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Introduction
Astrocytes are the most abundant glial cell type in the cen-
tral nervous system (CNS). In a normal brain, there are 
generally two major types of astrocytes: Fibrous astrocytes in 
white matter found in the corpus callosum and protoplasmic 
astrocytes in grey matter found in the cortex. In addition to 
their morphologic differences, the processes of protoplasmic 
astrocytes completely wrap or ensheath synapses as well as 
blood vessels (Bushong et al., 2002; Wilhelmsson et al., 2006; 
Halassa et al., 2007). The spatial occupation and the intimate 
physical contact with both synapses and blood vessels render 
astrocytes as ideally situated to be involved in bidirectional 
interactions with neurons as well as with vasculature. Many 
studies also demonstrate that astrocytes are heterogeneous 
in morphology, molecular expression (Xie et al., 2010; Ding, 
2013; Molofsky et al., 2014) and electrophysiological and 
Ca2+ signaling properties (Zhou and Kimelberg, 2000; Takata 
and Hirase, 2008) (for review of this topic see Zhang and 
Barres, 2010). It has been thought that glial fibrillary acidic 
protein (GFAP) is a ‘pan-astrocyte’ marker, but its expression 
levels are different in fibrous and protoplasmic astrocytes. 
Aldh1L1 is the most widely and homogenously expressed 
astrocyte specific protein (Cahoy et al., 2008).

Astrocytes have been found to play important roles in many 
diseases and respond to almost all forms of neural disorders 
ranging from severe brain injuries such as stroke and trau-
matic brain injury (TBI), and neurodegenerative diseases such 
as Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS) through a process called 
astrogliosis (Sofroniew and Vinters, 2010; Verkhratsky et al., 
2012). A hallmark of astrogliosis is the morphological changes 
and the increased expression of GFAP in astrocytes. Given the 

different causes and the onset of diseases, the temporal and 
spatial changes of these reactive astrocytes are different; thus, 
detailed studies on the dynamic changes of reactive astrocytes 
have been undertaken to provide information for potential 
therapeutic interventions. For extensive reviews of reactive 
astrocytes in various aspects in neural diseases, readers can 
consult reviews by Burda and Sofroniew (2014), Sofroniew 
and Vinters (2010), and Escartin and Bonvento (2008). This 
review article will focus on discussing the dynamics of reac-
tive astrocytes in the peri-infarct region, i.e., the so called pen-
umbra after focal ischemia in experimental animal models.

Spatial and temporal dynamics of reactive 
astrocytes in the penumbra after ischemia
Focal ischemic stroke, resulting from the blockage of cere-
bral blood vessels in a certain region of the brain, leads to 
cell death and brain damage and is a leading cause of hu-
man disability and death (Stapf and Mohr, 2002). Besides 
cell death in the ischemic core, ischemia induces a series of 
alterations at molecular and cellular levels in the penumbra 
over time, including Ca2+ signaling, cellular proliferation, 
morphology changes and gene regulation (Panickar and 
Norenberg, 2005; Ding et al., 2009, 2013, 2014; Zamanian 
et al., 2012; Li et al., 2013). These alterations are temporal 
and spatial dependent with a common feature of high GFAP 
expression levels in reactive astrocytes and formation of glial 
scar in the penumbra that demarcates the ischemic core (in-
farction) from healthy tissue (Haupt et al.,2007; Hayakawa 
et al., 2010; Barreto et al., 2011; Shimada et al., 2011; Bao et 
al., 2012; Li et al., 2013). The clinical aim of stroke therapy 
is to salvage the cells in the penumbra; thus, in-depth study 
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on the dynamics of reactive astrocytes at molecular and 
cellular levels will provide insights for therapeutic strategy. 
Although the responses of astrocytes to ischemic stroke have 
been well documented in focal ischemic models, including 
photothrombosis (PT)-induced focal ischemia and middle 
cerebral artery occlusion (MCAO) models (Stoll et al., 1998; 
Schroeter et al., 2002; Haupt et al., 2007; Nowicka et al., 
2008; Barreto et al., 2011; Shen et al., 2012; Li et al., 2013), 
detailed and quantitative studies on cell proliferation with a 
good temporal resolution are lacking. Our recent study pre-
sented a detailed evaluation of dynamic change of reactive 
astrocytes in the cortex after PT (Li et al., 2014). We used 
bromodeoxyuridine (BrdU) labeling and immunostaining 
to assess the spatial and temporal changes in cellular prolif-
eration, morphology and glial scar formation. To precisely 
study the rate of cell proliferation of astrocytes and microg-
lia at different times after ischemia, we designed a ‘time-block’ 
BrdU labeling protocol to titrate proliferating cells in the 
penumbra. Mice were administered with BrdU at the begin-
ning of days 1, 3, 4, 5, 9, 11, and 13 post PT for two consec-
utive days and sacrificed 1 day following the last injection. 
From this study, a few new results were obtained. 

