1

ailajk

2.3 Drug combination prediction based on correlation

analysis of the drug effects on driver signaling networks
2.3.1 Bayesian factor regression model for identifying

pharmacological profiles of drugs

BFRM (Bayarri et al., 2003; Carvalho et al., 2008) has been applied

to the prediction of drug sensitivity from the gene expression signa-

tures of the network-module. It introduces the following model

from Xi ¼ Aki þ eiði ¼ 1; 2; . . . ;mÞ to deconvolute the treatment

transcriptional response matrix into a series of underlying signa-

tures, where Xi is an n-dimensional vector of fold change (treatment

versus control) of drug i in the treatment response matrix; m is the

number of drugs and n is the number of genes that we get from all

driver signaling networks. A ¼ ðA1;A2; . . . ;AkÞ is a sparse n� k ma-

trix whose columns define the gene signatures El ; l ¼ 1; 2; . . . ; k,

and each numerical value Aj;l defines the weight of gene j in the col-

umn of gene signature El . e ¼ ðe1; e2; . . . ; emÞ reflects the measure-

ment error and the residual biological noise in the response data. In

addition, BFRM outputs a matrix q ¼ ðq1; q2; . . . ; qkÞ, which quan-

tifies the probability of how each gene is associated with each factor

ki. To address which cancer signaling networks are responsible for

the unknown pharmacologic mechanisms and to what extent they

are targeted, we identified signatures associated with the targeted

genes in the driver signaling networks. We defined a weight matrix

(targeted gene signatures), W (with Wij ¼ Aij if qij > c and Wij ¼ 0

if qij� c) and an effect matrix k ¼ ðk1; k2; . . . ; kmÞ with kk;i quanti-

fies the effect of drug i imposed on the gene signature, Ek (Fig. 1B).

2.3.2 Driver signaling networks based drug-induced gene expression

profiles

We defined a drug-induced gene expression profile on the derived

driver signaling networks using W and k. Let g ¼ ðg1; g2; . . . ; gmÞT

characterizes the overall effects of m drugs on k signatures. We

viewed the known drug–target interactions and predicted drug–

target interactions as physical drug–target interactions. We defined

the non-zero weights of the rows of the targets across signatures of

drug di as a targetable gene signature set ETi. For each targetable

gene signature t 2 ETi, we defined the product between Rt and the

effect score ki;t as the overall effect of drug di imposed on signature

t, gi;t ¼ Rt � ki;t, where Rt ¼
Xn

j¼1
Wj;t denotes the response of the

signature t to the drug di. For a gene signature t that cannot be tar-

geted by the drug di, i.e. the weights of the tarts of drug di across

the signature t are all 0, t 62 ETi, gi;t ¼ 0. Therefore, for each

driver signaling network mi, we obtained a drug-induced gene ex-

pression profile for the drug di, gmidi
¼ ðgg1midi

; gg2midi
; . . . ; ggkmidi

Þ,
fg1; g2; . . . ; gkg is the set of factors for the network mi.

2.3.3 Drug combination prediction based on driver signaling

networks

We quantified the synergistic effects of drug combinations using driver

signaling networks based drug-induced gene expression profiles. We

expect drug pairs targeting parallel or neighboring driver signaling net-

works and the crosstalk genes between driver signaling networks to

achieve complimentary effects on cancer cells. We defined a synergy

score, Synpathðdi; dj;mo;mhÞ, to quantify the CTE of the drug com-

bination (di and dj) on the same driver signaling networks and the

CPTE of the drug combination on different driver signaling networks:

Syn pathðdi; dj;mo;mhÞ ¼
2

pðp� 1ÞXp

o¼h

Xp

h¼1

 Xk

x¼1

g2
gxmodi

expð�Dfmh;mogÞ

Xk

x¼1

g2
gxmhdj

expð�Dfmo;mhgÞ
!

where p is the total number of driver signaling networks. For each

gene Gi in driver signaling network mo, we define DfGi;mhg as the

shortest distance from Gi to the network mh in the IHCSN.

Dfmo;mhg is the average shortest distance from genes in network

mo to network mh and Dfmo;mhg ¼ 1
No
ð1=NoÞ

XNo

i¼1
D Gi;mhf g

where No is the number of genes in network mo. In essence, the

combined synergy score prefers drug combinations targeting cross-

talk, hub nodes and with a compensatory targeting effect on the

driver signaling networks.

