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vir proteins are expressed at similar, above average abun-
dance levels. In wStr, both ribA and wspB are mosaics of 
conserved sequence motifs from Wolbachia supergroup A- 
and B-strains, and wspB is nearly identical to its homolog 
from wCobU4-2, an A-strain from weevils (Coleoptera). 
We describe conserved repeated sequence elements that 
map within or near pseudogene lesions and transitions 
between A- and B-strain motifs. These studies contribute to 
ongoing efforts to explore interactions between Wolbachia 
and its host cell in an in vitro system.
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Introduction

Wolbachia pipientis (Rickettsiales; Alphaproteobacteria) 
is an obligate intracellular bacterium that infects filar-
ial nematodes and a wide range of arthropods including 
≥60  % of insects and ≈35  % of isopod crustaceans, but 
does not infect vertebrates (Hilgenboecker et  al. 2008). 
Wolbachia is considered to be a single species classified 
into clades by multilocus sequence typing and designated 
as supergroups A to N (Baldo et  al. 2006b; Comandatore 
et al. 2013; Lo et al. 2007). The C- and D-strains that infect 
filarial worms have phylogenies concordant with those of 
nematode hosts, consistent with strict vertical transmission 
as obligate mutualists (Comandatore et  al. 2013; Dedeine 
et al. 2003; Li and Carlow 2012; Strubing et al. 2010; Tay-
lor et al. 2005; Wu et al. 2004). Although arthropod-asso-
ciated A- and B-strains may provide subtle fitness benefits 
to hosts (Zug and Hammerstein 2014), they are best known 
as reproductive parasites, causing phenotypes that main-
tain or increase Wolbachia infection frequencies, including 
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feminization, parthenogenesis, and cytoplasmic incompat-
ibility (Saridaki and Bourtzis 2010; Werren et  al. 2008). 
Interference with host immune mechanisms and replication 
of arboviruses, bacteria and malarial plasmodia (Kambris 
et  al. 2009; Pan et  al. 2012; Zug and Hammerstein 2014) 
has encouraged efforts to exploit Wolbachia for biocontrol 
of arthropod vectors of vertebrate pathogens and/or crop 
pests (Bourtzis 2008; Rio et  al. 2004; Sinkins and Gould 
2006; Zabalou et al. 2004). An understanding of molecular 
differences between A- and B-strains, and how they have 
been influenced by horizontal transmission and genetic 
exchange (Newton and Bordenstein 2011; Schuler et  al. 
2013; Werren et al. 2008; Zug and Hammerstein 2014) will 
facilitate manipulation of Wolbachia.

Wolbachia’s interaction with host cells likely involves 
the type IV secretion system (T4SS), a macromolecular 
complex that transports DNA, nucleoproteins and “effec-
tor” proteins across the microbial cell envelope into the 
host cell, where they mediate intracellular interactions 
(Alvarez-Martinez and Christie 2009; Zechner et al. 2012). 
Homologs of all genes except virB5 of Agrobacterium 
tumefaciens T4SS have been identified in Wolbachia and 
other members of the Rickettsiales (Gillespie et  al. 2009, 
2010), including Anaplasma, Ehrlichia, Neorickettsia, 
Orientia and Rickettsia. Among sequenced Wolbachia 
genomes, T4SS genes are organized in two operons: virB3-
B6 containing virB3, virB4 and four virB6 paralogs and 
virB8-D4 containing virB8, virB9, virB10, virB11, virD4 
and, in some genomes, the wspB paralog of the wspA major 
surface antigen (Pichon et al. 2009; Rances et al. 2008). In 
the supergroup B-strain wPip from Culex pipiens mosqui-
toes, wspB is disrupted by a transposon and is presumably 
inactive (Sanogo et  al 2007). T4SS effector proteins that 
manipulate host cells have been identified from Anaplasma 
and Ehrlichia (Liu et  al. 2012; Lockwood et  al. 2011; 
Niu et  al. 2010), and Wolbachia express both vir operons 
in ovaries of arthropod hosts, wherein T4SS effectors are 
suspected to play a role in cytoplasmic incompatibility and 
other reproductive distortions (Masui et  al. 2000; Rances 
et al. 2008; Wu et al. 2004). Although WspA and WspB are 
likely components of the Wolbachia outer membrane, their 
functions remain unknown. In the case of wBm, WspB is 
excreted/secreted into filarial host cells (Bennuru et  al. 
2009) and co-localizes with the Bm1_46455 host protein 
in tissues that include embryonic nuclei (Melnikow et  al. 
2011). WspB is therefore itself a candidate T4SS effector 
that may play a role in reproductive manipulation of the 
host.

The Wolbachia strain wStr in supergroup B causes 
strong cytoplasmic incompatibility in the planthopper, 
Laodelphax striatellus (Noda et  al. 2001a), and in addi-
tion maintains a robust, persistent infection in a clonal 
Aedes albopictus mosquito cell line, C/wStr1 (Fallon et al. 

2013; Noda et al. 2002). Because in vitro studies with wStr 
provide advantages of scale and ease of manipulation for 
exploring mechanisms that may facilitate transformation 
and genetic manipulation of Wolbachia, we have under-
taken proteomics-based studies that provide strong support 
for expression of T4SS machinery in cell culture. Here, 
we report the sequence of the virB8-D4 operon, including 
flanking genes ribA, upstream of virB8, and wspB down-
stream of virD4. We show that wspB is intact, describe pro-
tein structure predicted from the deduced WspB sequence, 
and verify co-transcription of wspB with upstream vir 
genes. Relative abundance levels of WspB and the VirB8-
D4 proteins in wStr are well above average, while RibA is 
among the least abundant of MS-detected proteins. In wStr, 
ribA and wspB are mosaics of sequence motifs that are dif-
ferentially conserved in supergroup A- (WOL-A) and B- 
(WOL-B) strains, and they contain conserved 8-bp repeat 
elements that may be associated with genetic exchange. 
Finally, we discuss implications for functional integration 
of the Wolbachia T4SS with WspB and with the ribofla-
vin biosynthesis pathway enzymes GTP cyclohydrolase II 
(RibA) and dihydroxybutanone phosphate synthase (RibB).

Materials and methods

Cultivation of cells

Aedes albopictus C7-10 and C/wStr1 cells were maintained 
in Eagle’s minimal medium supplemented with 5  % fetal 
bovine serum at 28–30 °C in a 5 % CO2 atmosphere (Fal-
lon et al. 2013; Shih et al. 1998). Cells were harvested dur-
ing exponential growth, under conditions favoring maximal 
recovery of Wolbachia (Baldridge et al. 2014).

Polymerase chain reaction, cloning and DNA 
sequencing

The polymerase chain reaction (PCR) was used to amplify 
wStr genes from DNA extracts prepared from Wolbachia 
enriched by fractionation of C/wStr1 cells on sucrose den-
sity gradients and recovered from the interface between 50 
and 60 % sucrose (Baldridge et al. 2014). Template DNA 
was used to obtain 21 PCR products using a panel of 31 
primers (Table S1), GoTaq™ DNA polymerase (Promega, 
Madison, WI), and a Techne TC-312 cycler (Staffordshire, 
UK). Cycle parameters were: 1 cycle at 94  °C for 2 min, 
35 cycles at 94 °C for 35 s, 53 °C for 35 s, 72 °C for 1 min, 
followed by 1 cycle at 72 °C for 5 min. Extension time was 
increased to 2 min for products ≥1000 bp. PCR products 
were cloned in the pCR4-TOPO vector with the TOPO-
TA Cloning Kit for Sequencing (Life Technologies, Grand 
Island, NY), and two or more clones each were sequenced 
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at the University of Minnesota BioMedical Genomics 
Center.

Reverse transcriptase polymerase chain reaction

Total RNA was purified from A. albopictus C7-10 and 
C/wStr1 cells using the PureLink RNA Mini Kit (Life 
Technologies) and treated with DNase I (RNase-free; Life 
Technologies) followed by heat inactivation, as suggested 
by the manufacturer. RT-PCR was executed with primers 
virD4F1764–1784 and wspBR152–172 (Table S1) using the RNA 
PCR Core Kit (Life Technologies) as suggested by the 
manufacturer with the exception that synthesized cDNA 
was treated with DNase-inactivated RNaseA before the 
final PCR reaction. The PCR reaction included 1 cycle at 
95  °C for 4  min, 35 cycles at 95  °C for 35  s, 56  °C for 
40 s, 72 °C for 40 s, followed by 1 cycle at 72 °C for 3 min. 
Reaction products were electrophoresed on 1  % agarose 
gels, cloned, and sequenced as above.

Sequence alignments and protein structure prediction

DNA and protein sequence alignments were executed with 
the Clustal Omega program (Sievers et  al. 2011). Align-
ments were edited by visual inspection and modified in 
Microsoft Word. WspB protein structure predictions were 
obtained using tools available at www.predictprotein.org, 
including the PROFtmb program (Dell et al. 2010) for pre-
diction of bacterial transmembrane beta barrels (Bigelow 
et  al. 2004) and per-residue prediction of up-strand, 
down-strand, periplasmic loop and outer loop positions of 
residues. The PROFisis program (Ofran and Rost 2006) 
was used to predict WspB amino acid residues that are 

potentially involved in protein–protein interactions. Trees 
were produced using PAUP* version 4 (Swofford 2002). 
Amino acids were aligned with Clustal W, using pairwise 
alignment parameters of 25/0.5 and multiple alignment 
parameters of 10/0.2 for gap opening and gap extension, 
respectively. The protein weight matrix was set to Gonnet. 
The alignment was saved as a nexus file and loaded into 
PAUP*, and the trees were created using a heuristic search 
with the criterion set to parsimony. Bootstrap 50 % major-
ity-rule consensus trees are based on 1000 replicates, with 
wBm (WOL-D) as the outgroup.

