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Abstract: Background: The prognostic relevance of the PIK3CA mutation together with PD-L1, c-Met,
and mismatch repair deficiency (dMMR) have not been fully investigated in Asian women with breast
cancer (BC) who have undergone postoperative adjuvant chemotherapy. Methods: We analyzed
PIK3CA mutations via peptide nucleic acid (PNA)-mediated real-time PCR assay, PD-L1/c-Met
expression via immunohistochemistry (IHC), and microsatellite instability (MSI) status using PCR
and IHC, in 191 resected BCs from 2008 to 2011. The Cancer Genome Atlas (TCGA) dataset for the
involvement of the PIK3CA mutation with PD-L1/c-Met/MMR was explored. Results: The PNA
clamp-mediated assay was able to detect the PIK3CA mutation in 1% of the mutant population
in the cell line validation. Using this method, the PIK3CA mutation was found in 78 (49.4%) of
158 samples. c-Met and PD-L1 positivity were identified in 31.4 and 21.8% of samples, respectively,
which commonly correlated with high histologic grade and triple-negative subtype. MSI/dMMR
was observed in 8.4% of patients, with inconsistency between MMR IHC and the MSI PCR. The
PIK3CA mutation exhibited a poor prognostic association regarding recurrence-free survival (RFS) in
both overall and triple-negative BCs. In subgroup analyses, the PIK3CA-mutated tumors showed
poorer RFS than the PIK3CA-wildtype within the c-Met-positive, MSS, triple-negative, or age onset
<50 years subgroups, which showed a similar trend of association in TCGA data. Conclusions:
PIK3CA mutation together with c-Met or dMMR/MSI status might be relevant to poor prognosis in
BC subsets, especially in Asian women.

Keywords: PIK3CA mutation; adjuvant chemotherapy; breast cancer; invasive ductal carcinoma;
c-Met; PD-L1; microsatellite instability; mismatch repair proteins

1. Introduction

Breast cancer (BC) represents the most serious causes of malignancy with an estimated
2.26 million cases and cancer-associated mortality with 685,000 deaths for women glob-
ally in 2020 [1,2]. In Asia, the incidence rates of BCs are low but have several distinct
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characteristics from those of western countries; they are rapidly expanding at a higher
pace than the western countries, which poses a major clinical challenge [3]. In general,
Asian women are more likely to present with a younger age onset (less than 50 years of
age; this age range has usually been considered premenopause), and higher grade, stage,
or hormone receptor-negative(HR–)/triple-negative; and are less likely to have favorable
prognosis than women in western countries who have a peak incidence at 60–70 years
and HR+ tumors [1,3]. Depending on the tumor subtype and stage, major strategies may
include surgery, chemotherapy, hormone therapy, targeted therapy, or radiation therapy [4].
In nonmetastatic BC patients, surgical resection is the first treatment of choice and adju-
vant therapy can be determined based on the tumor subtype [5]. Adjuvant treatment is
an additional therapeutic attempt targeted to improve the time period devoid of disease
and survival rate after surgical resection to inhibit micrometastases, by adding standard
chemotherapy with or without newer agents [6,7]. Endocrine therapy has been a traditional
example for the HR+ tumor type; HER2-targeted antibody therapy for HER2+ tumor type.
A combination with immunotherapy or small-molecule inhibitor therapy may be currently
favored as new treatment regimens and options [4]. However, triple-negative BC patients
have limited options except for chemotherapy alone [5]. With growing interest in variable
treatment options in a new era of personalized medicine, druggable prognostic and predic-
tive biomarkers for BC have drawn particular attention [8]. Recently, the American Society
of Clinical Oncology (ASCO) provided a new recommendation for the use of alpelisib, an
orally bioavailable, α-specific phosphoinositide 3-kinase (PI3K) inhibitor, in the therapy
of postmenopausal patients with HR+, HER2−, PIK3CA-mutated BC [9], which rekindled
interest in the PIK3CA mutation as an eligible treatment selection biomarker; although this
is based on data of the western population [10,11]. However, scarce information is available
on the Asian population.

The PIK3CA mutation is exemplified as the most frequent molecular abnormality
in the PI3K signaling pathway, which is the most recurrently altered in BCs, accounting
for 20–40%, that can be therapeutically targeted by small molecules [12]. However, not
every patient with PIK3CA-mutated BC will gain advantage from PI3K inhibitors; only a
27–29% overall response rate was noted among the PIK3CA-mutated BC patients with this
treatment [10,11]. This suggests that there may remain other genetic regulators engaged in
PIK3CA mutation and its clinical outcome.