3 Results

3.1 Performance on dream drug combination prediction

challenge
We tested DrugComboExplorer using the NCI-Dream Drug

Combination Prediction Challenge dataset that consists of transcrip-

tomic profiles of OCI-LY3 B-lymphoma cells after treatment with

each of fourteen drugs. The goal was to predict the treatment effects

of pairwise combination of these 14 drugs (91 drug combinations

totally) using genomic profiles before and after treatment with each

drug. SSMG of 39 lymphoid neoplasm diffuse large B-cell lymph-

oma (DLBCL) patients from TCGA were identified by analyzing the

whole-exome sequencing (WES) data using Mutsig (Lawrence et al.,

2013) and the SCNVG of those DLBCL patients were detected by

analyzing the SNP data using GISTIC (Mermel et al., 2011). The

SSMG, SCNVG, and 24 key genes that have been reported highly

correlated with DLBCL were used as potential driver genes (600

genes in total, see Supplementary Information S1 for details) for

DLBCL. The overlapping genes between SSMG, SCNVG and

OMIM key genes are marked in Supplementary Information S1. We

applied NPBSA to RNA-seq profiles of 39 DLBCL samples and 33

normal DLBCL samples from TCGA, in which those 600 driver

genes were selected to identify networks by integrating RNA-seq
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profiles with IHSCN to obtain 242 driver signaling networks. Then,

we applied DrugComboExplorer to the gene expression profiles of

OCI-LY3 cells treated with 14 drugs and the 242 driver signaling

networks to prioritize the 91 drug combinations for DLBCL. The

ranking was evaluated against an experimentally assessed gold

standard generated by evaluating drug combination activity in OCI-

LY3 cell viability assay. A modified version of the probability con-

cordance index (PCI) (Harrell Frank et al., 1996) with its corre-

sponding P-value was used to quantify the concordance between the

ranking of compound pairs in the gold standard. See also Bansal

et al. (2014) for details about how to compute the PCI between two

ranked lists. Figure 2 shows that DrugComboExplorer outperforms

Target Inhibition inference using Maximization and Minimization

Averaging (TIMMA) (Tang et al., 2013), DIGRE [the best perform-

ing method included in the DREAM report (Yang et al., 2015)],

SynGen (Bansal et al., 2014) and PCDE (Zhao et al., 2014) in terms

of PCI (Fig. 2A) and the corresponding estimated P-value (Fig. 2B),

which quantified the robustness of the PCI results. See

Supplementary File S1 for details about how to estimate those P-val-

ues. Supplementary Table S1 lists the top 25 drug combinations pre-

dicted by DrugComboExplorer.

3.2 Testing on AR-positive and AR-negative prostate

adenocarcinoma
We evaluated the prediction power of DrugComboExplorer on

LNCaP and PC3 cells, two proxies of AR-positive and AR-negative

prostate cancer patients. We collected the available RNA-seq data

(Level 3) of LNCaP and PC3 cell lines from the gene expression

omnibus. RNA-seq data from five LNCaP cell line samples

(GSM1328163, GSM1329614, GSM1573658, GSM1573659 and

GSM1573660) were used to retrieve all RNA-seq data of 498 PCa

from TCGA. We computed the Pearson similarity among those 503

samples by combining the RNA-seq data of LNCaP and PC3 cells.

Using the AP clustering algorithm, 237 patients were clustered to-

gether with those five LNCaP cell lines. The WES data (Level 3), the

SNP data (Level 3) and the methylation data (Level 3) of those 237

PCa patients were downloaded from the TCGA data portal. SSMG

were identified from the WES data using Mutsig (Lawrence et al.,

2013) and SCNVG were detected from the SNP data using GISTIC

(Mermel et al., 2011).

