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Simple Summary: Bactocera dorsalis is an insect pest that causes substantial losses to fruit crops.
It can be potentially controlled by the parasitoid wasp, Spalangia endius Walker (Hymenoptera:
Pteromalidae). S. endius is also used to control Musca domestica and is commercially produced. We
studied the parasitism capacity of S. endius as a pupal parasite of Bactocera dorsalis after switching
hosts. We mass-reared S. endius for more than 50 generations on M. domestica, and then allowed
them to parasitize B. dorsalis to study the parasitism capacity of S. endius. More M. domestica were
parasitized than B. dorsalis at different host densities. The S. endius colony, which was reared on
M. domestica can be used to control B. dorsalis at a low density of B. dorsalis. The parasitism capacity of
S. endius could be improved. The result showed that parasitoid-pest ratio should be 1:25 in order to
maintain a relatively stable parasitism rate for controlling B. dorsalis. The rate of S. endius parasitizing
B. dorsalis was decreased by parasitoid age. These results will help to optimize the use of S. endius,
reared on M. domestica, for control of B. dorsalis.

Abstract: We studied the parasitism capacity of Spalangia endius as a pupal parasite of Bactocera dorsalis
after switching hosts. We used pupae of B. dorsalis and M. domestica as the hosts and studied par-
asitism by S. endius in the laboratory. The parasitism capacities were compared at different host
densities and different parasitoid ages. The two functional responses of S. endius fitted a Holling
Type II equation. More M. domestica were parasitized than B. dorsalis at all the densities. The ability
of S. endius to control M. domestica was α/Th (parasitism capacity) = 32.1950, which was much
stronger than that of control B. dorsalis, which was α/Th = 4.7380. The parasitism rate of wasps
that had parasitized B. dorsalis had decreased by the emergence time of parasitoids. These results
suggest that the parasitoid-pest ratio should be 1:25 to maintain a relatively stable parasitism rate for
control of B. dorsalis. The S. endius colony reared on M. domestica successfully controlled a low-density
population of B. dorsalis in the lab. We provide evidence suggesting that the parasitism capacity of
S. endius needs to be improved.

Keywords: parasitoids; functional response; switching host; biological control; parasitoid age

1. Introduction

Bactrocera dorsalis Hendel (Diptera: Tephritidae) is a worldwide pest of fruit, causing
great economic loss [1,2]. This species is mainly controlled by the use of insecticides.
However, insecticides are often ineffective because females oviposit, and larvae develop,
within fruits where they are protected. Insecticide application as a primary method for
B. dorsalis control is also compromised by insecticide resistance [3], and insecticides have
detrimental effects on humans, animals, and the environment [4]. Male annihilation,
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attractant sprays, and bagging have been studied as components of integrated management
of B. dorsalis and other fruit flies, but male annihilation and attractant sprays were not
satisfactory, they can only be used to trap for killing males [5], and fruit bagging is expensive
and labor-intensive, usually used for large fruits or fruits with high economic value [6].
Simple and effective strategies for B. dorsalis control are needed.

Biological control helps reduce B. dorsalis populations and is more environmentally
friendly than many other methods [7]. Many wasp species parasitize B. dorsalis eggs or
larvae. Good control has previously been demonstrated using parasitic wasps to con-
trol B. dorsalis. Fopius arisanus (Sonan), Diachasmimorpha longicaudata (Ashmead), Fopius
vandenboschi (Fullaway), and Psyttalia incisi (Silvestri) have been used to control B. dor-
salis in Hawaii from 1951 to the present [8–11]. Biosteres arisanus (Sonan) was effective at
colonizing fruit fly hosts when fly densities and fruit abundance were relatively low in
guava orchards [12]. D. longicaudata was introduced in Taiwan in 1985 and was an effective
parasitoid [11]. However, there are few wasp species that can parasitize B. dorsalis pupae.
Hence, it is important to develop the use of a new parasitoid in the pupal stage to control
B. dorsalis.