Mass spectrometry, peptide detection, protein 
identification and statistical analysis

Mass spectrometry data, generated using LC–MS/MS on 
LTQ and Orbitrap Velos mass spectrometers as four data 
sets, were described previously (Baldridge et  al. 2014). 
The MS search database was modified to include deduced 
ORFs from wStr sequence data described herein. All tests 
of association were performed with SAS version 9.3 (Cary, 
NC; http://www.sas.com/en_us/home.html/).

Results

Structure of the wStr virB4‑D8 operon

The robust, persistent infection of A. albopictus mos-
quito cell line, C/wStr1 with BwStr (in the text below, 
strain designations are denoted by superscripts), isolated 
from the planthopper L. striatellus, provides an in  vitro 
model to identify proteins that modulate the host–microbe 

Table 1   MS-detected peptides 
from wStr proteins encoded by 
ribA, ribB and the virB8-D4 
operon

a  Protein mass in kilodaltons. b  Number of 95  % confidence unique peptides; (1) designates original 
search [7]; (2) designates a refined search in which the database included peptides based on the present 
wStr nucleotide sequence data; (T) combined total peptides from both searches. c Percent protein sequence 
coverage represented by detected peptides. d  Mean number of peptides from four independent MS data 
sets. e Studentized residual based on the modified univariable model of the refined search (Table S3, col-
umn R); SR value 0 indicates average abundance protein, 0–1 above average, 1–2 abundant and >2 highly 
abundant. Values below 0 indicate lower than average abundance. f A 94 % confidence peptide indicated in 
Fig. 1A did not meet the threshold for proteome inclusion in the original search. For VirB10, one originally 
detected peptide was absent from the refined search

Protein akDa bPep(1) bPep(2) bPep(T) cCov. dRAL eSR

RibA 41 2 2 2 6 0.5 −2.30

RibB 24 7 12 12 89 7.0 1.20

VirB8 26 9 10 10 58 5.0 0.59

VirB9 31 10 8 10 45 6.2 0.84

VirB10 54 14 16 18 53 8.8 0.94

VirB11 37 12 14 14 42 7.0 0.82

VirD4 77 12 14 14 26 6.2 0.45

WspB 31 2f 11 50 7.2 1.08

http://www.predictprotein.org
http://www.sas.com/en_us/home.html/
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interaction. A potential role for the T4SS is supported 
by strong representation of peptides from VirB8, VirB9, 
VirB10, VirB11, VirD4 (Table  1) and associated proteins 
in the BwStr proteome (Baldridge et al. 2014). Despite its 
emergence as a useful strain that grows well in  vitro, the 
BwStr genome is not yet available. In Wolbachia strains for 
which genome annotation is available, gene order within 
the virB8-D4 operon is conserved. Based on transcriptional 
analyses in the related genera, Anaplasma and Ehrlichia 
(Pichon et  al. 2009), the promoter likely maps within the 
3′-end of ribA extending into the intergenic spacer (Fig. 1a, 
black horizontal arrow at left) and is followed by five con-
secutive vir genes (Fig. 1b). In BwPip from Culex pipiens 
mosquitoes, wspB is disrupted by insertion of an IS256 
element that encodes a transposase on the opposite strand 
(Fig.  1a, at right; Sanogo et  al. 2007). Because VirB8-
D4 proteins were highly similar to homologs from BwPip 
(Baldridge et  al. 2014), we evaluated wspB in BwStr and 
its potential expression as a virB8-D4 operon member, as 

is the case in AwMel and AwRi from Drosophila spp. and 
AwAtab 3 from the wasp Asobara tabida (Rances et  al. 
2008; Wu et al. 2004). In the original proteomic analysis, 
three WspB peptides (Fig.  1a, tall black and gray arrows 
represent 95 and 94  % confidence peptides, respectively) 
mapped proximal and distal to the transposon insertion in 
BwPip, while the absence of peptides corresponding to the 
transposon suggested that wspB is intact in BwStr.

Nucleotide and deduced amino acid sequence 
comparisons

To examine the virB4-D4 operon in BwStr, we sequenced 
overlapping PCR products from 20 primer pairs (Table S1) 
spanning 9.1 kb beginning 43 bp downstream of the 5′-end 
of ribA in other Wolbachia strains and ending within topA 
encoded immediately downstream of the operon on the 
opposite strand (Fig. 1b, c). With the notable exception of 
the BwPip transposon, the nucleotide sequence aligned most 

* *wMel           wPip
promoter

B8 BB10 DD4 wspB topA

transposase

ribAribB

10 kb5  kb
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B9 B11
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Fig. 1   Schematic map of the Wolbachia T4SS virB8-D4 operon and 
cloning strategy for the ribA to topA sequence from BwStr. a Left 
expanded view of the BwStr ribA ORF depicted as an arrow showing 
the direction of transcription. Black horizontal arrow indicates a puta-
tive promoter that extends into an intergenic spacer (black rectangle). 
Black arrowheads indicate positions of MS-detected unique peptides 
(95 % confidence). Gradient shading from white to black designates 
5′-sequence identity resembling WOL-A transitioning to 3′-sequence 
more closely resembling WOL-B-strains. a Right expanded view of 
the interrupted wspB homolog in BwPip. Black ellipses indicate posi-
tions of IS256 inverted repeat elements flanking a 1.2-kb insertion 
encoding a MULE domain superfamily transposase (gi|190571636; 
pfam10551) on the opposite strand (indicated by the direction of 
the open arrow); flanking gray shading indicates wspB. Tall vertical 
black and gray arrowheads indicate positions of unique peptides (95 
and 94 % confidence, respectively) identified in the original MS data 
search. Small gray arrows indicate 95 % confidence peptides matched 
in a refined data set (including the BwStr sequence described here) 

that are conserved in WOL-B-strains, and open arrowheads with stars 
indicate peptides unique to BwStr. b Schematic depiction of the Wol-
bachia virB8-D4 operon and flanking genes with arrows designat-
ing the direction of transcription. Vir genes are designated in white 
font on a black background; black squares indicate intergenic spac-
ers. Gradient shading indicates mosaic structure of an intact wspB in 
BwStr. c Filled lines above the 10-kb scale marker represent cloned 
PCR amplification products (see Table S1 for primers) that were 
sequenced and assembled into the BwStr ribB and ribA–topA consen-
sus sequence. The double slash symbols at left indicate that ribB is 
not contiguous with downstream genes. The open box indicates the 
RT-PCR amplification product from Fig. 2. d BLASTn alignment of 
the 9133-bp BwStr ribA–topA sequence to corresponding sequences 
in BwVitB BwPip, BwVulC, AwRi, AwMel and DwBm genomes. Dark 
filled lines indicate sequence identity >70 %; light lines indicate low 
sequence identity, and the open space in BwPip represents an align-
ment gap
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closely to homologous sequences from BwVitB and BwPip. 
In addition, we noted variability in an ~0.3-kb region of 
virB10 in BwStr that was conserved in BwVitB, BwPip and 
AwRi, but not in BwVulC, AwMel and DwBm (Fig. 1d; see 
Table S2 for GenBank Accessions).

Pairwise sequence comparisons of the virB8-
D4 operon from BwStr to homologs from Wolbachia 
supergroup A, B, C, D and F strains (Table 2) confirm 
that virB10, with nucleotide identities ranging from 
74–99  %, is the least conserved of the five vir genes, 
and we note that Klasson et al. (2009) attributed diver-
gence of virB10 in AwMel and AwRi to genetic exchange 
with a WOL-B-strain. Collectively and as individuals, 
the vir genes from BwStr have the highest nucleotide 
identities (~99  %) with BwVitB and BwPip. Identities 
with five A-strains are lower (range 87–91  %), lower 
yet (range 80–89  %) with the F-strain, FwCle and fall 
to a range of 74–88  % with three nematode-associated 
strains, DwBm, CwOo and CwOv. At the 5′-end of the 

operon, ribA was distinct, with approximately equiva-
lent nucleotide identity with homologs from A- and 
B-strains (range 91–94  %), while the partial sequence 
of topA downstream of the operon had a conservation 
pattern similar to that of the vir genes. In some com-
parisons, virB8, virB11, virD4 and topA amino acid 
identities exceed nucleotide identities. Although ribB is 
not physically adjacent to the virB8-D4 operon in anno-
tated Wolbachia genomes, ribB from BwStr is most sim-
ilar to homologs from BwNo (97 % nucleotide identity) 
and AwMel (90 %), but was exceptional because identi-
ties with three other insect-associated A- and B-strains 
(~80  %) were lower than with F-, C- and D-strains 
(range 85–87  %). Consistent with earlier proteomic 
data (Baldridge et  al. 2014), in all comparisons that 
discriminate between A- and B-strains, BwStr resem-
bled WOL-B, while variability in ribA and wspB flank-
ing the virB8-D4 genes exceeded that of the vir genes 
themselves.