Oncogenic activation of the PI3K signaling could be mutually influenced by the hepato-
cyte growth factor (HGF)/MET axis, the programmed death-ligand 1 (PD-L1)/programmed
death-1 (PD-1) axis, and microsatellite instability triggered by mismatch repair deficiency
(MSI/dMMR), the regulation of which, in our understanding, can contribute to BC treat-
ment [13]. PD-L1/PD-1 axis represents cancer immunotherapy, that utilizes the patient’s
immune system to repress tumor cells, and has been drawing attention in the treatment
of BC [14]. The binding of PD-L1, an immune inhibitory protein, to PD-1 displayed on
the tumor-infiltrating lymphocytes inhibits anticancer immunity and stimulates tumor
growth [15]. Both biomarkers of dMMR and MSI-high (MSI-H) have been shown to be
reliable predictors for good response to immunotherapy, and are permitted by the United
States Food and Drug Administration (FDA) to treat solid tumors with immune checkpoint
inhibitors aiming for PD-1, irrespective of tumor origin. c-Met is a receptor tyrosine kinase
that upon binding of its ligand, HGF, triggers downstream signaling activities including var-
ious vital functions essential in embryologic development and tumor progression [16]. The
c-Met/HGF pathway is associated with BC progression and suggests anti-c-Met inhibitors
for patients with triple-negative BC [16]. An in vivo study has shown that oncogenic
MET/PIK3CA synergistically induces tumor aggressiveness and chemoresistance [13].
Given that the PIK3CA mutation is frequent in BCs, PD-L1, c-Met, and MSI/dMMR might
considerably affect BCs, thus, implying that these markers would be tumor behavior-related
biomarkers for PIK3CA-mutated BC.

In this study, we focused on the PIK3CA mutation and its possibly related markers of
PD-L1, c-Met, and MSI/dMMR in BCs to determine whether they were relevant to clinical
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outcomes after adjuvant chemotherapy. We explored whether PIK3CA mutation can be
involved in the signaling pathways of c-Met, PD-L1, or MSI/MMR in BCs on the basis of
TCGA (The Cancer Genome Atlas) data.

2. Materials and Methods
2.1. Study Design and Patients

Written informed consent was obtained from patients. The Institutional Review Board
(IRB No. HALLYM 2019-11-003-001) approved this study. BC specimens were retrospec-
tively extracted from 217 consecutive patients who underwent adjuvant chemotherapy after
either modified radical mastectomy or conserving breast surgery and either sentinel lymph
node biopsy or axillary lymph node dissection consecutively, from June 2008 to December
2011, at Hallym University Sacred Heart Hospital, Korea. Only patients who were women
over 18 years old, diagnosed with primary BCs histologically confirmed as invasive ductal
carcinoma (for more homogeneous study enrollment) and were not receiving any neoadju-
vant treatment, and whose formalin-fixed, paraffin-embedded (FFPE) blocks were available
for analysis were enrolled. All tumors were excised before adjuvant chemotherapy, with all
clear resection margins confirmed by frozen biopsy. Finally, 191 patients were included in
the study. The median age was 49 years (range 28–80) at the time of diagnosis.

After operation, adjuvant treatments were applied, as was clinically indicated. Of the
191 patients, 101 intravenously received adjuvant 5-fluorouracil 500 mg/m2, epirubicin
60 mg/m2, and cyclophosphamide 500 mg/m2; 45 with doxorubicin 60 mg/m2 and cy-
clophosphamide 600 mg/m2; 30 with docetaxel 75 mg/m2, doxorubicin 50 mg/m2, and cy-
clophosphamide 500 mg/m2; 9 with 5-fluorouracil 500 mg/m2, doxorubicin 50 mg/m2, and
cyclophosphamide 500 mg/m2; 3 with 5-fluorouracil 600 mg/m2, methotrexate 40 mg/m2,
and cyclophosphamide 600 mg/m2; 2 with paclitaxel 75 mg/m2; and 1 with paclitaxel
175 mg/m2. Fifty-one patients underwent trastuzumab, and 141 received hormonal therapy.

Clinicopathologic parameters inclusive of age at diagnosis, size, metastasis, and
recurrence or death were retrieved from the electric medical charts. Pathologic TNM
staging followed the 8th American Joint Committee on Cancer criteria. Histological type
and grading were based on the World Health Organization classification.

The average follow-up duration was 106.2 ± 16.3 months. The last follow-up point
of time for survival outcome was analyzed until July 2019; 184 patients (181/191, 96.3%)
were alive and 22 patients (22/191, 11.5%) had tumor relapse. Among the 22 patients with
tumor relapse, 17 survived and 5 died.

2.2. Histopathological Analysis

Histologic information and immunohistochemical staining results for estrogen recep-
tor (ER), progesterone receptor (PR), HER2, and Ki-67 were reviewed by two independent
board-certified experienced pathologists (YA Cho and MJ Kwon). HR status (ER, PR) was
assigned positive by counting the positive tumor nuclei more than 1% [17]. HER2+ status
was determined by protein overexpression (score of 3) using immunohistochemistry or
gene amplification via in situ hybridization [17], which were reviewed from the digital data
stored in the hospital’s electric database.

The BC subtypes were defined according to ER, PR, HER2 status, and Ki-67 labeling
index, and categorized as follows: luminal A (HR+ [ER+ and/or PR+], HER2−, and low
Ki-67); luminal B (HR+ [ER+ and/or PR+], and HER2+ or HER2−, and high Ki-67); HER2-
enriched (HR− [ER− and PR−] and HER2+); and triple-negative (HR− [ER− and PR−] and
HER2). The cutoff value of high or low Ki-67 was set as 14% [18].