Spalangia endius Walker is a pupal parasitoid of several dipteran species. These
include B. dorsalis, Bactrocera correcta (Bezzi), Zaprionus indianus Gupta, and Bactrocera
cucurbitae [7,13–15]. S. endius was reared on B. dorsalis for several generations and retained
parasitic ability on B. dorsalis [16]. Zhang et al. [17,18] indicated that each parasitoid could
parasitize 31.55 pupae of B. dorsalis within 24 h at 26 ◦C, RH 70%, h L:D = 14:10, and the
longevity of S. endius was about 10.3 d when reared on B. dorsalis. S. endius can, therefore,
be used for the biocontrol of B. dorsalis. B. dorsalis larvae are reared on a banana and
maize-based artificial diet [19]. These take much time to prepare the artificial diet, and will
increase the cost of mass production of S. endius. Therefore, we choose to rear S. endius on
Musca domestica.

Musca domestica L. (Diptera: Muscidae) is an important pest of animal and agriculture
industries. It causes medical risks for humans by spreading many diseases near livestock
farms [20]. There are many commercially available filth fly parasitoids used against
M. domestica. S. endius is commonly used against M. domestica in the USA [21]. M. domestica
larvae are fed on a wet wheat-based artificial diet, it is more easily commercially reared on
artificial diets than B. dorsalis, and S. endius can be reared on M. domestica. We conducted
mass rearing of S. endius using M. domestica, then, we used the parasitoid to control
B. dorsalis. However, the parasitism rate may decrease after continuous mass rearing of
parasitoids on a substitutive host. For example, the searching and parasitism of Scleroderma
sichuanensis Xiao decreased when S. sichuanensis was reared, long term, on Tenebrio molitor
L. as a substitutive host [22]. Therefore, we studied the parasitism rate to estimate the
parasitism capacity of S. endius after switching hosts to confirm whether M. domestica was a
suitable host to rear S. endius for controlling B. dorsalis.

In addition, host density is reported to affect the performance of a parasitoid [23]. The
functional response of a parasitoid can be inversely or positively host-density-dependent,
or independent from host density [24]. Type I functional responses result in density-
independent host parasitizing, type II in a negatively density-dependent response where
with increasing host density a decreasing percentage of host is parasitized, and type III
in a positively density-dependent response, where, over a certain range of increasing
host densities, an increasing percentage of host is parasitized [25]. The type of functional
response is an essential factor in the selection of efficient biological control agents, how a
parasitoid responds to an increasing host population can determine the success of biological
control [26]. Parasitism is usually affected by parasitoid age. For instance, two days old
parasitoid Telenomus remus parasitized the maximum number of eggs in the different hosts,
i.e., Corcyra cephalonica, Helicoverpa armigera, Spodoptera litura, and S. exigua [27]. 1-day-old
Trichogramma cacoeciae Marchal produced fewer parasitized eggs than 2, 3, and 4-day-old
females when parasitized Lobesia botrana Denis [28]. The optimum age for Ooencyrtus mirus
parasitized on Bagrada hilaris (Burmeister) was 3–10 d [29]. The parasitism rate was higher
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in older (5 to 10 d) than younger (1 to 4 d) adults of Telenomus podisi when parasitizing
Euschistus heros (Fabricius) or Dichelops melacanthus (Dallas) [30]. In this paper, we described
the results of the functional response of S. endius on two hosts at different densities and
the parasitism of S. endius on B. dorsalis at different parasitoid ages. The data will help
determine how to use S. endius, mass-reared on M. domestica, as a biocontrol agent to
manage B. dorsalis populations.

2. Materials and Methods

Flies and Parasitoids—The B. dorsalis strain originated from a population collected
at Guangzhou, China. About 600 flies were housed in a screen cage (50 × 50 × 30 cm)
and supplied with water, sugar, and yeast extract. Larvae were reared on a banana and
maize-based artificial diet [19].