Table 2   Pairwise nucleotide 
and amino acid comparisons

Wolbachia strains from supergroups A, B, C, D and F are indicated by superscripts, with percentages of 
nucleotide (N) and amino acid (AA) sequence identities to BwStr. Dashes indicate sequences not available, 
and xx indicates pseudogenes; GenBank Accession numbers are given in Table S2
a  Partial gene and protein sequences: ribA 1040 bp, ribB 592 bp; topA 825 bp. Host associations: wPip, 
Culex pipiens—mosquito; wVitB, Nasonia vitripennis—wasp; wTai, Teleogryllus taiwanensis—cricket; 
wVulC, Armadillidium  vulgare—isopod; wMel, wRi, wAna, wNo, Drosophila spp.—fruit fly; wKue, 
Ephestia kuehniella—moth; wAtab 3 Asobara tabida—wasp; wBm, wOo and wOv from filarial nematodes 
Brugia malayi, Onchocerca ochengi and O. volvulus, respectively. In the comparison, values of 97 % or 
greater are shown in italics

Gene BwPiP BwVitB BwNo BwTai BwVulC AwMel AwRi

N AA N AA N AA N AA N AA N AA N AA

ribAa 94 89 94 89 93 88 94 90 93 92 93 91 92 89

virB8 99 100 99 100 99 99 99 100 94 94 88 86 88 87

virB9 99 99 99 98 98 97 97 97 94 93 91 89 91 89

virB10 99 99 99 98 90 86 98 96 88 74 87 74 88 85

virB11 99 99 97 99 96 98 97 99 90 93 89 95 89 95

virD4 99 99 99 99 99 99 99 99 94 97 89 92 89 93

wspB 56 xx 98 96 85 68 – – – – 85 70 85 70

topAa 99 100 99 100 99 99 – – – – 88 87 87 86

ribBa 81 80 – – 97 96 – – – – 90 91 79 78

Gene AwAna AwKue AwAtab3 FwCle DwBm CwOo CwOv

N AA N AA N AA N AA N AA N AA N AA

ribAa 91 88 93 91 – – 84 81 83 80 82 74 82 75

virB8 88 87 88 86 88 88 85 83 85 81 83 81 84 82

virB9 91 89 91 89 91 89 84 84 84 84 82 76 81 76

virB10 88 84 87 74 87 73 80 71 84 70 76 64 74 64

virB11 89 95 89 95 89 95 89 95 88 94 86 89 87 89

virD4 89 93 89 93 88 92 87 92 87 87 86 91 88 94

wspB 83 68 85 70 85 70 72 xx 73 61 72 49 71 49

topAa 86 85 – – – – 88 92 86 88 84 83 84 88

ribBa 80 88 – – – – 87 87 86 87 85 xx 85 xx
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Expression and relative abundances of the BwStr 
virB4‑D8 proteins

To refine an earlier original proteomic analysis (Baldridge 
et  al. 2014), we incorporated the PCR-amplified BwStr 
sequences described here to the database for peptide iden-
tification [Table  1, see column labeled Pep(2)]. Statisti-
cal analysis indicated that in a univariable model, protein 
molecular weight was weakly (r2  =  0.2221) but signifi-
cantly (p  <  0.0001) associated with peptide count: log(pe
ptides) = −0.40247 + 0.4953 × log(MW). Estimations of 
protein relative abundance levels (RAL) based on peptide 
counts were therefore normalized to protein length using 
studentized residuals (SR), a measure of deviance from 
expected values adjusted for estimated SD from the mean. 
All peptide data and SR values in the univariable and mul-
tivariable models of the original and refined searches are 
detailed in Table S3.

In the refined search, we identified eight new peptides 
from Vir proteins [Table  1, compare columns labeled 
Pep(2) to Pep(1)], including three from the most diver-
gent VirB10. In aggregate, the five Vir proteins had a mean 
(SD) SR of 0.73 (0.2) and are expressed at above average 
abundance. We identified five new peptides from RibB, but 
none from RibA (Table 1). RibB has an SR of 1.2 and is 
an abundant protein, while RibA has an SR of −2.3 and 
is among the least abundant of MS-detected proteins. Nine 
new peptides from the highly divergent WspB (see below) 
generated an SR of 1.08, slightly above the threshold (>1.0) 
for an abundant protein and roughly equivalent to SR val-
ues (range 1–1.17) of housekeeping proteins such as isoci-
trate dehydrogenase, ftsZ, ATPsynthase F0F1 α subunit, 
and ribosomal proteins S2, S9, L3, L7/L12 and L14 (Table 
S3). In comparison, WspA with an SR of 2.17 (Table S3, 
entry 63) ranked as highly abundant, and the most abundant 
protein in the proteome was the GroEL chaperone (entry 
586), with an SR of 3.66.

Reverse transcriptase PCR confirms co‑transcription 
of wspB with vir genes

Similar SR values for WspB, relative to VirB8-D4, were 
consistent with evidence that wspB is co-transcribed with 
virB8-D4 in AwMel, AwRi and AwAtab 3 (Rances et  al. 
2008; Wu et  al. 2004). We used RT-PCR with RNA tem-
plate verified by PCR to be free of DNA contamination 
(Fig.  2b, lanes 2 and 3) to amplify a 528-bp product that 
was produced in reactions containing RNA from C/wStr1 
cells (Fig.  2a, lane 4), but not in negative control reac-
tions (lanes 1 and 2) or those with RNA from C7-10 cells 
(lane 3). Its sequence matched the expected BwStr genomic 
sequence (Fig. 1c, RT-PCR box at right), confirming that in 
BwStr, wspB is a member of the virB8-D4 operon.

In BwStr, ribA is a mosaic of conserved WOL‑A 
and WOL‑B sequence motifs

The ribA nucleotide sequence has been shown to contain 
regulatory elements for expression of the T4SS operon in 
Anaplasma and Ehrlichia (Ohashi et al. 2002; Pichon et al. 
2009). In contrast to highest homologies of BwStr virB8-
D4 genes to WOL-B-strains, ribA sequence identities 
showed little difference between WOL-A and -B homologs 
(Table 2), but the two MS-detected peptides corresponded 
to AwMel and BwPip homologs, respectively (Fig.  1a). 
Alignment of amino acids from 10 RibA homologs (Fig. 3; 
WOL-A and WOL-B-strains are identified at left in red and 
blue, respectively) suggested that BwStr RibA is a two-part 
mosaic, each containing a protein functional domain.

The amino terminal 150 residues in BwStr RibA (Fig. 3) 
include a short dihydroxybutanone phosphate synthase 
domain and the first detected peptide (residues 94–104). 
This portion of BwStr RibA matched sequences from the 
four A-strains and a single B-strain, BwVulC, at 29 of 36 
variable amino acids (shown in red), while only three (4, 39 
and 168 in blue) matched the other three B-strains and four 
(in green) were unique. In contrast, the C-terminal 151–
347 residues, encompassing the second peptide (residues 
250–258) within a GTP cyclohydrolase domain, included 
a single amino acid unique to BwStr, while 23 (in blue) uni-
formly matched B-strains except BwVulC, which continued 
to resemble the A-strains until residue 239. Among the four 
A-strains, the BwRi homolog is most similar throughout 
the alignment to the B-strains, but within residues 129–
150 immediately preceding the cyclohydrolase domain, it 
closely matched BwTai, BwPip and BwVitB, while BwStr 

A

B

Fig. 2   Reverse transcriptase PCR (RT-PCR) analysis shows co-
transcription of wspB with virD4. a Lanes 1 and 2 RT-PCR negative 
controls with no RNA or with no reverse transcriptase, respectively. 
Lanes 3 and 4 RT-PCR of RNA from uninfected C7-10 and infected 
C/wStr1 cells, respectively, with virD4 forward and wspB reverse 
primers. Lane 5 RT-PCR positive control with C/wStr1 RNA and 
Wolbachia primers S12F/S7R, which amplify portions of a ribosomal 
protein operon described previously (Fallon 2008). b Lane 1 PCR 
negative control with no Taq enzyme. Lanes 2 and 3 negative control 
lacking RT, with RNA from uninfected C7-10 and infected C/wStr1 
cells, respectively
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Fig. 3   Amino acid sequence 
alignment of RibA homologs 
from BwStr and Wolbachia 
supergroups A (red), B (blue) 
and D (black) respectively. 
Asterisks below the alignment 
indicate universally conserved 
residues. Unique residues are in 
green font. Residues conserved 
in BwStr and a majority of 
B-strains are in dark blue, 
bold font, while those in dark 
red, bold font are conserved 
with a majority of A-strains. 
Residues conserved in two to 
four strains are in light blue, 
orange or orange bold font. 
Residues highlighted in gray 
correspond to 95 % confidence 
peptides detected by LC–MS/
MS. The dihydroxybutanone 
phosphate synthase (RibB) and 
GTP cyclohydrolase II domains 
(RibA) are indicated above 
the alignment within greater 
than less than symbols. Bold 
underlined residues in AwMel 
and BwStr indicate conserved 
active site amino acids, includ-
ing critical cysteine residues. 
Double underlined residues 
indicate amino acids involved 
in the dimerization interface. 
See Tables 2 and S2 for host 
associations and GenBank 
Accessions. The PCR-amplified 
BwStr sequence does not encode 
the N-terminal amino acids; 
position 1 corresponds to the 
15th amino acid

1> DHBP synthase domain < 60
wKue ISEIRRGRPI VIYDE.SNYL LFAAAEALER DLFNQYKLTS SNVYVTLTSS KVKYISQNKE
wMel ISEIRRGRPI VIYDE.SNYL LFAAAEALER DLFNQYKLTS SNVYVTLTSS KVKYISQNKE
wHa ISEIRRGRPI VIYDE.SNYL LFAAAEALER DLFNQYKLTS SNVYVTLTSS KVKYISQNKE
wRi ISEIRRGRPI VIYDE.SNYL LFAAAEALER DLFNQYKLIS SNVYVTLTSS KVKYISQNKE
wVulC ISEIRSGRPI VIYDE.SNYL LFAAVEALER DLFNQYKLIS SNVYVTLTSS KVKYISQNKE
wStr ISEVRRGRPI VIYDE.SNYL LFAAAEVLER DLFNQYKLIS SNVYVTLTSS NVKYISQNKE
wTai ISEVRRGLPI LIYDDKNNYL LFAAAETLEK NLFSQYKLIS GNVYVTLTAS KVKYICQSKE
wPip ISEVRRGLPI LIYDDENNYL LLAAAETLEK NLFSQYKLIS GNVYVTLTAS KVKYICQSKE
wVitB ISEVRRGLPI LIYDDENNYL LLAAAETLEK NLFSQYKLIS GNVYVTLTAS KVKYICQSKE
wBm    ISEIRRGLPI IIYDK.SNYL LVAAAETLEK DLFNQYGLIS GKIYVILPSS KVTCISQNVE