2.3. DNA Extraction and PIK3CA Mutation Analysis

Genomic DNA extraction was conducted from two slides of 5 µm thick FFPE sections
through the Maxwell 16 FFPE Purification Kit for DNA (Promega, Madison, WI, USA).
Their concentration and purity were examined by a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, NC, USA). The average concentration of obtained
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DNA was 45.27 ng/µL (range, 19.50–146.70 ng/µL), and the estimated 260/280 purity was
from 1.88 to 3.99. The DNA samples were stored at −20 ◦C unless used promptly.

Alteration of PIK3CA variants were identified using the PNAClamp PIK3CA Muta-
tion Detection kit (Panagene, Daejeon, Korea), which exploits modified PCR technology
applying optimized peptide nucleic acid (PNA) probes that firmly bind to wild-type DNA
templates (Supplementary Table S1). Those firm bindings to the wild-type DNA templates
led to no amplification of the wild-type DNA template during polymerase chain reaction
(PCR), whereas the mutated DNA templates were processed for multiplication. All detailed
procedures and calculation methods were used as previously described [19,20].

2.4. Immunohistochemistry and MSI/MMR Analysis

Immunohistochemical staining, except for PD-L1, was assessed on 4 µm thick tissue
sections of microarray with two 3.0 mm tumor cores employing BenchMark XT automated
immunostainer system (Ventana Medical Systems, Inc., Tucson, AZ, USA), as per the
manufacturers’ manuals. The primary antibody used was anti-c-Met (rabbit polyclonal,
pre-diluted; Ventana Medical System) for 40 min at 37 ◦C, then a secondary antibody of
Universal HRP Multimer (Ventana Medical System) was used for 8 min at 37 ◦C. Then, the
sections were incubated with chromogen diaminobenzidine (ultraView Universal DAB Kit,
Ventana Medical System) and counterstained with hematoxylin. The following primary
antibodies as for MMR proteins were applied: anti-MLH1 (pre-diluted; Ventana Medical
Systems), anti-MLH2 (1:300; Cell Marque, Rocklin, CA, USA), anti-PMS2 (pre-diluted;
Ventana Medical Systems), and anti-MSH6 (1:200; Cell Marque). PD-L1 staining was
carried out by the FDA-approved PD-L1 22C3 pharmDx kit (Dako North America Inc.,
Carpinteria, CA, USA) on the Dako AutostainerLink 48, according to the manufacturer’s
instructions [21].

For PD-L1, the slides were assigned based on the percentage of positive cells separated
by the number of fields to calculate the mean value for each individual case, defined at
200× magnification. The PD-L1 combined positive score was calculated with respect to
the ratio of PD-L1-positive cells (tumor or immune cells) to the total number of tumor
cells × 100, and was categorized into positive (≥1) or negative (<1).

Interpretation of c-Met expression based on adjusted scoring value described in clinical
trials regarding the MET inhibitor was adapted as follows [22]: 0, no staining or staining
intensity in <50% tumor cells; 1+, weak-to-moderate staining intensity in >50% tumor
cells; 2+, moderate-to-strong staining intensity in >50% of tumor cells; 3+, strong staining
intensity in >50% tumor cells in terms of membranous and/or cytoplasmic staining. Scores
of 2+ or 3+ were considered as c-Met-positive, and those of 0 or 1+ as c-Met-negative.

MSI/MMR status was determined depending on loss of expression of MMR proteins
and/or by analysis of melting peak using real-time PCR on five quasi-monomorphic
mononucleotide repeat markers such as NR21, NR24, NR27, BAT25, and BAT26, assessing
a U-Top Microsatellite Instability Detection Kit (Seasun Biomaterials Inc., Daejeon, Korea)
for FFPE normal and tumor tissues. MSI-low (MSI-L) and MSI-H were divided when allelic
size variation occurred in either one or two of the five mononucleotide markers, respectively.
The MSI/dMMR was assigned as either loss of expression of one or more MMR proteins or
allelic size variation in one or more of the five quasi-monomorphic markers, which was
conducted by PCR; microsatellite-stable/proficient-MMR (MSS/pMMR) as both intact
expression of MMR proteins and absence of any MSI [23].

2.5. TCGA Dataset Analysis for PD-L1/c-Met/MMR Related to PIK3CA Mutation

Mutational status of PIK3CA gene and mRNA expression profile of 6 genes (PD-L1,
MET, MLH1, MSH2, MSH6, and PMS2) was downloaded from the “Breast Invasive Carci-
noma” dataset of the TCGA (http://cancergenome.nih.gov/abouttcga (accessed on 27 Jan-
uary 2022)) in cBioPortal (https://www.cbioportal.org/ (accessed on 27 January 2022)).
Of the 1108 samples included in the dataset, 978 samples which had available mutational
status and expression profiles were used. Regarding the mutational status of PIK3CA,
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978 samples were categorized as wild-type (n = 660) and mutant (n = 318). We compared
expressional differences of 6 genes for PIK3CA mutational status for statistical analysis
calculated by Mann–Whitney U test.