We combined SSMG and SCNVG with the PCa oncogenes from

OMIM (Hamosh et al., 2005) as cancer driver genes (991 total genes

and the overlapping genes are marked in Supplementary Information

S1) of those 237 PCa patients. Next, we investigated driver LNCaP-

represented PCa signaling networks by applying NPBSA to the RNA-

seq data of those 237 PCa patient samples and 52 normal prostate sam-

ples from TCGA, the driver genes, and IHSCN. 991 driver genes served

as initial driver networks and NPBSA grew each network by adding

genes (from IHSCN) that increased its network score. 923

transcriptome-based driver signaling networks for LNCaP-represented

PCa were identified by NPBSA. Then, we applied NPBSA on the

methylation data of the same PCa patients to derive methylation-based

driver signaling networks, using the same driver genes. 909

methylation-based driver signaling networks were obtained. We merged

the transcriptome-based and methylation-based driver signaling

Fig. 2. (A) Comparison results of different drug combination prediction results in terms of probability concordance index (PCI) on NCI-dream drug combination

prediction challenge dataset. (B) The estimated P-value results of different drug combination prediction results for PCI

Fig. 3. Comparison results on the number of top ranked predictions of drug

combinations which are synergistic drug combos in vitro on LNCaP and PC3

cells
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networks derived from the same driver genes to obtain 964 total driver

signaling networks. Due to overlapping genes among the 964 driver sig-

naling networks, we used the AP clustering algorithm (Frey and Dueck,

2007) to cluster them into 278 driver signaling networks.

A co-expression network and a gene regulation network were

generated, respectively, by applying the aggregated co-expression al-

gorithm (see Section 2) and the SINERE algorithm on the RNA-seq

data of those 237 LNCaP-represented PCa patients. These two net-

works were combined into 278 driver LNCaP-represented PCa sig-

naling networks. If two genes of an edge exist in one of the 278

driver LNCaP-represented PCa signaling networks, this edge will be

added to that driver signaling network. Finally, 278 driver LNCaP-

represented PCa signaling networks with 6767 genes were obtained.

RNA-seq data from five PC3 cell line samples (GSM869036,

GSM869042, GSM1678010, GSM1563053 and GSM1563054)

were used to query all RNA-seq data of 498 PCa patients from

TCGA and 118 metastatic castration-resistant prostate cancer

patients from dbGaP database (phs000909.v.p1) (Beltran et al.,

2016) to obtain the samples with similar gene expression patterns.

One hundred TCGA patients were clustered together with those five

PC3 cell lines. We combined SSMG and SCNVG with the oncogenes

of PCa from the OMIM database (Hamosh et al., 2005) as driver

genes (995 total genes and the overlapping genes are marked in

Supplementary Information S1) of those 100 PCa patients. We iden-

tified 901 transcriptome-based and 703 methylation-based driver

signaling networks for PC3-represented PCa. We merged the

transcriptome-based and methylation-based driver signaling net-

works from the same driver genes to obtain 933 total driver signal-

ing networks. We used the AP clustering algorithm to cluster them

into 276 driver signaling networks. The co-expression network and

the gene regulation network were combined into driver PC3-

represented PCa signaling networks using the same strategy as with

LNCaP to derive 276 driver PC3-represented PCa signaling net-

works with 6738 genes.

We then applied DrugComboExplorer to the 276 PC3-

represented PCa driver signaling networks and gene expression pro-

files of PC3 cells treated with 3405 drugs or bioactive compounds

from the LINCS project to predict effective drug combinations. We

extracted the drug–drug similarity network from STITCH and clus-

tered the drugs into 34 drug clusters using the AP algorithm (Frey and

Dueck, 2007). Then, we extracted the transcriptional response

matrixes for drugs within each cluster and decomposed them into

weight matrixes and effect matrixes using BFRM. We extracted the

drug-induced gene expression profiles on 276 PC3-represented PCa

driver signaling networks using the weight matrixes and effect

matrixes. By quantifying the CTE on the same driver PC3-represented

PCa signaling networks and CPTE on different PC3-represented PCa

driver signaling networks between the drug-induced gene expression

profiles of combinations, the synergistic effects of a given drug com-

bination are quantified as the summation of CTE and CPTE, and

drug combinations with high synergistic effects were predicted to be

the promising candidates. By applying DrugComboExplorer to the

LNCaP-represented PCa driver signaling networks and gene expres-

sion data of LNCaP cell lines treated with 3011 drugs from the

LINCS project, the effective drug combinations for LNCaP-

represented PCa patients were predicted.