*** * * ** *** *** * **** ** ** ** * * ** * * *  * * *
61                   120

wKue HNSKRLLVNN FDELLYLINC SKEDCIKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wMel HNSKRLLVNN FDELLYLINC SKEDCIKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wHa HNSKRLLVNN FDELLYLINC SKEDCIKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wRi HNSKRLLVNN FDELLHLINC SKEDCIKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wVulC HNSKRLLVNN FDELLYLINC SKEDCIKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wStr HNSKRLLVNN FDELLYLINC SKEDCMKELQ CSKTIDECAI ALLKFSELLP YALVADMTFE
wTai HSSKRLLVNN FDELLHLIDC SKEDHIKELQ CSKTIDEYAI ALLKFSELLP YALVADMTFE
wPip HSSKRLLISN FDELLHLINC SKEDHIKELQ CSKTIDEYAI ALLKFSELLP YALVADMTFE
wVitB HSSKRLLISN FDELLHLINC SKEDWIKELQ CSKTIDAYAV ALLKFSELLP YALVADMTFE
wBm HSSKRLLINN FDELFHLVNC SKEDHTKELQ RSKAIDECAI TLLKSSELLP YALVVDVNFK

* ***** * ****  * * *** ****  ** ** * *** ***** **** * *

121                            > RibA GTP cyclohydrolase II 180
wKue NNHEMRNWCE KNDVIALDTS FINNFQENQD VYEVCKTSLF LKQTQEVNII SYRTESGGRE
wMel NNHEMRNWCE KNDVIALDTS FINNFQENQD VYEVCKTSLF LKQTQEVNII SYRTESGGRE
wHa NNHEMRNWCE KNDVIALDTS FINNFQENQD VYEVCKTSLF LKQTQEVNII SYRTESGGRE
wRi NKYEMRNWCE ENDIIALDTL LVNDFQQNQS VYEVCKTSLF LKQTQEVDII SYRTESGGRE
wVulC NNHEMQNWCE KNDVIALDTS FINNFQENQD VYEVCKTSLF LKQTQEVDII SYRTESGGRE
wStr NNHEMRNWCE KNDVIALDKS FINNFQENQD VYEVCKTSLF LKQTQEVDII SYRTKSGGRE
wTai NKHEMRNWCE ENDIIALNTL LVNDFQRNHS VYEVCKTSLF LKQTQEVDII SYRTKSGGRE
wPip NKHEMRNWCE ENDIIALNTL LVNDFQQNHS VYEVCKTSLF LKQTQEVDII SYRTKSGGRE
wVitB NKHEMRNWCE ENDIIALNTL LVNDFQQNHS VYEVCKTSLF LKQTQEVDII SYRTKSGGRE
wBm DEYEMRGWCE KSDVIALDVL FINNFQQNQD IYEVCKTPLF LKQTQKVNII SYRTCNGRKE

** ***  * ***  * ** *    ****** ** ***** * ** ****  * *

181> RibA GTP cyclohydrolase II domain <240
wKue HHAIIIGNPD KDDEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQMIADS GSGIILYLMQ
wMel HHAIIIGNPD KDDEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQMIADS GSGIILYLMQ
wHa HHAIIIGNPD KDDEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQMIADF GSGIILYLMQ
wRi HHAIIIGNPD KDDEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQMIADF GSGIILYLMQ
wVulC HHAIIIGNPD KDDEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQMIADF GSGIILYLMQ
wStr HYAIIIGNPD KDNEPLVRIH SSCYTGDLLD SLSCDCRSQS HQAIQIMTDF GNGIILYLMQ
wTai HYAIIIGNPD KDNEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQIMTDF GNGIILYLMQ
wPip HYAIIIGNPD KDNEPLVRIH SACYTGDLLD SLSCDCRSQL HQAIQIMTDF GNGIILYLMQ
wVitB HYAIIIGNPD KDNEPLVRIH SSCYTGDLLD SLSCDCRSQL HQAIQIMTDF GNGIILYLMQ
wBm HYAIIIGNPG KNSEPLVRVH SSCYTGDLLD SLSCDCRSQL HQAIQIMTDS GNGIILYLMQ

* *******  *  ***** * * ******** *********  ***** * ********

241> RibA GTP cyclohydrolase II domain 300
wKue DGRGIGLTNK LRAYSMQRGH NLDTVDANRI LGFEDDERSF AVAAKMLKKL NINKIQLLTN
wMel DGRGIGLTNK LRAYSMQRGH NLDTVDANRI LGFEDDERSF AVAAKMLKKL NINKIQLLTN
wHa DGRGIGLTNK LRAYSMQREH NLDTVDANRI LGFEDDERSF VVAAKMLKKL NINKIQLLTN
wRi DGRGIGLTNK LRAYSVQREH NLDTVDANRI LGFEDDERSF VVAAKMLKKL NINKIQLLTN
wVulC DGRGIGLANK LRAYSMQRRH NLDTVDANRV LGFEDDERSF AVAVEILKKL DIKKIQLLTN
wStr DGRGIGLTNK LRAYSMQRKY NLDTVDANRV LGFEDDERSF AVAAKILKKL NINKIQLLTN
wTai DGRGIGLTNK LRAYSMQRKY NLDTVDANRV LGFEDDERSF AVAAKILKKL NINKIQLLTN
wPip DGRGIGLTNK LRAYSMQRKY NLDTVDANRV LGFEDDERSF AVAAKILKKL NINKIQLLTN
wVitB DGRGIGLTNK LRAYSMQRKY NLDTVDANRV LGFEDDERSF AVAAKILKKL NINKIQLLKN
wBm    DGRGIGLTNK LRAYDMQRKY NLDTVDANRI LGFEDDERSF AVAAEMLKKL GIKKIQLLTN

********** **** ** ********* ********** **   **** * ***** *

201> RibA GTP cyclohydrolase II domain <347
wKue NDRKLSELES SGIGVTKCLP LIVERNKYND SYMETKFGKL GHRLRVF
wMel NDRKLSELES SGIGVTKCLP LIVERNKYND SYMETKFGKL GHRLRVF
wHa NDRKLSELES SGIEVTKCLP LIVERNKYND SYMETKFGKL GHKLRVF
wRi NDRKLSELES SGIEVTKCLP LIVERNKYND SYMETKFGKL GHKLRVF
wVulC NGRKLSELKN NGIEVTKCLP LIMERNEYND SYMETKFGRL GHGLRVF
wStr NGRKLSELKN NGIEVTKCVP LIMERNEYND SYMETKFGKL GHGLRVY
wTai NGRKLSELKN NGIEVTKCVP LIMERNEYND SYMETKFDKL GHGLRVY
wPip NGRKLSELKN NGIEVTKCVP LIMERNEYNH SYMETKFGKL GHGLRVY
wVitB NGRKLSELKN NGIEVTKCVP LIMERNEYND SYMETKFGKL DHGLRVY
wBm    NGRKLSELKN NGIEVTRCLP LIMERNKYND SYIETKFSRL GHRLRTF

* ******    ** ** * * ** *** **  ** ****  *  * **
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and BwVulC matched the other three A-strains. In aggre-
gate, the alignment suggested that the BwStr and BwVulC 
homologs are two-part mosaics, each containing a protein 
functional domain, with an N-terminal WOL-A motif and 
a C-terminal WOL-B motif. We note that the C-terminal 
B-strain motif is consistent with the B-strain identity of the 
downstream virB8-D4 operon (Table  2) and includes the 
predicted promoter region (Ohashi et al. 2002; Pichon et al. 
2009). Likewise, in a phylogenetic comparison (Fig.  4), 
trees representing the full length and N-terminal regions 
(top and bottom left) show BwVulC and BwStr in adjacent 
positions, and grouped more closely with WOL-A-strains. 
In the C-terminus, where the amino acid alignment shows 
an overall higher consensus (Fig.  3), BwStr grouped with 
the B-strains including BwPip, while BwVulC appears more 
closely related to A-strains.

Nucleotide alignment and phylogenetic comparisons 
show that ribA is a mosaic gene in BwStr and BwVulC

A nucleotide alignment (Fig. S1) confirmed that ribA 
from BwStr is a two-part mosaic of WOL-A and WOL-B 
sequence motifs that correspond to the N- and C-terminal 
halves of the protein. In the first 522 nucleotides of ribA, 45 
(in red font) of 56 variable nucleotides in BwStr match the 
A-strain sequences (Fig. S1), but only six (in blue) match 

the majority of B-strains and two are unique to BwStr (in 
green). In the downstream 522 nucleotides of ribA, 51 (in 
blue) of 54 variable nucleotides in BwStr match B-strains, 
while a single nucleotide (684 in red) matches the A-strains 
and two (in green) are unique to BwStr. In BwVulC, ribA has 
a similar two-part mosaic structure but does not firmly tran-
sit from the WOL-A to the WOL-B sequence motif until 
position 775, consistent with the amino acid alignment. 
Among the A-strains, ribA from AwRi is again most simi-
lar to the B-strain sequences. Within nucleotides 387–453 
encoding amino acids 129–150 just before the cyclohydro-
lase domain and the A/B-strain sequence motif transition in 
BwStr, 13 of 18 WOL-A/B variable nucleotides in AwRi are 
shared with BwTai, BwPip and BwVitB, but those of BwStr 
and BwVulC are conserved with the other A-strains (orange 
and black vs. red residues, respectively).