2.6. Statistical Analysis

The categorical variables were determined by means of the chi-squared test or two-
sided Fisher’s exact test. Survival curves were compared assessing Kaplan–Meier estimates
and the log-rank test. Overall survival (OS) was determined as the interval time from
the day of surgery to death of any cause or last follow-up; recurrence-free survival (RFS)
was indicated as the gap of time from the day of surgery to the day occurring relapse of
tumor, death of any cause, or the last follow-up. Hazard ratios were obtained with Cox
regression for the univariate and multivariate analyses of OS and RFS, and verified to fulfill
assumptions for proportional hazards. Statistical analyses were conducted with SPSS for
Windows version 21.0 (SPSS Inc., Chicago, IL, USA). Statistical significance was considered
a two-sided p-value of <0.05.

3. Results
3.1. Validation of the Assay for PIK3CA Mutation

To investigate the detection capability of the method (PNA clamp real-time PCR),
PIK3CA-mutated (A549 cell line) DNA was serially diluted to generate samples containing
100, 50, 20, 10, 5, and 1% of PIK3CA-mutant alleles (E542K and H1047R, respectively), which
were subjected to PNA clamp real-time PCR to independently determine each detection
rate of the diluted PIK3CA-mutant alleles. The ∆Ct1 values of the 100-, 5-, 2-, 10-, 5-, and
1%-mutant samples were 12.84, 11.95, 9.83, 8.11, 7.83, and 4.09 for E542K-mutant alleles and
12.75, 12.03, 9.92, 8.39, 7.90, and 5.10 for H1047R-mutant alleles, respectively. According to
a ∆Ct1 cutoff point of ≥2.0, the PNA clamp real-time PCR assay was capable of identifying
the PIK3CA mutation in a 1%-mutant population (Figure 1).
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3.2. PIK3CA Mutation and TCGA Dataset Analysis

Through the TCGA dataset analysis for PIK3CA mutation and mRNA expression
profile of six genes (PD-L1, MET, MLH1, PMS2, MSH2, and MSH6), we identified that
PIK3CA mutations were potentially able to be connected with the signaling pathways of
MET, MSH2, and MSH6 in BCs based on TCGA data (Supplementary Table S2).

The PIK3CA mutation was evaluated in 191 cases, of which 158 cases had available
PIK3CA mutational results: 78 (49.4%) were PIK3CA-mutated and 80 (50.6%) were PIK3CA-
wildtype. PIK3CA hotspot mutations (H1047, E542, E545) were found in 48.1% of BC
patients (76/158), with only two cases (1.3%) harboring non-hotspot mutation (C420). The
most frequent alteration of the PIK3CA gene was H1047 (34.2%). Thirteen patients (8.2%)
carried two or more concurrent mutations in PIK3CA.

The frequency of PIK3CA mutations was 57.1% (16/28) in the luminal A subtype,
45.7% (37/81) in the luminal B subtype, 37.5% in the HER2-enriched subtype, and 52.8%
in the triple-negative subtype, of which the differences showed no statistical significance
(p = 0.406). There were no associations of the PIK3CA mutation with clinical or pathological
characteristics (Table 1).

Table 1. Clinicopathologic correlations of PIK3CA mutation, PD-L1 and c-Met expression, and
MSI/dMMR status.

Characteristic PIK3CA p PD-L1 Expression p c-Met Expression p

MT WT Positive Negative Positive Negative

n (%) n (%) n (%) n (%) n (%) n (%)

Age (years) 1.000 0.703 0.609
<50 39 (50.0) 40 (50.0) 18 (48.6) 60 (45.1) 26 (49.1) 52 (44.8)
≥50 39 (50.0) 40 (50.0) 19 (51.4) 73 (54.9) 27 (50.9) 64 (55.2)

pT category 0.874 0.265 0.410
pT1 35 (44.9) 37 (46.3) 15 (40.5) 70 (52.6) 24 (45.3) 61 (52.6)
pT2–pT3 43 (55.1) 43 (53.7) 22 (59.5) 63 (47.4) 29 (54.7) 55 (47.4)

pN category 0.752 0.852 0.407
pN0 43 (55.1) 42 (52.5) 22 (59.5) 76 (57.1) 33 (62.3) 64 (55.2)
pN ≥ 1 35 (44.9) 38 (47.5) 15 (40.5) 57 (42.9) 20 (37.7) 52 (44.8)

Histologic grade 0.527 <0.001 * <0.001 *
I–II 45 (57.7) 42 (52.5) 10 (27.0) 89 (66.9) 19 (35.8) 80 (69.0)
III 33 (42.3) 38 (47.5) 27 (73.0) 44 (33.1) 34 (64.2) 36 (31.0)

LVI 0.286 1.000 0.335
Absent 60 (76.9) 55 (68.8) 28 (75.7) 100 (75.2) 43 (81.1) 85 (73.3)
Present 18 (23.1) 25 (31.2) 9 (24.3) 33 (24.8) 10 (18.9) 31 (26.7)

ER 1.000 0.007 * <0.001 *
Negative 25 (32.1) 26 (32.5) 19 (51.4) 37 (27.8) 29 (54.7) 26 (22.4)
Positive 53 (67.9) 54 (67.5) 18 (48.6) 96 (72.2) 24 (45.3) 90 (77.6)