For PCa, our collaborating oncologists suggested ‘BORTEZOMIB’,

‘DASATINIB’, ‘DOCETAXEL’, ‘DOXORUBICIN’, ‘VINCRISTINE’

and ‘VORINOSTAT’ as anchor drugs. We tested those six drugs indi-

vidually on LNCaP and PC3 cell viability and obtained sigmoid growth

inhibition curves. To validate our drug combination predictions for

LNCaP and PC3-represented PCa, the six base drugs and another 50

empirically selected drugs (each with 10 different doses, 4 replicates)

were tested through cell viability assays (for details about in vitro drug

combination screening, see Supplementary File S1, which also includes

all the Supplementary figures and tables). The synergism or the antagon-

ism of drug combinations was quantified by the synergy index (Knol

et al., 2011). We used the concordance index between the predicted

rank and the cell killing rank (ranked by synergy index) in the cell via-

bility assays to judge the quality of the prediction, as well as the number

of top predicted drug combinations with synergistic effects in vitro.

We compared the predicted results with TIMMA (Tang et al.,

2013) and random combination prediction (RCM), i.e. randomly

picking drugs from the available 5585 drug candidates to combine

with those six designated drugs. Among the top 50 drug combina-

tions predicted by DrugComboExplorer for LNCaP, 27 were identi-

fied as synergistic drug combinations in vitro with synergy index

larger than 2.0, while the number was 19 in TIMMA and 4 in RCM

among their 50 top predicted drug combinations (Fig. 3).

Supplementary Table S2 lists those 27 drug combinations, their syn-

ergy scores predicted by DrugComboExplorer, and their synergy

index. Figure 4A shows the comparison results in LNCaP in terms

of concordance index results between DrugComboExplorer,

TIMMA and RCM. For PC3 cells, among the 25 top-ranked drug

combos by DrugComboExplorer, 6 were found to be synergistic

in vitro, while the number was 2 in TIMMA, and 1 in RCM among

their 25 top predicted drug combinations (Fig. 3). Supplementary

Table S3 lists those six drug combinations. Figure 4B shows the

comparison results in PC3 in terms of concordance index results

among DrugComboExplorer, TIMMA and RCM. The ranks pre-

dicted by DrugComboExplorer were more consistent with in vitro

rank than TIMMA and RCM. The prediction results on LNCaP and

PC3 showed that DrugComboExplorer significantly outperforms

TIMMA and RCM.

3.3 Mechanism of synergistic drug combinations
The dose response curves of elesclomol plus vincristine, elesclomol

plus docetaxel, elesclomol plus doxorubicin are given in

Supplementary Figure S1. These drug combinations showed syner-

gistic effects on PC3 cell line and elesclomol in combination with

docetaxel has been investigated in a clinical trial for prostate cancer

(ClinicalTrials.gov ID: NCT00808418). Elesclomol plus vincristine

showed higher synergistic effects on PC3 cells than elesclomol plus

docetaxel. Supplementary Figure S2 shows the whole driver PC3-

represented PCa signaling network (276 driver PC3-represented PCa

signaling networks were merged together); the potential targets of

elesclomol and vincristine are marked as big nodes. Green, yellow

and red represent the reduced expression, non-significant differential

expression and increased expression genes, respectively. Figure 5

shows the significantly mutated genes with big nodes in the driver

PC3-represented PCa signaling network. We found elesclomol and

vincristine combination increased the expression of certain genes,

such as TUBB2A, CTNND2, P4HB, CDK3 and NEK2, and reduced

the expression of others, such as FHL2, which is related to the an-

drogen receptor signaling pathway, ETS1, KRT15 and ITGA3. A

mutated and downregulated gene SELP and its related IL-8 signaling

are also affected by this drug combination. The top enriched signal-

ing pathways of the upregulated and downregulated genes with the

PC3-derived signaling network are the ERK signaling, mTOR sig-

naling, NF-kB signaling and PI3K/AKT signaling (Supplementary

Table S4).

Supplementary Figure S3 shows the whole driver LNCaP-

represented PCa signaling network (278 driver LNCaP-represented
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PCa signaling networks were merged together); the potential targets

of mepacrine and doxorubicin are marked as big nodes.

Supplementary Figure S4 shows the significantly mutated genes in

the whole driver LNCaP-represented PCa signaling network. We

found this drug combination affects certain upregulated genes, such

as MMP9, SPP1, THBS2 and GDF15, and downregulated genes,

such as FHL2, FGF7, VAV3, SERPINB5 and ATF3. Interestingly,

MMP9 and FGF7 were also mutated genes and have been reported

to be associated with metastatic prostate cancer invasion (Aalinkeel,

2011; London et al., 2003). The top enriched signaling pathways of

the up- and down-regulated genes with the LNCaP-derived signaling

network were ILK signaling, IL-8 signaling, VEGF signaling, ERK/

MAPK signaling and PTEN signaling pathways (Supplementary

Table S5). Interestingly, elescolmol and vincristine did not show

synergistic effects on LNCaP cells in vitro, while mepacrine and

doxorubicin showed an antagonistic effect on PC3 cells in vitro.