WspB in BwStr is strikingly similar to a AwCobU4‑2 
homolog

Having shown that wspB is intact in BwStr, we mapped 
11 peptides onto amino acid sequences encoded by 12 
homologs (Fig. 5), including sequences deduced from three 
open reading frames (ORFs) in the wspB pseudogene from 
BwPip (Sanogo et al. 2007) and two overlapping ORFs in 
a pseudogene from AwCobU4-2, one of several WOL-A 

Fig. 4   Phylogenic relationships of BwStr RibA protein with 
homologs from WOL-A- and WOL-B-strains. Consensus trees show 
bootstrap values based on 1000 replicates, with DwBm (WOL-D) as 
the outgroup. WOL-A-strains are shown in black font boxed against a 
white background. WOL-B-strains are shown in white font on a black 

background. Open arrows designate BwVulC and closed arrows indi-
cate BwStr. The N-terminal alignment corresponded to the first 150 
residues in Fig.  3; the remainder of the protein was included in the 
C-terminal alignment
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Fig. 5   Amino acid sequence 
alignment of WspB homologs. 
At left, font color designates 
WOL-A (red) and B (blue) 
strains, and the BwStr sequence 
is the top listed Wol-B-strain. 
Asterisks below alignment 
indicate universally conserved 
residues; three hypervariable 
regions (HVRs) are doubly 
underlined above the alignment. 
Blocks of coloring designate 
peptides detected by LC–MS/
MS at the 95 % confidence 
level. Those in gray were 
conserved in A- and B-strains. 
Cyan designates peptides con-
served in B-strains, and yellow, 
those conserved in BwStr and 
AwCobU4-2. Olive peptides 
were unique to BwStr. Residues 
conserved between BwStr and a 
majority of A-strains are in red 
font (a single proline at residue 
193) and residues conserved 
with a majority of B-strains are 
in blue font. Unique residues 
are in green font, and residues 
conserved between two or 
three homologs are in orange 
font. Underlined residues 
below the alignment denote the 
breakpoints between contigu-
ous peptides within sequence 
regions. The greater than and 
less than symbols below the 
alignment indicate a transposon 
insertion in the wspB pseudo-
gene of BwPip, followed by two 
additional deduced ORFs—see 
Fig. S2. PROFtmb (prediction 
of transmembrane beta barrels) 
symbols for individual residues 
below the alignment are: U—
up-strand, D—down-strand, 
I—periplasmic loop, O—outer 
loop. PROFisis (prediction 
of protein–protein interaction 
residues) symbol P designates 
interaction residues. Wolbachia 
strain host associations: AwAtab 
3, A. tabida—wasp; AwCob, 
C. obstrictus—weevil; BwMet, 
Metaseiulus occidentalis—pred-
atory mite. See Tables 2 and 
S2 for other host associations 
and GenBank Accessions. The 
first 20 residues of theAwCob 
and BwMet sequences are not 
available

1                                           HVR1               60
wAtab3 MISKKTLAVT AFALLLSQQS FASETEGFYF GSGYYGQYLN DTSVLKT--- --STTGIKNL
wKue MISKKTLAVT AFALLLSQQS FASETEGFYF GSGYYGQYLN NTSVLKT--- --STTGIKNL
wMel MISKKTLAVT AFALLLSQQS FASETEGFYF GSGYYGQYLN NTSVLKT--- --STTGIKNL
wRi MISKKTLAVT AFALLLSQQS FASETEGFYF GSGYYGQYLN NTSVLKT--- --STTGIKNL
wAna MISKKTLAVT ALALLLSQQS FASETEGFYF GSGYYGQYLN YTGELKAKIG DTAATATNNV
wCobU5-2---------- ---------- FASETEGFYF GSGYYGQYLN YMGELKAKIG DTAATAANNV
wCobU4-2---------- ---------- FASETEGFYF GGGYYGQYLN –LGKLKAKIG GKDATDDNHV
wStr MMSKKTLAVT ALALLLSQQS FASETEGFYF GGGYYGQYLN –LGKLKAKIG GKDATDDNRV
wVitB MMSKKTLAVT ALALLLSQQS FASETEGFYF GGGYYGQYLN –LGKLKAKIG GKDATDDNRV
wMet ---------- ---------- FASETEGFYF GGGYYGQYLN –LGKLKAKIG GKDATDDNRV
wNo MSKKTLAVT ALALLLSQQS FASETEGFYF GGGYYGQYLN -LGKLKAKIG DKDATDDNRV
wPip -MSKKTLAVT ALALLLSQ-S FASETEGFYF GGGYYGQYLN –FGKLKAKIG SKDATDANKV

* ******** ********** ********** * ******** **        *
PROFtmb IIIIIIIIII IIIIIIIIII IIIIIIIUUU UUUUUUUOOO OOOOOOOOOO OOOOOOOOOO
PROFisisPP-------- ---------- ---------- ---------- ---------- ----------

61 HVR1 HVR1 120
wAtab3 SINDRGAQNT EGQSLSEYKG DYNPPFAANV AFGYTGELGN NSYRAELEGM YSSVKVDNIG
wKue SINDRGAQNT EGQSLSEYKG DYNPPFAANV AFGYTGELGN NSYRAELEGM YSSVKVDNIG
wMel SINDRGAQNT EGQSLSEYKG DYNPPFAANV AFGYTGELGN NSYRAELEGM YSSVKVDNIG
wRi SINDRGAQNT EGQSLSEYKG DYNPPFAANV AFGYTGELGN NSYRAELEGM YSSVKVDNIG
wAna SVNDRSAQNT EGQSLSKYKG DYNPPFAANV ALGYTGELNG NSYRAELEGM YSSVKVDNIG
wCobU5-2SVNDRSAQNT EGQSLSKYKG DYNPPFAANV ALGYTGELNG NSYRAELEGM YSSVKVDNIG
wCobU4-2SINDIDAQRT EGQLISKYKG DYNPPFAANV TFGYTGELGN NSYRAELEGM YSSVKVDNIG
wStr SINDIDAQRT EGQLISKYKG DYKPPFAANV TFGYTGELGN NSYRAELEGM YSSVKVDNIG
wVitB SINDIDAQRT EGQLISKYKG DYNPPFAANV TFGYTGELGN NSYRAELEGM YSSVKVDNIG
wMet SINDIDAQRT EGQLISKYKG DYNPPFAANV TFGYTGELGN NSYRAELEGM YSSVKVDNIG
wNo FINDRNTERT EPQPISEYKA DYSPPFAANI AFGYTGELGN NSYRAELEGI YSSIKVNNIG
wPip SVNDRGAQST EGQLLNKYEG DYNPPFAANV ALAYTGELGN NSYRAELEGM YSSVKVDNIR

**     * * * * ** ****** ******* ********* *** *****
PROFtmb OOOOOOOOOO OOOOOOOOOO OOOOOODDDD DDDDDDDDDI IIUUUUUUUU UUUUOOOOOO
PROFisis---------- ---------- ---------- -------P-- ---------- ----------

121 HVR2                    HVR2 180
wAtab3 LTSSQITVSY LKETGEDPNK ETYLYSAAVS HDQIENISVM ANVYHHWKSD RFSFSPYVGI
wKue LTSSQITVSY LKETGEDPNK ETYLYSAAVS HDQIENISVM ANVYHHWKSD RFSFSPYVGI
wMel LTSSQITVSY LKETGEDPDK ETYLYSAAVS HDQIENISVM ANVYHHWKSD RFSFSPYVGI
wRi LTSSQITVSY LKETGEDPNK ETYLYSAAVS HDQIENISVM ANVYHHWKSD RFSFSPYVGI
wAna LTSGQMTISY TKDK-TRPEE -SY--GAIVN HDQIENISVM ANVYHHWKSD RFSFSPYVGV
wCobU5-2LASSQITISY IKDK-ANPEE -RY--GAIVN HDQIENASLM ANVYHHWKSD RFSFSPYVGI
wCobU4-2LSSNQVTVSY LKDVGESANK KTYMYKTVIN HDQVENASVM ANVYHYWKSD SFSFSPYVGV
wStr LSSNQVTVSY LKDVGESANK KTYMYKTVIN HDQVENASVM ANVYHYWKSD SLSFSPYVGV
wVitB LSSNQVTVSY LKDVGESTNK KTYMYKTVIN HDQVENASVM ANVYHYWKSD SFSFSPYVGI
wMet LSSNQVTVSY LKDVGESTNK KTYMYKTVIN HDQVENASVM ANVYHYWKSD SFSFSPYVGI
wNo LANTQMNIKY --------EK ENNKYGVTIN HGKIDNISVM ANVYHHWKND SFSFSPYVGI
wPip LTSGQMTISY TEGGNQTMDQ FLTMTKYL-- -------SVM ANVYHHWKSE SFSFSPYVGI

* * * *  > *** *<* * ***** *** *******
PROFtmb OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOODDDD DDDDDDDDDI IUUUUUUUUU
PROFisis---------- --------PP PP-------- ---------- --------PP P---------