PR 1.000 0.022 * 0.001 *
Negative 28 (35.9) 29 (36.3) 18 (48.6) 38 (28.6) 27 (50.9) 28 (24.1)
Positive 50 (64.1) 51 (63.7) 19 (51.4) 95 (71.4) 26 (49.1) 88 (75.9)

HER2 0.154 0.531 0.573
Negative 61 (78.2) 54 (67.5) 29 (78.4) 95 (71.4) 41 (77.4) 84 (72.4)
Positive 17 (21.8) 26 (32.5) 8 (21.6) 38 (28.6) 12 (22.6) 32 (27.6)

Subtype 0.406 0.028 * 0.001 *
Luminal A 16 (20.5) 12 (15.0) 3 (8.1) 24 (18.0) 7 (13.2) 21 (18.1)
Luminal B 37 (47.4) 44 (55.0) 18 (48.6) 75 (56.4) 20 (37.7) 72 (62.1)
HER2-enriched 6 (7.7) 10 (12.5) 3 (8.1) 15 (11.3) 7 (13.2) 10 (8.6)
Triple-negative 19 (24.4) 14 (17.5) 13 (35.2) 19 (14.3) 19 (35.9) 13 (11.2)

MSI/MMR 0.196 0.736 0.926
MSS/pMMR 59 (89.4) 68 (95.8) 34 (94.4) 118 (91.5) 49 (92.5) 104 (92.9)
MSI/dMMR 7 (10.6) 3 (4.2) 2 (5.6) 11 (8.5) 4 (7.5) 8 (7.1)



Curr. Oncol. 2022, 29 2901

Table 1. Cont.

Characteristic PIK3CA p PD-L1 Expression p c-Met Expression p

MT WT Positive Negative Positive Negative

n (%) n (%) n (%) n (%) n (%) n (%)

PIK3CA status - 0.685 0.591
WT - - 17 (54.8) 53 (49.5) 22 (46.8) 48 (52.7)
MT - - 14 (45.2) 54 (50.5) 25 (53.2) 43 (47.3)

PD-L1 0.685 - 0.033 *
Negative 54 (79.4) 53 (75.7) - - 36 (67.9) 95 (82.6)
Positive 14 (20.6) 17 (24.3) - - 17 (32.1) 20 (17.4)

c-Met 0.591 0.033 * -
Negative 43 (63.2) 48 (68.6) 20 (54.1) 95 (72.5) - -
Positive 25 (36.8) 22 (31.4) 17 (45.9) 36 (27.5) - -

Abbreviations: PD-L1—programmed death ligand-1; MT—mutated; WT—wild type; LVI—lymphovascular
invasion; ER—estrogen receptor; PR—progesterone receptor; MSI—microsatellite instability; pMMR—patent
mismatch repair; dMMR—deficient mismatch repair. * statistically significant, p value < 0.05.

3.3. c-Met, PD-L1, and MMR/MSI

c-Met, PD-L1 expression and MSI/MMR status were available for 170 samples,
169 samples, and 167 cases, respectively. The positive rates of PD-L1, c-Met, and MSI/dMMR
were demonstrated in 37 (21.8%), 53 (31.4%), and 14 (8.4%) of the cases examined, respec-
tively. PIK3CA mutation was most commonly expressed together with c-Met (36.8%),
followed by PD-L1 (20.6%) and MSI/dMMR (11.9%).

PD-L1 overexpression was significantly correlated with c-Met positivity (p = 0.033).
Both PD-L1 and c-Met expressions showed association with high histologic grade (p < 0.001
and p < 0.001, respectively), ER− (p = 0.007 and p < 0.001, respectively), PR− (p = 0.022 and
p = 0.001, respectively), and BC subtype (p = 0.028 and p = 0.001, respectively).

We observed 14 cases (8.4%) that showed dMMR: immunohistochemically, complete
loss of expression of MSH2/MSH6 (n = 7), MLH1/MSH2/PMS2/MSH6 (n = 6), and MSH6
(n = 1), of which results more closely related to MSH2 and MSH6 considerably keep in line
with the TCGA data analysis. Those dMMR cases showed three cases of MSI-L, two of
MSI-H, and nine of MSS using real-time PCR. Among the five quasi-monomorphic markers,
BAT26 marker was the most commonly exhibited MSI (n = 4), next with the NR24 (n = 2)
and NR21 (n = 1) markers in sequence.

3.4. Prognostic Implications

Kaplan–Meier survival analysis was attempted to estimate whether PIK3CA mutation,
c-Met/PD-L1 expression, and MSI/dMMR were associated with OS or RFS in patients
with BC who received adjuvant chemotherapy following surgery. Kaplan–Meier curves
displayed that the PIK3CA-mutated BCs had a tendency for unfavorable OS when com-
pared to the PIK3CA-wildtype; however, it reached no statistical significance (p = 0.097,
Figure 2A). Patients with PIK3CA-mutated tumors showed a worse RFS rate than those
with PIK3CA-wildtype tumors (mean 114 vs. 124 months) (p = 0.034, Figure 2B).