The M. domestica strain used had been reared in the laboratory for five years. Adults
were housed in a screen cage (50 × 50 × 30 cm) and supplied with water, sugar, and
milk powder. Larvae were fed on a wet wheat-based artificial diet in plastic containers
(57 × 37 × 9 cm).

A laboratory population of S. endius was primarily obtained from B. dorsalis infest-
ing guava in Guangzhou. The S. endius colony was maintained on M. domestica pu-
pae up to 50 generations (more than 3 years). The S. endius colony (about 100 pairs of
zero-to-10-d-old) was placed inside the oviposition cages (50 × 50 × 30 cm) provided with
water and honey.

All experiments were conducted under the same laboratory conditions controlled at
26 ◦C ± 2 ◦C under a 14:10 h (L:D) photoperiod and 70% ± 10% relative humidity (RH).

Functional response experiment—In this experiment, according to the parasitic num-
ber of parasitoids in the pre-experiment, 5, 10, 15, 20, 25, or 30 one- to two-d-old B. dorsalis
or M. domestica pupae were placed in plastic cups (7 cm diam. × 10 cm high). One 24-h-old
mated female parasitoid was placed in each cup for 24 h and provided with cotton wool
saturated with 10% honey water as food. After exposure to the parasitoid, the pupae from
each treatment were covered with humid sand until emergence. The cup was covered with
80-mesh nylon and was examined on successive days for parasitoid emergence after 10 d.
Ten replicates were set up for each host density. The number of emerging adult parasitoids
was recorded. Unhatched pupae were dissected under a stereomicroscope to examine
whether they were parasitized.

Effect of parasitoid age on parasitization—Based on the emergence time, wasps were
divided into six age levels: 1 d old, 2 d old, 3 d old, 4 d old, 5 d old, and 6 d old (the 1-d-old
wasps had emerged within one day, etc.). Twenty 1- to 2-day-old B. dorsalis or M. domestica
pupae were placed in a glass tube (2 cm diam. × 10 cm high). Ten 24-h-old fertilized female
parasitoids were placed into a tube with B. dorsalis or M. domestica pupae for 24 h. Then, the
pupae from each tube were transferred into a cup (7 cm diam. × 10 cm high), and covered
with wet sand (10% water) until emergence. They were examined on successive days for
the emergence of parasitoids after 10 d. Each tube and cup was covered with an 80-mesh
screen. Thirty replicates were established at each wasp age. The number of emerged adult
parasitoids was recorded. The unhatched pupae were dissected under a stereomicroscope
to examine whether they were parasitized.

Data analysis—The functional response experiments were analyzed in two steps [31].
First, a logistic regression of the proportion of parasitized hosts (Ne) vs. the initial number
of hosts (N0) was used to determine the shape of the functional response. The polynomial
function was fitted as follows:

Ne/N0 = exp(P0 + P1N0 + P2N0
2 +P3N0

3)/[1+exp(P0 + P1N0 + P2N0
2 +P3N0

3)] (1)

where Ne is the number of parasitized pupae, N0 is the initial number of host pupae, and
P0, P1, P2, and P3 are the intercept, linear, quadratic, and cubic coefficients, respectively.
The type of functional response was determined by fitting data to the model (1). A sign
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of P1 is negative, and the functional response is type II. A sign of P1 is positive and P2 is
negative, and the functional response is type III [31].

For the next step of the analysis, the handling time and the attack rate coefficients of a
type II response were estimated using the random parasitoid equation:

Ne = N0{1−exp[α(ThNe−T)]} (2)

where Ne is the number of hosts parasitized, N0 is the initial number of hosts, Th is the
handling time, and T is the total time available for the parasitoid (1 d).

The percentage of parasitism of S. endius was estimated based on Equation (3):

Parasitism percentage (%) = (Np/Nt)*100 (3)

where Np is the number of parasitized pupae, and Nt is the total number of host pupae in
one treatment (=20 here).