181                          HVR3          240
wAtab3 GIGATRMTMF EKPSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGAIGSDIK LTAKRLGQVV
wKue GIGATRMTMF EKPSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGAIGSDIK LTAKRLGQVV
wMel GIGATRMTMF EKPSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGAIGSDIK LTAKRLGQVV
wRi GIGATRMTMF EKPSIRPAGQ SKAGFDYRIN EDVNMHIGYR GFGAIGSDIK LTAKRLGQVV
wAna GVGATRMTMF EKSSIRPAGQ LKAGLDYRIN EDVNMHIGYR GFGAIGS--- -SEYKLDTLK
wCobU5-2GVGATRMKMF EKSSIRPAGQ LKAGFDYRIN EDVNRHIGYR GFGVLGSNVD FEAEVLGEMK
wCobU4-2GVGATRMTMF EKSSIRPAGQ LKAGFDYRIN EDVNRHIGCR GFGVLGSNVD FEAEVLGEMK
wStr GVGATRMTMF EKPSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGVLGSNVD FEAEVLGEMK
wVitB GVGGTRMTMF EKSSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGVLGSNVD FEAEVLGEMK
wMet GVGGTRMTMF EKSSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGVLGSNVD FEAEVLGEMK
wNo GVGATRMTMF EESSIRPAGQ LKAGFDYHIN EDVNMHIGYR GFGVIGS--- -SEYKPETLK
wPip GVGATRMTMF EKSSIRPAGQ LKAGFDYRIN EDVNMHIGYR GFGVLG---- ----------

* * *** ** *  ******* ******* ** **** ***** ***  **
PROFtmb UUUUUUOOOO OOOOOOODDD DDDDDDDDDD IIUUUUUUUU UUUUOOOOOO OOOOOOODDD
PROFisis---------- P-P------- ---------- ---------- ---------- ----------

241 HVR3 HVR3 295
wAtab3 DDPNNDKKK- -------KLN PSSGSKVTEE INIGNQLFHT HGIEAGLTFH FASKA
wKue DDPNNDKKK- -------KLN PSSGSKVTEE INIGNQLFHT HGIEAGLTFH FASKA
wMel DDPNNDKKK- -------KLN PSSGSKVTEE INIGNQLFHT HGIEAGLTFH FASKA
wRi DDPNNDKKK- -------KLN PSSGSKVTEE INIGNQLFHT HGIEAGLTFH FASKA
wAna WDPNHDNGKD KPKGGMAEQT ----GDNQVS TTIQNDFFHT HGIEAGLTFH FASKA
wCobU5-2VKQQVNPDGK KILELNKSQK PSDQKLHKES ISIGNQVFHT HGIEAGLTFH FASKA
wCobU4-2VKQQVNPDGK KILELNKSQK PSDQKLHKES ISIGNQVFHT HGIEAGLTFH FASKA
wStr AKQPVNPDGK KILELNKSQK PSDQKLHKES ISIGNQVFHT HVIEAGLTFH FASKA
wVitB AKQQVNQDGK KILELNKNQK PSDQKLYKES ISIGNQVFHT HGIEAGLTFH FASKA
wMet EKQQANSDGK KILELNKNQK PSDQKLHKES ISIGNQVFHT HGIEAGLTFH FASK-
wNo -------LNA KTKKMNKQIG ---ENKVT-- AAIQNSFFHT HGIEAGLTFH FASKA
wPip ---------- ---------- ---------- -------FHT HGIEAGLTFH FASKS

** * *** ********** ****
PROFtmb DDDDDDDDII UUUUUUUUUU UUOOOOOOOO OOOOOOOOOO DDDDDDDDDD DDIII
PROFisisPP-------- ------P-PP –PPP------ ---------- ---------- -----
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variants associated with the weevil, Ceutorhynchus obstric-
tus. Of two BwStr peptides (Fig. 5) detected at 95 % con-
fidence in the original search (Baldridge et  al. 2014), the 
first (residues 105–115 in gray) was identical in all strains 
except BwNo, which has unique M/I and V/I substitutions 
(residues in green). The second peptide (residues 209–220) 
is identical in all but the two AwCob strains that share an 
M/R substitution (215 in orange), while AwCobU4-2 has 
a unique Y/C substitution (219 in green). Five additional 
BwStr peptides (highlighted in cyan) were identical with 
BwVitB and BwMet (residues in blue), but not with BwPip 
and BwNo, which have many residues that are unique (in 
green) or shared (in orange) only with AwCobU5-2 and 
AwAna. Thus, with the exception of AwCobU5-2, cyan pep-
tides of BwStr match other WOL-B-strains.

Two peptides underscore a striking similarity between 
the BwStr and AwCobU4-2 homologs. The first (Fig. 5, resi-
dues 133–140 highlighted in yellow) contains an alanine 
residue (138 in bold orange) shared only with AwCobU4-2. 
The second (residues 169–186 highlighted in olive) has a 
unique F/L substitution (in green) and a V/I substitution 
(in orange) shared with AwCobU4-2 and AwAna. Overall, 
the BwStr and AwCobU4-2 sequences differ at only five 
residues (59, 172, 193, 215 and 219), of which four occur 
within hypervariable regions. Throughout the alignment, 
AwAtab 3, AwKue, AwMel and AwRi form a conserved 
group, but the divergent AwAna and AwCobU4-2 and U5-2 
strains have multiple residues (in blue, as in 42–77 and 
224–277) that are conserved with the B-strains, suggesting 
genetic exchange between supergroups.

WspB domain structure and hypervariable regions 
(HVRs)

WspB is a paralog of the better-known WspA major sur-
face antigen, which is anchored in the cell envelope by a 
transmembrane β-barrel domain (Koebnik et  al. 2000), 
while surface-exposed loop domains contain HVRs with 
high recombination frequencies within and between strains 
(Baldo et  al. 2010). The PROFtmb program predicted 10 
transmembrane down (D)- and up (U)-strands and six 
periplasmic space (I) strands in WspB from BwStr (Fig. 5; 
residues indicated by D, U and I, respectively; Z score of 
6.8 supports designation as transmembrane β-barrel pro-
tein). HVR1 and HVR2 each contain a predicted outer loop 
(residues 38–86 and 115–156 indicated by O) with high 
proportions of amino acids that are potentially charged at 
physiological pH; HVR3 contains two outer loops. Finally, 
a small predicted loop that is not within an HVR contains 
a proline (residue 193) that is conserved in BwStr and four 
WOL-A-strains. It is one of the 20 amino acids, most with 
hydrophilic or potentially charged side chains and within 
HVRs or adjacent to periplasmic space strands, predicted 

by the PROFisis program to be potentially involved in pro-
tein–protein interactions (P below alignment).

HVR1 amino acids

In HVR1 (Fig. 5, residues 41–77), eight residues are uni-
versally conserved among all homologs, while the major-
ity of variable residues are differentially conserved in the 
B-strains (residues in blue) versus the A-strains. However, 
the sequences from the AwAna and AwCobU5-2 A-strains 
are mosaics in which eight of the first 20 residues (in 
blue) are conserved with all B-strains, while eight others 
are either conserved mutually or with BwNo or BwPip (in 
orange). Within the remaining 17 residues of HVR1, the 
AwAna and AwCobU5-2 sequences are better conserved 
with the other A-strains, while BwNo and BwPip have mul-
tiple unique residues (in green). The AwCobU4-2 and BwStr 
sequences differ only at residue 59.

HVR2 amino acids

Within HVR2 (Fig. 5, residues 121–150), AwCobU5-2 and 
AwAna sequences have alignment gaps at four residues, 
five or six unique residues respectively (in green), and eight 
residues that are either conserved mutually (in orange) or 
with BwNo. The BwPip pseudogene has only the first two 
residues of HVR2 due to a transposon insertion (indicated 
below alignment by greater than less than symbols). The 
AwCobU4-2 pseudogene contains a nucleotide sequence 
duplication (see below) that results in an overlap of the first 
and third ORFs beginning at the seventh residue of HVR2, 
but their spliced sequences, as shown, are identical to that 
of BwStr. The BwNo sequence has eight alignment gaps and 
nine unique residues.

HVR3 amino acids

In HVR3, five of 52 residues (Fig. 5, residues 224–277) are 
conserved among all strains. Throughout HVR3, sequences 
from the upper cluster of four A-strains are identical, 
including an alignment gap. However, the AwAna sequence 
has 22 unique residues (in green) and is partially conserved 
with BwNo (nine residues in orange). In striking contrast to 
differences in HVR1 and HVR2, the AwCobU4-2 and U5-2 
homologs have identical HVR3 sequences that are con-
served with the B-strains, particularly BwStr (residues in 
blue), differing only at residues 241 and 244.

Nucleotide sequence alignment confirms a mosaic wspB 
and identifies a conserved repeated sequence

Nucleotide sequence alignment of eleven wspB 
homologs confirmed that WOL-A/B genetic mosaicism is 
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concentrated in the HVR regions and revealed three cop-
ies of a repeated sequence element within or near HVR2. 
Further analyses identified three copies of the repeated 
sequence element in ribA at the 5′-end of the virB8-D4 
operon and four copies in vir genes.

HVR1

HVR1 (Fig. S2, nucleotides 117–241) from BwStr begins 
with two nucleotides (117 and 120 in red) that are con-
served in BwStr and all WOL-A-strains except AwCobU5-2 
and AwCobU4-2. Downstream, the BwStr sequence 
includes 47 of 48 nucleotides (in blue) within a sequence 
motif characteristic of BwStr and the other B-strains. The 
AwCobU5-2 and AwAna sequences are initially similar to 
the WOL-B motif, but beginning at an alignment gap in 
the other A-strains they have 11 nucleotides (in orange, 
nucleotides 152–207) that are conserved with BwNo and 
BwPip at positions in which those strains diverge from 
the WOL-B consensus. Thus, HVR1 in BwStr begins with 
nucleotides from a conserved WOL-A sequence motif but 
transitions to the conserved WOL-B motif, while HVR1 
from the AwCobU4-2 A-strain differs from that WOL-B 
motif at a single nucleotide (176). In contrast, the AwAna 
and AwCobU5-2 sequences are mosaics of the WOL-A and 
WOL-B consensus motifs and share nucleotides with the 
divergent BwNo and BwPip B-strains, which also closely 
resemble each other upstream of HVR1 (23 nucleotides in 
light blue and one in orange).