Patients with c-Met-expressed BC had a shorter RFS than those with c-Met-negative
tumors (mean 111 vs. 123 months) (p = 0.047); there was no significant difference in
OS (p = 0.788). The OS and RFS between patients with PD-L1-positive and those with
PD-L1-negative showed no statistical differences (p = 0.873 and p = 0.241, respectively);
between patients with MSI/dMMR and those with MSS/pMMR (p = 0.224 and p = 0.658,
respectively).
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To explore prognostic factors for OS and RFS in patients with BCs, univariate and
multivariate Cox proportional hazard regression methods were analyzed (Table 2), which
also supported the relevance of PIK3CA mutation with worse RFS, but not with OS.
The univariate analysis revealed no PD-L1, c-Met expression, or MSI/dMMR influence
on OS or RFS, although the trend toward a poor RFS in c-Met expressed tumors showed
borderline statistical significance (p = 0.052). Lymphovascular invasion significantly affected
OS (p = 0.011). From the multivariate analysis, PIK3CA mutation was proved to be an
independent poor prognostic factor related to RFS (hazard ratio 3.543, 95% CI 1.047–11.988,
p = 0.042).

Table 2. Univariate and multivariate analyses of overall survival and recurrence-free survival of
patients with breast cancers.

Characteristic Overall Survival p Recurrence-Free
Survival p

Hazard Raio (95% CI) Hazard Raio (95% CI)

Univariate analysis
Age (y) (<50 vs. ≥50) 0.892 (0.180–4.420) 0.889 0.958 (0.413–2.222) 0.921

Histologic grade (I vs. II–III) 1.423 (0.287–7.052) 0.666 0.775 (0.325–1.849) 0.565
LVI (absent vs. present) 16.00 (1.869–137.04) 0.011 * 1.452 (0.592–3.564) 0.416
pT1 vs. pT2–pT3 5.082 (0.594–43.498) 0.138 0.863 (0.372–2.000) 0.731
LNM (absent vs. present) 6.757 (0.789–57.843) 0.081 1.607 (0.693–3.731) 0.269
ER (negative vs. positive) 0.464 (0.094–2.300) 0.347 1.015 (0.414–2.491) 0.974
PR (negative vs. positive) 0.523 (0.106–2.593) 0.428 0.545 (0.235–1.264) 0.157
HER2 (negative vs. positive) 2.782 (0.561–13.784) 0.210 0.597 (0.202–1.764) 0.350
PIK3CA (WT vs. MT) 5.116 (0.598–43.797) 0.136 2.662 (1.041–6.810) 0.041 *
PD-L1 (negative vs. positive) 1.203 (0.125–11.568) 0.873 0.426 (0.098–1.853) 0.255

c-Met (negative vs. positive) 0.734 (0.076–7.054) 0.789 1.712 (0.996–2.942) 0.052
MSS/pMMR vs. MSI/dMMR 3.988 (0.415–38.349) 0.231 0.703 (0.093–5.302) 0.732
Multivariate analysis
Age (y) (<50 vs. ≥50) 0.819 (0.084–7.989) 0.863 0.514 (0.177–1.496) 0.222

Histologic grade (I vs. II–III) 0.704 (0.044–11.291) 0.805 0.865 (0.201–3.716) 0.846
LVI (absent vs. present) 10.786 (0.418–278.281) 0.152 1.879 (0.534–6.611) 0.326
pT1 vs. pT2–pT3 2.577 (0.120–55.164) 0.545 0.596 (0.195–1.823) 0.365
LNM (absent vs. present) 2.753 (0.131–57.835) 0.514 0.626 (0.190–2.065) 0.442
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Table 2. Cont.

Characteristic Overall Survival p Recurrence-Free
Survival p

Hazard Raio (95% CI) Hazard Raio (95% CI)

ER (negative vs. positive) 0.194 (0.001–33.231) 0.532 14.086 (1.471–134.862) 0.022 *
PR (negative vs. positive) 2.262 (0.014–378.806) 0.755 0.056 (0.008–0.420) 0.005 *
HER2 (negative vs. positive) 2.852 (0.241–33.717) 0.406 0.294 (0.052–1.651) 0.164
PIK3CA (WT vs. MT) 7.758 (0.400–150.40) 0.176 3.543 (1.047–11.988) 0.042 *
PD-L1 (negative vs. positive) 2.477 (0.126–48.792) 0.551 0.279 (0.047–1.675) 0.163

c-Met (negative vs. positive) 0.360 (0.011–12.246) 0.570 1.956 (0.611–6.262) 0.259
MSS/pMMR vs. MSI/dMMR 5.821 (0.229–147.70) 0.286 0.906 (0.105–7.855) 0.929

Abbreviations: CI—confidence interval; LVI—lymphovascular invasion; LNM—lymph node metastasis;
ER—estrogen receptor; PR—progesterone receptor; PD-L1—programmed death ligand-1; MSI—microsatellite
instability; dMMR—deficient mismatch repair. * statistically significant, p value < 0.05.