The spatial and temporal distribution of proliferating cells
Our results show that the densities of BrdU+ cells in the region 
close to the ischemic core are higher than those regions further 
away from the ischemic core over time after PT (Figure 1B), 
suggesting spatial difference in cell proliferation rates (Li et al., 
2014). On the other hand, BrdU+ cells significantly increased 
from post ischemic day 1 to day 2 and reached a peak value 
during days 3 and 4 after PT, and then decreased over time 
and finally sustained their value for a prolonged time—until 
day 14, the longest time in the study (Figure 1B). These results 
demonstrate that the rate of proliferating cells generated in the 
penumbra after ischemia is highly spatiotemporal dependent, 
consitent with the report from Barreto et al. (2011). 

Morphological changes of reactive astrocytes
As glial fibrillary acidic protein (GFAP) is a prototypic mark-
er for reactive astrocytes, we conducted immunostaining of 
GFAP to inspect the morphological change and proliferation 
of reactive astrocytes. There was little expression of GFAP in 
the cortex of control mice (also see previous studies (Zhang 
et al., 2010; Li et al., 2013)) (Figure 1A:A1). However, a 
significant increase of GFAP was observed at day 2 post PT 
(Figure 1A:A2). Up to day 4 post PT, astrocytes exhibited a 
stellate morphology and hypertrophy with highly upregu-
lated GFAP expression (Figure 1A:A3). Starting from day 6, 
astrocytes in the penumbra were densely packed and formed 
a stream with their elongated (straight) processes pointing 
towards the ischemic core, i.e., a feature of astroglial scar for-
mation (Figure 1A:A4). After day 10, the morphology of as-
trocytes at the scar border remained similar but with longer 
processes as compared with days 6–8, suggesting the matura-
tion of astroglial scar tissue (Figure 1A:A5–A6). Significant 
increase in GFAP was also observed in the regions further 
away from the penumbra but with similar morphology to 
the astrocytes in the control condition. Thus, morphology 
of GFAP+ astrocytes in the penumbra experienced dramatic 
changes over time after PT (Figure 1A), corroborating the 
results from other studies (Haupt et al., 2007; Nowicka et al., 

2008). Mestriner et al. (2015) conducted a detailed study on 
the morphology of reactive astrocytes at 30 day after endo-
telin-1 induced ischemic stroke. Their results showed that 
ramification and length of reactive astrocytes in the penum-
bra were different between sensorimotor cortex and dorso-
lateral striatum, indicating the regional heterogeneity inthe 
morphology of reactive astrocytes; however, morphological 
change in earlier stage might be more important in disease 
progress than in the chronic stage. The detailed study on 
morphology of reactive astrocytes was also conducted in rats 
at day 4 after MCAO (Wagner et al., 2012). Mean process 
volume, diameter and branching level in reactive astrocytes 
in the penumbra all increased compared with astrocytes in 
the remote region from ischemic core. However, the mean 
process length of reactive astrocytes in the penumbra is 
shorter than astrocytes in the remote region, confirming 
hypertrophic morphology of reactive astrocytes at this time 
point. Due to the heterogeneity of astrocytes in the brain 
even in the same region such as cortex (Takata and Hirase, 
2008; Benesova et al., 2009), it is conceivable that astrocytes 
would respond to stroke in different manners. Thus detailed 
characterization of reactive astrocytes can only be done with 
lineage analysis and the availability of transgenic mice that 
express fluorescent marker in different types of astrocytes. 