HVR2 contains conserved repeat elements

HVR2 (Fig. S2, nucleotides 361–450) contains a con-
served WOL-B sequence motif that differs at 20 nucleo-
tides (in blue), from the WOL-A motif, while the divergent 
sequences from BwNo, BwPip, AwAna and AwCobU5-2 
share an alignment gap and are again similar (nucleotides 
in orange). A tandem repeated sequence at nucleotides 
365–379, CAAGTAATCAAGTAAC, in the B-strains 
BwStr, BwVitB and BwMet occurs with slight variation 
(underlined residues) as CAAGTAGCCAAATAAC, in 
the A-strains AwAtab 3, AwKue, AwMel and AwRi. We des-
ignated the eight-bp sequence, CAARTARY, where R = A 
or G, and Y = C or T, as an HVR2-repeat. The pseudogene 
from AwCobU4-2 contained a third copy of CAAGTAAT 
that interrupted ORF1 and was removed from the alignment 
(indicated by upwards arrow below alignment) to shift 
to ORF3, which maintains identity to the deduced amino 
acid sequence from BwStr. Just downstream of HVR2 
at nucleotides 457–463, a truncated copy of the HVR2-
repeat lacking the 3′-terminal pyrimidine is conserved in 
BwStr, BwVitB, BwMet and AwCobU4-2 and corresponds to 
the position (indicated by greater than less than symbols 

below alignment) of the transposon insertion in BwPip. 
Finally, we noted that the most divergent HVR2 sequences 
from AwAna, AwCobU5-2, BwNo and BwPip have T/C and 
A/G substitutions (in orange, light blue and green) that dis-
rupt the HVR2-repeat consensus.

HVR3

Within HVR3 (Fig. S2, nucleotides 670–831), conserved 
sequence motifs occur in the upper cluster of four A-strains 
and in the B-strains (nucleotides in blue), with the excep-
tions of BwPip (HVR3 absent) and BwNo. Sequences from 
AwCobU4-2 and AwCobU5-2 are identical despite their 
major differences in HVR1 and HVR2 and differ from 
the B-strain consensus only at nucleotides 722 and 773 
(in orange). The AwAna and BwNo sequences are the most 
divergent but share 43 variable nucleotides (in orange) and 
have 67 and 18 unique residues (in green), respectively.

HVR2‑repeats also occur in ribA and ribB

Based on a DNA pattern search (http://bioinformatics.org/
sms/), three HVR2-repeats occur in ribA, two in virD4, and 
single copies in virB8 and virB9 (Table 3). In addition, a 
reverse complement of the CAARTARY sequence occurs at 
the same position in ribB from three WOL-A-strains and 
BwPip (see gray shading in Fig. S3). The BwPip homolog 
contains a second copy at residues 7–14 just downstream 
of the start codon (not shown) and is a WOL-A/B mosaic 
(see below). Although repeat frequencies in individual ribA 
(0.29) and wspB (0.34) genes are ~sixfold higher than in 
the whole genomes of AwMel and BwPip (0.05) from flies 
(Diptera), it will be important to re-evaluate these frequen-
cies when a BwStr genome (Hemipteran host) becomes 
available.

Although RibA and RibB are involved in riboflavin bio-
synthesis, ribB is not contiguous with ribA and the virV8-
D4 operon, and it has higher variability than ribA (Table 2). 
Among the WOL-B-strains, ribB in BwStr and BwNo is 
conserved with the AwAu and AwMel A-strains (Fig. S3; 
note especially the bold blue residues downstream of nucle-
otide 181, as well as additional residues in orange). In con-
trast, the BwPip homolog is best-conserved (nucleotides in 
red) with WOL-A-strains, AwAna, AwHa and AwRi, includ-
ing an alignment gap at residue 483 encompassing an iden-
tical 15-nucleotide “island” with the reverse complement 
CAARTARY repeat. Downstream of the gap, at residue 
511, the BwPip sequence shifts to a predominantly WOL-B 
motif conserved in BwStr, BwNo, but also in AwMel (nucle-
otides in blue), while AwAna, AwRi and AwHa are mutually 
conserved (nucleotides in orange) versus all other strains. 
Within the 3′-end of the alignment (nucleotides 541–600), 
the BwPip sequence is conserved with BwStr, BwNo and 

http://bioinformatics.org/sms/
http://bioinformatics.org/sms/
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DwBm (nucleotides in blue), while AwAu and AwMel are 
the most divergent (nucleotides in green).

Discussion

Although the status of Wolbachia as a species remains 
unclear (Baldo et al. 2006b; Lo et al. 2007), a notable dis-
tinction between WOL-C-/D-strains that associate with 
nematodes as mutualists and WOL-A-/B-strains that occur 
as reproductive parasites in insects relates to genome sta-
bility and phylogenetic congruence between Wolbachia 
and its host. In insect hosts, Wolbachia appears to engage 
in frequent horizontal gene transfer, resulting in a lack of 
phylogenetic congruence manifested by gene structures 
that represent mosaic recombinations from genomes now 
considered distinct strains. Coinfections with two or more 
Wolbachia strains and activities of bacteriophages that 
reside in genomes of WOL-A/B-strains likely contrib-
ute to this genetic plasticity (Bordenstein and Reznikoff 
2005; Newton and Bordenstein 2011), which may reflect 
what some authors suggest is a worldwide Wolbachia pan-
demic (Zug et al. 2012). Examples of natural coinfections 
include AwAlbA and BwAlbB in A. albopictus mosquitoes 
(O’Neill et al. 1997), AwVitA and BwVitB in the parasitoid 
wasp, N. vitripennis (Perrot-Minnot et al. 1996; Raychoud-
hury et al. 2008) and AwHa and BwNo in the phytophagous 
D. simulans (James et al. 2002). A particularly interesting 
example in C. obstrictus weevils involves infection with 
a single AwCob strain, in which polymorphisms in wspA 
and wspB indicate that three distinct variants coexist in 
all host populations (Floate et  al. 2011) and it will be of 
interest to explore other genetic similarities and differences 
among these variants following separation in  vitro and/
or in uninfected hosts. Wolbachia coinfections have also 
been documented in insects such as fig wasps (Yang et al. 
2012), tephritid flies (Morrow et al. 2014) and planthoppers 
(Zhang et  al. 2013) whose interactions with parasitoids, 

parasites and predator arthropods may facilitate horizontal 
transmission (Cordaux et al. 2001; Werren et al. 2008; Zug 
et al. 2012). In nature, the BwStr strain occurs in two plan-
thopper hosts (Noda et al. 2001a) and in the strepsipteran 
endoparasite Elenchus japonicus (Noda et al. 2001b; Zhang 
et al. 2013). In the present study, BwStr has been artificially 
introduced into a cultured cell line, which has not been 
achieved with BwPip or nematode-associated strains. Adap-
tation of BwStr to cell lines (Noda et al. 2002; Fallon et al 
2013) will provide an in vitro system for examining mecha-
nisms of genetic exchange if conditions for maintenance of 
doubly infected cells can be developed through coinfection 
or somatic cell fusion. We note that high rates of recombi-
nation and transposition in Wolbachia (Baldo et al. 2006a; 
Cordaux et  al. 2008) are consistent with expression of an 
abundant RecA protein (SR 1.05; Table S3, entry 146) as 
well as 18 transposases and/or proteins with transposase 
domains in BwStr (Baldridge et al. 2014).

Genetic plasticity of wspB in the virB8‑D4 operon

An intact wspB that maps to the 3′-end of the virB8-
D4 operon in most WOL-A genomes (Wu et  al. 2004) is 
absent from 17 of 21 WOL-B-strains, including BwVulC 
and nearly all other isopod-associated strains (Pichon et al. 
2009), and is interrupted by a transposon in BwPip (Sanogo 
et al. 2007). Here, we verify that in BwStr, an intact wspB 
is co-transcribed with virD4 and is expressed in C/wStr1 
cells as an abundant protein at levels similar to those of 
many housekeeping proteins. The wspB structure closely 
resembles that of its better-studied wspA paralog, encod-
ing a major surface antigen that has four HVR regions with 
sequence motifs that have been shuffled by recombination 
within and between Wolbachia WOL-A- and -B-strains 
(Baldo et  al. 2005, 2010). Likewise, most sequence vari-
ation in wspB alleles occurs in the three HVR regions, 
with distinctive patterns for each region. HVR1 under-
scores WOL-A/B mosaicism in AwAna and AwCobU5-2, 

Table 3   Distribution of HVR2-
repeats in BwStr virB8-D4 
operon and genomes of AwMel 
and BwPip

Values indicate 5′-nucleotide positions of HRV2-repeats in the 9133-bp ribA to topA sequence from BwStr 
(see Fig. 1; Acc. KF43064.1). Negative values indicate reverse complement positions. Copy numbers in the 
complete AwMel (NC_002978.6) and BwPip (NC_010981.1) genomes are shown at right
a  Frequency is defined as number repeats/total nucleotides in each individual gene (or complete genome) 
indicated at the top of the panel, ×100
b  See underlined nucleotides 457–463 in Fig. S2, which lack the 3′-terminal pyrimidine

Repeat ribA virB8 virB9 virD4 wspB wMel wPip

CAAGTAAT/C 118/145 – – −5943b 7610/7618 154 239

CAAATAAT/C 672 – −2485 −5919b – 275 360

CAAGTAGC – 1288 – – 7702b 187 104

Total 3 1 1 2 3 616 703

Frequencya 0.29 0.15 0.13 0.12 0.34 0.05 0.05
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and in addition it shows a high level of identity between 
AwCobU4-2 and BwStr. Similarity between AwAna and 
AwCobU5-2 and between BwStr and AwCobU4-2 also 
occurs in HRV2, while BwNo stands out as distinctive. In 
BwPip, HVR2 is disrupted by a transposon insertion and 
we identified an eight-nucleotide HRV2-repeat (CAAR-
TARY) that correlates with transitions between WOL-
A-/B-strain motifs and the pseudogene lesions in BwPip 
and AwCobU4-2. Finally, we noted that high identity of 
AwCobU5-2, AwCobU4-2 and BwStr is unique to HVR3.