The percentage of emergence of S. endius was estimated based on Equation (4):

Emergence percentage (%) = (Ne/Np)*100 (4)

where Ne is the number of emerging parasitoids, and Np is the number of parasitized pupae.
The data were analyzed using the SAS V9.0 software (SAS Institute Inc., Cary, NC,

USA). The NLIN procedure in SAS was used to estimate the attack rate (α) and handling
time (Th) parameters. Significant differences among different treatments were determined
by one-way ANOVA followed by Tukey’s test (p = 0.05). The effects of parasitoid ages on
parasitization were analyzed by regression analysis (SAS 2007).

3. Results
3.1. Functional Response

Based upon the logistic regression (Table 1), both linear coefficients (P1) were negative
and quadratic coefficients (P2) were positive. This suggested that the functional response of
S. endius parasitizing B. dorsalis or M. domestica was type II. The attack rate (α) of B. dorsalis
was 0.6908, which was lower than that of M. domestica (1.0399) (Table 2). The handling
time (Th) of B. dorsalis was 0.1458 d, which was much longer than that of M. domestica
(0.0323 d). The ability of S. endius to control M. domestica was α/Th = 32.1950, which was
much stronger than the ability to control B. dorsalis (α/Th = 4.7380). These data indicated
that S. endius had a better effect in parasitized M. domestica than in B. dorsalis.

Table 1. Maximum likelihood analysis of the functional response for the proportion of different hosts
parasitized by S. endius.

Host Species Parameters Estimate (±SE) χ2 p

B. dorsalis

P0 2.9038 ± 0.9703 8.96 0.0028
P1 −0.7547 ± 0.2003 14.19 0.0002
P2 0.0448 ± 0.0121 13.67 0.0002
P3 −0.00084 ± 0.000221 14.30 0.0002

M. domestica

P0 2.3848 ± 0.8892 7.19 0.0073
P1 −0.4192 ± 0.1733 5.85 0.0156
P2 0.0308 ± 0.0101 9.32 0.0023
P3 −0.00067 ± 0.000179 13.99 0.0002

Values are presented as mean ± SE.

These results showed that the numbers of B. dorsalis and M. domestica parasitized by
S. endius increased until a certain density, and thereafter, decreased as the density increased.
At the same host densities, S. endius parasitized more pupae of M. domestica than those
of B. dorsalis (Figure 1). In the low-level host densities (5 and 10), the number S. endius
parasitized pupae of M. domestica and B. dorsalis was not significantly different. When the
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host densities exceeded 15, S. endius parasitized significantly more pupae of M. domestica
than of B. dorsalis.

Table 2. Estimates of the functional response parameters of S. endius to pupae of B. dorsalis and
M. domestica.

Host Species α Th α/Th r2

B. dorsalis 0.6908 ± 0.5692 0.1458 ± 0.0657 4.7380 0.93
M. domestica 1.0399 ± 0.4275 0.0323 ± 0.0182 32.1950 0.97

Values are presented as mean ± SE. The values in parentheses represent 95% confidence intervals. α, attack rate;
Th, handling time; α/Th, parasitism capacity.
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3.2. Effect of Parasitoid Ages on Parasitization

The parasitism ability of S. endius at different ages varied (Figure 2). The parasitism
rates of wasps decreased gradually during the first 3 d after emergence (F = 34.488, p < 0.01).
The rate of parasitism (61.8%) and emergence of wasp from parasitized B. dorsalis (82.7%)
(F = 15.311, p = 0.017) were highest on the first day after emergence, and these values were
significantly different from the rates on the third to the sixth day.
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4. Discussion