In the subgroup analyses, the PIK3CA mutation was concerned with a worse RFS
rate in the subgroups of patients showing c-Met-positive tumors (p = 0.025), MSS tumors
(p = 0.034), triple-negative subtype (p = 0.031), and younger age onset <50 years (p = 0.004)
(Figure 3). There was not any significant difference for PIK3CA mutation in the RFS of
PD-L1-positive BCs (p = 0.112).
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4. Discussion

In the current study, we identified a significant correlation of the PIK3CA mutation
with the signaling pathways of c-Met and dMMR in BCs, based on the TCGA database,
as well as the poor prognostic role of the PIK3CA mutation with c-Met and MSI/MMR
expression in BCs. The PIK3CA mutation, comprising approximately 50%, was a poor
prognostic factor for worse RFS in the patient cohort that received adjuvant chemotherapy
following surgery, particularly for c-Met-positive, MSS, triple-negative, or younger age
onset <50 years subtypes.

Since the PIK3CA mutation is associated with both the efficacy of PI3K inhibitor and
other endocrine or targeted therapy [24], it is of great clinical importance to precisely
demonstrate the PIK3CA mutational status and prognosticate the therapeutic effects in BC.
In this study, the PIK3CA mutation revealed in 49.4% of all the BCs, with H1047 ranking the
highest substitution using a PNA-based clamping approach to identify a PIK3CA-mutant
proportion as low as 1% in the cell line experiment, a finding that validates the highly
sensitive detection method. This frequency of PIK3CA mutation is within a wide range
(25.6–59.8%) of previous studies worldwide, and the most common genotype, H1047, was
in concordance [25–28], and was closely compatible with 46.5% of that recently described
in the corresponding Far East Asian area using next-generation sequencing (NGS) [27].
Recently, NGS was recommended by ASCO for the detection of PIK3CA mutations for
treatment eligibility for alpelisib among patients with luminal subtype BC [9]. However,
this method is too expensive to be readily available to much of the world. Nearly two-thirds
of new BC cases and deaths are confronted in less developed countries these days [2]. We
noted the lack of particular clinical or demographic characteristics linked to the presence
of the PIK3CA mutation among the patients, which was consistent with other studies [29];
any subset of clinicopathological factors are unlikely to indicate a certain group of patients
expected to carry the PIK3CA mutation, indicating that all BC patients should be tested
for the PIK3CA gene in order to detect the mutation. Alternatively, this requires economic
considerations of cost-effective tests.

Resistance to chemotherapy and poor prognosis could be mediated by the activation
of the PI3K pathway, which allows a survival signaling for withstanding anticarcinogenic
agents and enhancing cancer stem cell characteristics [30,31]. In BCs, the PIK3CA muta-
tion has been shown to correlate with resistance to paclitaxel [32] or anti-HER2 adjuvant
therapy [33,34]. Although controversial, considerable literature has shown a correlation of
PIK3CA mutation with untoward clinical outcomes [12,27,29,35–41]. However, the prog-
nostic usefulness of the PIK3CA mutation after adjuvant chemotherapy has been suggested
in limited BC subtypes and has not been fully elucidated [11,24], especially in Asian pop-
ulations. A phase III clinical trial demonstrated the PIK3CA mutation as an unfavorable
prognostic indicator highly relevant to standard adjuvant chemotherapeutic outcome in
HR+/HER2− metastatic BCs [11]. One recent meta-analysis was also compatible in the
finding that PIK3CA mutation may serve as a crucial prognostic predictor for a gloomy
prognosis of HR+/HER2− BCs, not only in PI3K-inhibitor therapy groups but also in
non-PI3K-inhibiting therapy groups [24]. However, those studies mainly focused on the
western population, which is comparatively different from BCs in Asian women [1]. In our
cohort who received postoperative adjuvant chemotherapy, a strong association was found
between PIK3CA mutation and worse RFS, but not with OS; the PIK3CA mutation may
be an independent poor prognostic factor that can be used to predict worse RFS rates in
Korean patients after adjuvant chemotherapy. We also found the considerable frequency
of PIK3CA mutation all across BC subtypes, the luminal subtype (HR+/HER2−; 48.6%),
HER2-enriched (39.5%), and triple-negative (57.6%) tumors in BCs overall with an average
age of 49 years at diagnosis, which supported the apparently different biologic impact of
PIK3CA mutation on specific cancer subtypes as previously described [11,33]. Interestingly,
the subgroup analyses exhibited a positive prognostic correlation of the PIK3CA mutation
in the triple-negative subtype, which may provide further prognostic relevance for the
PIK3CA mutation, reflecting the epidemiologic characteristics of Asian BCs. The lack of
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prognostic relevance with OS in our analyses might be explained by the survival benefit
achieved from adjuvant treatment, which is consistent with a steady decline in the mortality
rate from BC owing to the development of adjuvant treatment modalities in the last two
decades [42].