The remarkable similarity of the wspB homologs from 
BwStr and AwCobU4-2 (>98  % nucleotide identity Fig. 
S2) is consistent with exchange of an apparently intact 
gene between members of distinct Wolbachia supergroups 
by a mechanism that requires further investigation. Inten-
sive analysis of the wspA paralog demonstrates that intra-
genic recombination breakpoints are concentrated in con-
served regions outside of the HVRs (Baldo et  al. 2005, 
2010). CAARTARY repeats are not present in wspA, and 
in wspB, they occur only within and directly adjacent to 
HVR2 at positions that correspond to pseudogene lesions 
in AwCobU4-2 and in BwPip (due to a transposition event 
in BwPip; Sanogo et  al. 2007). Furthermore, Pichon et  al. 
(2009) suggested that transposition events may explain 
absence of wspB in the virB8-D4 operons of many WOL-
B-strains. In a practical sense, CAARTARY repeats at 
wspB pseudogene lesions and WOL-A/B sequence motif 
transitions (Figs. S1, S2, S3) suggest their involvement in 
genetic exchange. Because transformation of Wolbachia 
has not yet been achieved, engineering of CAARTARY 
repeats into vectors used successfully to introduce selecta-
ble markers into other members of the Rickettsiales (see 
Beare et al. 2011) merits investigation.

Potential functions of WspB

Although bacterial outer membrane proteins are impor-
tant mediators of interactions with host cells and specific 
function(s) of both WspA and WspB remain to be identi-
fied, they may have unique functions as porin proteins in 
Wolbachia, which lack cell walls. The virB8-D4 operons of 
Wolbachia and its sister genera, Anaplasma and Ehrlichia, 
are similarly organized (Gillespie et al. 2010; Hotopp et al. 
2006) with 3′- terminal genes encoding major surface pro-
teins that, analogous to wspB, are co-transcribed with the 
vir genes (Ohashi et  al. 2002). In A. marginale, a family 
of msp2 pseudogenes undergo “combinatorial gene con-
version” at the expression site (Brayton et  al. 2002) and 
MSP2 variants change during growth in different host cell 
types, which likely reflects a response to host immunity 
mechanisms (Chávez et  al. 2012). Similarly, Baldo et  al. 
(2010) proposed that changes in WspA HVR regions play 
a role in host adaptation and innate immunity interactions, 

consistent with variation in the higher-order structure of 
the protein in different hosts (Uday and Puttaraju 2012). 
HVR sequence changes in the wspB paralog may reflect a 
similar dynamic. Additional evidence indicates that MSP2 
proteins are glycosylated (Sarkar et  al. 2008), which is 
now an established process in post-translational modifica-
tion in bacteria (Dell et  al. 2010; Nothaft and Szymanski 
2010), and we note that WspB contains potential glycosyla-
tion sites. Although an inactivated pseudogene or absence 
of wspB in virB8-D4 operons of some Wolbachia strains 
indicates that it is not absolutely required for survival, a 
secretome analysis of Brugia malayi showed that WspB 
from DwBm is excreted/secreted into filarial host cells 
(Bennuru et al. 2009). Furthermore, it co-localizes with the 
Bm1_46455 host protein in tissues that include embryonic 
nuclei (Melnikow et  al. 2011). WspB is therefore itself a 
candidate T4SS effector that may play a role in reproduc-
tive manipulation of the host. Mosaicism in wspB and its 
high rate of evolution (Comandatore et al. 2013) may thus 
reflect genetic changes that optimize adaptation to particu-
lar host cells such as those in reproductive tissues and facil-
itate exploitation of new arthropod niches by Wolbachia.

Genetic plasticity of ribA in the virB8‑D4 operon

Aside from wspB at the 3′-end of the T4SS virB8-D4 
operon, ribA exhibits genetic plasticity at its 5′-end. In both 
BwStr and BwVulC, ribA is a two-part mosaic of N-termi-
nal WOL-A and C-terminal WOL-B motifs. In contrast, 
the internal virB8-D4 genes have typical B-strain identi-
ties, and in some strain comparisons, amino acid identities 
slightly exceed nucleotide identities, which Pichon et  al. 
(2009) attribute to strong selection against non-synony-
mous codon substitutions. Among the internal virB8-D4 
genes, however, Klasson et al. (2009) suggest that in AwRi, 
an especially variable region in virB10 is likely derived 
from genetic exchange with a B-strain. We note here that 
ribA from AwRi closely resembles B-strain homologs 
within a variable region that immediately precedes the GTP 
cyclohydrolase domain, where its homolog in BwStr tran-
sitions from WOL-A to WOL-B sequence motifs (Fig. S1, 
positions 387–450).

In contrast to DwBm, in which ribA and virB8 are co-
transcribed and bind common transcription factors (Li 
and Carlow 2012), relative abundance levels suggest that 
in BwStr, ribA is transcribed independently of the virB8-
D4 operon. Some WOL-B-strains, such as BwVulC, lack 
wspB at the 3′-terminus of the virB8-D4 operon, while our 
data confirm that in BwStr, wspB is co-transcribed with the 
vir genes, consistent with similar relative abundances of 
WspB and the five Vir proteins. In aggregate, these obser-
vations suggest that WOL-D and WOL-A-/B-strains may 
differ in how RibA and WspB expression interfaces with 
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T4SS-mediated transport of effectors in filarial worms 
and arthropod hosts (Felix et al. 2008; Masui et al. 2000; 
Rances et al. 2008; Wu et al. 2004), and it will be of interest 
to explore whether such differences relate to riboflavin pro-
visioning. In filarial nematodes (Li and Carlow 2012; Stru-
bing et al. 2010; Wu et al. 2009) and bedbugs (Hosokawa 
et  al. 2010), evidence suggests that Wolbachia provisions 
host with riboflavin, the precursor of flavin cofactors that 
are essential for many cellular redox reactions. In contrast, 
riboflavin depletion reduces BwStr abundance in C/wStr1 
cells, suggesting that BwStr utilizes host riboflavin and does 
not augment riboflavin levels in mosquito host cells (Fallon 
et al. 2014).

Potential functions of RibA and RibB

In initial commitment steps in riboflavin biosynthesis, 
enzymatic activities encoded by the ribA and ribB func-
tional domains use GTP and ribulose-5-phosphate as sub-
strates to catalyze riboflavin biosynthesis, consuming 25 
molecules of ATP per molecule of riboflavin (Bacher et al. 
2000). We note that in Wolbachia genomes, ribA is the 
annotated homolog of ribBA in Escherichia coli (Brutinel 
et  al. 2013) and encodes a dihydroxybutanone phosphate 
synthase domain with putative RibB function near the 
N-terminus, upstream of a GTP cyclohydrolase II domain 
with conserved dimerization and active site residues (RibA 
function). As in E. coli, Wolbachia genomes also encode 
ribB, but at a distinct chromosomal locus, suggesting that 
ribA and ribB are not coordinately expressed. In Sinorhizo-
bium meliloti (Rhizobiales; Alphaproteobacteria), knock-
out mutations of ribBA decreased flavin secretion but did 
not cause riboflavin auxotrophy or block establishment of 
symbiosis, suggesting that RibBA may have an undefined 
role in molecular transport (Yurgel et  al. 2014). As is the 
case with BwStr, RibB is at least threefold more abundant 
than RibA in the bacterium Acidithiobacillus ferrooxidans 
(Knegt et  al. 2008). In yeast, RibB has thiol-dependent 
alternative redox states (McDonagh et  al. 2011), partially 
localizes to the mitochondrial periplasm, and has an unex-
plained function in oxidative respiration that is independent 
of riboflavin biosynthesis (Jin et al. 2003). These observa-
tions raise the possibility that in Wolbachia, RibA and RibB 
may have functions other than riboflavin biosynthesis that 
integrate with pathways involved in cellular oxidative state, 
such as iron metabolism. Intracellular bacteria are chal-
lenged by host-imposed oxidative stress and iron starvation 
(reviewed by Benjamin et al. 2010) and riboflavin biosyn-
thesis is associated with iron acquisition in bacteria such as 
Helicobacter pylori (Worst et al. 1998) and Campylobacter 
jejuni (Crossley et al. 2007). Wolbachia interferes with iron 
metabolism and sequestration in insects (Brownlie et  al. 
2009; Kremer et  al. 2009) and influences iron-dependent 

host processes such as heme metabolism, oxidative stress, 
apoptosis and autophagy (Gill et al. 2014). We note that the 
periplasmic iron-binding component of a membrane trans-
porter is an abundant protein in BwStr (Table S3, entry 778 
and Baldridge et al. 2014).
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