The parasitism capacity of S. endius as a pupal parasite of B. dorsalis after switching
hosts has been studied. Functional response studies showed that the numbers of B. dorsalis
and M. domestica parasitized by S. endius initially increased but thereafter, decreased as the
density increased (Figure 1). The results showed that the data from two treatments could fit
a type II functional response curve statistically. This curve is most common for parasitoids
and features a parasitism rate that decreases exponentially as host density increases [32,33].
Van Lenteren et al. [25] suggested that natural enemies with type II functional response
could be used in inundative biological control. When parasitoids with type II response
are applied in biological control systems, a high natural enemy to pest ratio is necessary
to achieve effective pest suppression [34,35]. S. endius parasitized 6.5 B. dorsalis pupae
when the host density was 25, and this was the highest number of parasitized hosts. We
suggest that the parasitoid-pest ratio should be 1:25 in order to maintain a relatively stable
parasitism rate in controlling B. dorsalis. It is necessary to determine the number of wasps
before field release to achieve the best control efficiency.

The S. endius colony in this study was maintained on pupae of M. domestica, and
then used to parasitize B. dorsalis. In the low-level host densities (5 and 10), the number
S. endius parasitized pupae of M. domestica and B. dorsalis was not significantly different
(Figure 1). We suggest that when the B. dorsalis density is low, the parasitoid-pest ratio
should be greater than 1:10, we can use S. endius reared on M. domestica to control B. dorsalis.
However, the use of the same hosts to rear parasitoids for successive generations under a
constant temperature may result in degeneration of the wasps and reduced ability to attack
the target host [36]. These problems are well-known in artificial breeding of insects, for
example, the breeding effect decreased after several generations in rearing Sclerodema guani
Xiao by using the pupae of Antheraea pemyi [37]. The main reasons include degeneration of
genetic factors. Moreover, some insect species require specific environmental conditions to
maintain their health [38]. The attack rate of S. endius parasitizing B. dorsalis was estimated
to be 0.6908 ± 0.5692. It was similar to that of Spalangia longepetiolata (Boucek), which
was 0.6526 [39]. The handling time of S. endius parasitized B. dorsalis was estimated to be
0.1458 ± 0.0657 d, which was longer than that of S. longepetiolata (0.0571 d) [39]. The results
showed more M. domestica were parasitized than B. dorsalis at all densities. The ability of
S. endius to control B. dorsalis was α/Th = 4.7380, which was much less than that of the
ability to control M. domestica, which was α/Th = 32.1950. These results suggested that
M. domestica is an ideal substitute host for mass rearing S. endius. Meanwhile, the parasitism
capacity of S. endius could be improved using population rejuvenation techniques for the
reproduction of S. endius in B. dorsalis, such as nutritional changes, crossbreeding with wild
populations, or collecting the host in the field to revitalize the wasps.

In this study, the parasitism rates of wasps parasitizing B. dorsalis decreased grad-
ually after emergence, from 61.8% to 28.8%, which was less than the rates reported by
Zheng et al. [16]. The rate of parasitism and emergence of wasps from parasitized B. dor-
salis reached their highest levels on the first day after emergence, and then decreased. This
may be related to the timing of ovarian development. S. endius belonged to synovigenic in-
sect [40]. It is speculated that the female had to feed complementary nutrition for spawning
and survival, which affects their parasitism and emergence rate. Furthermore, host feeding
would affect egg maturation. For example, Diglyphus isaea matured more eggs when they
were fed on the third instar larvae of their hosts Liriomyza sativae, much more than that of
this parasitoid fed on a carbohydrate diet, on day 5 after emergence [41]. The effects of
supplementary food and host feeding on the parasitism rate require further study.

The performance of parasitoids in parasitizing hosts can be influenced by many factors.
In addition to the influence of host density and parasitoid age, the temperature, humidity,
and behavior characteristics should also be considered.
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5. Conclusions

The S. endius colony maintained on M. domestica can be used to control B. dorsalis at a
low density of B. dorsalis. M. domestica is an ideal substitute host for mass rearing S. endius.
The parasitism rate of wasps that parasitized B. dorsalis decreased with emergence time of
wasps. The parasitism capacity of S. endius could be improved for controlling B. dorsalis.
These results will help optimize the use of S. endius, reared on M. domestica, for control of
fruit flies.
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