There are few available data regarding the prognostic link between PIK3CA mutation
and PD-L1/c-Met/MSI status for BCs. In this study, using FDA-approved PD-L1 22C3
assay and clinical trial-relevant c-Met scoring criteria, PD-L1 and c-Met positivity were
identified in 21.8 and 31.4% of cases, respectively, which commonly correlated with high
histologic grade, HR− (ER− and PR−), triple-negative subtype. Similar to our results, PD-
L1, overexpressed in 23.4% of BCs, has been correlated with higher stage/tumor grade/Ki-
67, older age, and ER negativity; also, it has been described as a poor prognostic factor
of BC [43]. The PD-L1 mRNA expression level has been associated with triple-negative
BC subtype [44]. Because it has been suggested that the combined assessment of c-Met
expression and PIK3CA mutational status would be biomarkers for patient stratification
unlikely to yield resistance to paclitaxel or anti-HER2 targeted therapy [13,16], this indicates
that c-Met along with PIK3CA mutation appear to closely associate with unfavorable clinical
outcome. In subgroup analyses, tumors with PIK3CA mutation exhibited worse RFS than
those with PIK3CA-wildtype within the c-Met-positive or MSS subgroups, which may imply
the indirect impact of PIK3CA mutation with c-Met or MMR status and might ultimately
lead to poor prognosis; this seems to be in keeping with our TCGA data analysis. Of the six
genes examined, our TCGA dataset analysis results showed the association of MET, MSH2,
and MSH6 gene expression with PIK3CA mutation in BCs. The present study might propose
that a combined analyses of PIK3CA mutational status together with c-Met or MMR status,
and an intrinsic subtype may help to prognostically estimate RFS outcome after adjuvant
therapy following surgery, especially in Asian women, with probably high risk for earlier
onset under 50 years of age and triple-negative BC [1,3]. Conversely, a PIK3CA inhibitor
might be a potential therapeutic strategy for preventing relapse in PIK3CA mutated, c-Met-
positive, or MSS BCs after adjuvant therapy. Since c-Met, PD-L1, MMR protein expression
may be readily implemented in an immunohistochemical processing system, the relevant
survival results shown in the study may imply that those markers, together with PIK3CA
mutation, may be used as prognostic markers in BC.

We demonstrated the low incidence of MSI/dMMR in 8.4% of the patients examined,
which alone had no prognostic association. MSI/dMMR has been rarely reported in a
broad range of 7.2–30% in overall BCs [45,46]. We noted the BAT26 marker to be the most
commonly exhibited MSI, a finding that was rarely mentioned in BCs [46]. Inconsistencies
were noted in the results (8.4 vs. 3.0%) of the MMR and the MSI approach in the present
study. In addition, MSH2 and MSH6 seem to be more likely involved in PIK3CA mutation
in BCs, rather than MLH1 or PMS2, suggesting MSH2 and MSH6 are more reliable markers
in BCs. These may explain the possible association between PIK3CA mutation and limited
MMR proteins (MSH2 and MSH6 gene expression) in BCs of the TCGA dataset analysis.
This phenomenon has also been described in the other BC cohorts [46], where it was
explained that the accumulation of identifiable MSI occurs as a late stage event secondarily
after impaired functioning of MMR proteins [46]. Since dMMR or MSI-H are represented
as beneficial predictors for responsiveness to immunotherapy [46], any cases with either
dMMR or MSI-H were considered as MSI/dMMR tumors in our analyses. We found
no correlation of survival with MSI/dMMR or c-Met/PD-L1 expression alone, which
was in keeping with a recent study where there was a lack of any correlation between
MSI/dMMR and clinicopathological features, PD-L1 expression, or survival in triple-
negative BCs [46]. This might be because BC is less immunogenic [47]. In colorectal cancers,
the most extensively studied for links between antitumor immunity and mismatch repair
systems, the TP53 mutation has been shown to suppress antitumor immunity that may
contribute to a cancer-promoting state [48]. Other than PIK3CA mutation, TP53 mutations
are the second most (24.7–33.9%) common in breast cancers, with the frequency of their
co-mutations being 8.7–12.8% [28,49]. The collaboration of the PIK3CA mutation (H1047R)
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with the TP53 mutation has initiated mammary tumorigenesis in animal models [50]. The
patients with TP53-PIK3CA co-mutation have shown worse clinical outcome compared
to others [49]. In part, the discrepancy might be related to the possible confounders that
were not examined in this study. Although uncommon, MSI/dMMR provided only limited
insight, it is worthy of note that the two MSI-H cases in the present study carried multiple
alterations of the PIK3CA gene with high nuclear grade and histologic grade 3, without
recurrence or death during the study period. Such cases may emphasize the trend of MSI
toward favorable prognosis despite advanced disease with aggressive histologic features.

5. Conclusions

The limitations of the present study comprise the single-center retrospective imple-
mentation with a relatively small sample size and potentially unmeasured confounders
such as the lack of information of TP53 mutation, body mass index indicating obesity, or
numbers of childbearing (that may be factors involved in increased risk for breast cancers).
Nonetheless, the findings raise certain intriguing points. The PIK3CA mutation exhibited
unfavorable prognostic significance in patients with both overall and triple-negative BCs,
indicating the potential of PIK3CA mutation with c-Met or MSI/MMR as a detailed prog-
nostic marker in BC subsets, especially in Asian women. The findings from the current
study may pave way for further prospective investigations and may be clinically relevant
in the future for the personalized management of BC in Asian women, both for treatment
and follow-up strategies.
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