Proliferating reactive astrocytes
It is known that reactive astrocytes are also characterized 
by progressive changes in proliferation and gene expression 
(Panickar and Norenberg, 2005; Haupt et al., 2007; Nowicka 
et al., 2008; Barreto et al., 2011; Zamanian et al., 2012). We 
further evaluated the rate of proliferating astrocytes using 
double staining of GFAP and BrdU. Although a large num-
ber of GFAP+ astrocytes were emerged after PT, overall, the 
GFAP+BrdU+ proliferating astrocytes only accounted for a 
small percentage of total BrdU+ cells, which reached a peak 
value of about 6% from post ischemic days 3 to 4 and then 
decreased sharply over time (Figure 1D). On the other hand, 
the ratio of GFAP+BrdU+ to GFAP+ also reached the highest 
level within days 3 to 4 after PT (Li et al., 2014). These results 
demonstrated that stroke induces an increase in the num-
ber of proliferating reactive astrocytes in a highly time-de-
pendent manner. The results indicate that the majority of 
GFAP+ reactive astrocytes resulted from the upregulation of 
GFAP in existing astrocytes without proliferation. Neverthe-
less, this BrdU labeling protocol may underestimate the total 
number of BrdU+ cells since a single daily injection will not 
label all proliferating astrocytes and other cells (Wanner et 
al., 2013).
 
Correlation of behavioral deficits with reactive 
astrogliosis
Our study demonstrated that focal ischemia-induced reactive 
astrocytes exhibit heterogeneity in morphology, GFAP ex-
pression levels and proliferating capability; furthermore, such 
heterogeneity is spatiotemporal dependent (Figure 2). After 
ischemia, the brain experiences spontaneous recovery process 
(Badan et al., 2003; Li et al., 2004; Clarkson et al., 2013). Since 
astrogliosis and glial scar formation is such an important 
pathological phenomenon, one is led to ask whether reactive 
astrogliosis is related to ischemia-induced behavioral deficits. 
To explore this, behavioral tests were conducted to study the 
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time courses of forelimb shift asymmetricity, strength, and 
sensory motor impairments (Li et al., 2014). The functional 
deficits have a similar time window to the infarct expansion, 
brain edema and swelling, and the highest rates of cell prolif-
eration and reactive astrocyte generation. Functional deficits 
were recovered from day 6 after ischemia when glial scar tis-
sue starts to form, suggesting that glial scarring might have 
a beneficial effect by stopping the expansion of the ischemic 
core. Thus, our study suggests that dynamic cellular prolifer-
ation and reactive astrogliosis correlate with the progress of 
brain and neuronal remodeling and functional recovery, and 
that targeting reactive astrocytes might be an important strat-
egy to facilitate improvement of stroke outcomes.

Reactive astrogliosis and cell therapy in focal 
ischemia 
Astrogliosis also occurs in chronic neurodegenerative diseas-
es such as AD. Due to the slow reactivation processes asso-
ciated with the disease progress and lack of glial scar tissue, 
reactive astrocytes are more evenly distributed in chronic 
diseases. Thus it is conceivable that the properties of reactive 
astrocytes in chronic neurodegenerative diseases are different 
from these in focal ischemia. Although profound progress 
has been made regarding the dynamics of reactive astrocytes 
in morphology and cell proliferation after strokes, studies 
on gene profile of reactive astrocytes at different times after 
focal ischemia are needed to define the properties of reac-
tive astrocyte at different stages. Our study suggests that the 
change of gene expression will likely be different at different 
times after ischemia as the morphology, the proliferating rate 
and the density of reactive astrocytes experience dynamic 
changes. Although single-point study of gene expression of 
reactive astrocyte after ischemia has been conducted (Zama-
nian et al., 2012), further studies in this area will likely eluci-
date the signaling pathways by which astrogliosis is induced 
after ischemia and derive new insights into the therapeutic 
potential of reactive astrocytes in ischemia. 