These results suggest crosstalk commonly exists between cancer

survival pathways and that DrugComboExplorer can be used to un-

cover the underlying mechanism of synergistic action of drug

combinations.

4 Discussion

Repositioning FDA-approved or investigational drugs in combin-

ation for specific subtypes of cancer presents an attractive strategy

to speed drug discovery. Additionally, it is believed that drug combi-

nations can achieve greater efficacy than the sum of their constituent

parts, as the complexity of multiple regulatory pathways is a

Fig. 4. (A) Comparison results of the consistency between drug combination prediction results and the in vitro drug combination screening assay results on

LNCaP cells; (B) comparison results of the consistency between drug combination prediction results and the in vitro drug combination screening assay results on

PC3 cells

Fig. 5. The whole driver PC3-represented PCa signaling pathway. Big nodes are the targets of synergistic drug combo, Elesclomol and Vincristine. The green

nodes and red nodes are down and up regulated genes, respectively, and the yellow nodes are genes with non-significant differential expressions
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principal barrier to innovative cancer therapy (Podolsky and

Greene, 2011). Crosstalk between effector signaling pathways is an-

other critical aspect of tumor signaling transduction pathways that

allows cancer cells to survive and acquire resistance to targeted ther-

apy and personalized treatment, rendering the given treatment strat-

egy ineffective. Optimal drug combinations targeting a cancer

patient’s alternative driver signaling networks, especially the cross-

talk between networks, is predicted to better combat resistance pro-

gression encountered in chemotherapy or targeted therapy.

We developed DrugComboExplorer, a novel computational sys-

tems biology tool from the concept of using networks as a biomark-

er to predict synergistic drug combinations by evaluating

combinatorial drug-induced targeting effects on alternative and

complementary driver signaling pathways. Our working principle is

that synergistic drug combinations should have similar targeted

effects on the same signaling pathways and CPTE on parallel or al-

ternative signaling pathways.

We first employed the NPBSA algorithm to concurrently analyze

multi-genomic profiling of certain subtypes of cancers for the identi-

fication of robust driver signaling networks with high statistical con-

fidence level. There are three advantages here. First, shifting from

identification of driver oncogene-markers to driver signaling

network-markers helps us to interpret heterogeneous and noisy gen-

omic mutation profiles. Second, driver signaling pathways contain-

ing gene mutations and changes in DNA methylation, gene copy

number and mRNA expression levels are likely to play important

roles in tumor progression. Third, this overcomes the deficiency of

analyzing only a specific genomic space and increases the confidence

of our results. For rare cancers such as osteosarcoma or medullo-

blastoma, this novel bootstrapping strategy provides an effective

way to estimate the robustness of identified driver disease signaling

networks under the constraints of limited sample size.

Next, we believe drugs with similar modes of action will induce

similar perturbation patterns on gene expression. We clustered the

drugs that were used on a specific cancer cell line into drug functional

modules. We decomposed the transcriptional responses of each drug

functional module into a weight matrix and an effect matrix. We

extracted the drug-induced effect profile of each drug on those identi-

fied driver signaling pathways according to these two matrixes. After

quantifying CTE and CPTE on driver signaling networks for a drug

combination, the synergistic effects of the drug combination are quan-

tified as the summation of CTE and CPTE. Drug combinations that

target parallel or neighboring driver signaling networks, hub nodes

and the crosstalk genes are hypothesized to have high synergy.

Mapping drug targets and off-targets back onto the driver signal-

ing networks can reveal the potential mechanisms of action of drugs’

synergistic effects. DrugComboExplorer provides insight regarding

which driver signaling pathways that a specific drug combination

should target. In this study, we used the genomics data of a specific

cell line as a proxy for a specific cancer patient. Predicted drug com-

binations were then experimentally validated on this cell line.

DrugComboExplorer could also be applied for a specific cancer pa-

tient to suggest personalized drug combinations and thus open up a

vista to aid clinical researchers and drug developers in deriving more

efficient treatment plans for individual patients. We are investigating

this option as on-going research.
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