On the other hand, growing evidence indicates that reactive 
astrocytes exhibit stem cell-like properties (Buffo et al., 2008; 
Robel et al., 2011; Shimada et al., 2012; Sirko et al., 2013; Di-
mou, 2014). They can express neural stem cell related proteins 
such as Nestin, Sox2 (Shimada et al., 2012), and DCX, an im-
mature neural stem cell marker (Ohab et al., 2006). Moreover, 
it has been reported that astrocytes can be converted into 
neuroblasts and neurons by forced expression of single tran-
scriptional factors such as Sox2 (Su et al., 2014), neurogenin-2 
(Berninger et al., 2007; Heinrich et al., 2010), NeuroD1 (Guo 
et al., 2013), or a combination of multiple transcriptional fac-
tors such as ASCL1, LMX1B and NURR1 (Addis et al., 2011). 
Thus targeting reactive astrocytes and using local astrocytes 
are attractive strategies of cell therapy for stroke. Our study 
on dynamics of reactive astrocytes provides an important im-
plication for the optimal timing for the pharmacological and 
genetic manipulations of reactive astrocytes to improve stroke 
outcomes in experimental and clinic studies of stroke therapy. 
To genetically manipulate reactive astrocytes in vivo, astro-
cyte-specific approaches such as viral transduction (Xie et al., 
2010) and Cre/loxP recombinase system with astrocyte-spe-
cific Cre driver mouse lines (Mori et al., 2006) are required. 

While growing evidence suggests that ischemic stroke dra-
matically increases neurogenesis in the subventricular zone 

(SVZ) and subgranular layer in dentate gyrus (Tobin et al., 
2014), a recent study first showed that ischemic stroke causes 
substantial reactive astrogliosis in SVZ (Young et al., 2013). 
The hypertrophic reactive astrocytes and their tortuous pro-
cesses disrupt neuroblast migratory scaffold and thus might 
be the cause of SVZ reorganization after stroke. Future studies 
will be required to further explore whether SVZ astrocytes can 
function as neural stem cells and can be differentiated into 
neurons to contribute to the improvement of stroke outcomes.
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Figure 1 Time course of astrocyte proliferation and morphological changes after stroke.
(A) Fluorescent images of glial fibrillary acidic protein (GFAP) and BrdU expression in the penumbra from mice at different times after PT. (B) 
Summary of bromodeoxyuridine (BrdU) + cell density presented as cell number per mm2 in region 1 (R1) and region (R2) with an area of 200 μm × 
200 μm in the layers 2/3 of cortex. R1 is located 0–200 μm from the edge of ischemic core, and R2 is located 200–400 μm from the edge of ischemic 
core (see the left panel of A2). (C, D) The density of GFAP+ (C) and GFAP+BrdU+ (D) stained cells in the penumbra. The cells were counted in the 
penumbral region of 200 μm × 400 μm in layers 2/3 cortex located 0–400 μm from the edge of ischemic core. IC: Ischemic core; P: penumbra. Data 
were adapted from Li et al. (2014).
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Figure 2 Schematic representations of dynamic reactive astrocytes in the penumbra and glial scar formation at different stages after a focal 
ischemic stroke.
(A) In control conditions, very low percentage of astrocytes expresses glial fibrillary acidic protein (GFAP). (B) Acute phase after focal ischemia (days 1–4 
post ischemia). Astrocytes exhibit stellate morphology and hypertrophied GFAP positive processes and a high proliferating rate. (C) Sub-acute phase 
after focal ischemia (days 4–8 post ischemia). Astrocytes exhibit elongated processes pointing to the ischemic core, and a glial scar is formed. The pro-
liferating rate decreases significantly at this stage. (D) Chronic phase after focal ischemia (longer than day 8 post ischemia). Astrocytes further extend 
processes toward the ischemic core and glial scar is matured. The GFAP expression levels in reactive astrocytes surrounding the glial scar decreased and 
reactive astrocytes lose the capability of proliferation. Astrocytes are heterogeneous in morphology, molecular expression, and proliferation.
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