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Abstract: Hantaviruses infect a wide range of hosts including insectivores and rodents and can also
cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes.
Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their
habitats being in close proximity to humans, which is becoming increasingly important in a globalized
world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment
available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented
negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their
genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle
are still unknown. In recent years, structural biology methods such as cryo-electron tomography,
cryo-electron microscopy, and crystallography have contributed essentially to our understanding
of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this
review, we provide an update on the hantavirus replication cycle with a special focus on structural
virology aspects.

Keywords: hantaviruses; structural virology; cryo-electron tomography; cryo-electron microscopy;
X-ray crystallography; viral fusion glycoproteins; viral replication; viral transcription; viral genome
encapsidation; virion assembly

1. Introduction

Bunyavirales is a large viral order that includes many emerging viruses with high epi-
demic potential [1]. Notably, several bunyaviruses from the Hantaviridae family can infect
humans, causing thrombocytopenia, capillary permeability (leading to vascular leakage),
and immunopathology due to the activation of the innate and adaptive immune systems
(reviewed in [2]). Whereas Old World hantaviruses, such as Hantaan virus (HTNV) and
Puumala virus (PUUV), which are prevalent in Europe and Asia, can cause hemorrhagic
fever with renal syndrome [3], the New World hantaviruses, such as Andes virus (ANDV)
and Sin Nombre virus (SNV), which are found in the Americas, primarily cause hantavirus
cardiopulmonary syndrome [4].

Humans are generally considered as dead-end hosts with the exception of some
reports of person-to-person transmission for ANDV in Argentina [5], including recent
cases of “super-spreaders” of the same viral strain [6] and the suspicion of transmission
via the transfusion of platelets and blood products for PUUV in Finland [7]. Outbreaks of
hantaviruses correlate with the population dynamics of their carriers, and each viral species
seems to have a different and specific primary reservoir, which is usually either rodents or
insectivore mammals such as moles, shrews, and bats [3,4]. Based on a rodent-hantavirus
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codivergence hypothesis, it has been proposed that hantaviruses have been co-evolving for
a long time with their natural hosts, which are chronically infected with high viremia but
remain asymptomatic [8]. However, the mechanisms that support hantavirus replication
in a given host and that limit the spill over or adaptation to new organisms remain
poorly understood (reviewed in [9,10]). Human infections upon exposure to contaminated
aerosolized secreta or excreta have been reported almost exclusively from rodents so far,
with case fatality rates ranging from 0.2% for the PUUV endemic in Europe [3] to ~50% in
the case of ANDV in South America [4]. The possibility that hantaviruses circulating in
insectivores can cause human diseases might have been overlooked and requires closer
attention [2].

The enveloped virions are spherical or pleomorphic, are decorated with spikes, and
encase the tri-segmented single-stranded viral RNA (vRNA) genome of negative polarity
(Figure 1) [11–14]. The small (S), medium (M), and large (L) genomic segments encode
four structural proteins: the nucleoprotein N, the glycoproteins Gn and Gc (resulting from
the maturation of the glycoprotein precursor GPC after co-translational cleavage by the
cellular signal peptidase complex), and the large (L) protein [15]. In some hantaviruses,
the S segment also encodes a nonstructural protein (NSs) [16]. Although for ANDV, the
NSs might work as an immunosuppressor of the type I interferon induction pathway [17],
its functions in other hantaviruses and potentially additional roles during infection are
unknown [18]. The envelope glycoproteins Gn and Gc form the spike complex responsible
for receptor-binding and Gc-mediated membrane fusion. Integrins have been identified as
receptors in vitro although there is no information on the receptors and co-receptors used in
the natural context of infection (reviewed in [19]). Similar to other bunyaviruses such as the
La Crosse virus (LACV, Peribunyaviridae) [20], the Crimean–Congo Hemorragic Fever virus
(Nairoviridae) [21–23], and the Uukuniemi virus (Phenuiviridae) [24], hantaviruses appear
to rely on several pathways for entry including macropinocytosis and endocytosis that is
either clathrin-, calveolin- or cholesterol-dependent [19]. Particles then travel through the
endocytosis pathway, and the low pH inside endosomes triggers a conformational change
in the Gc glycoproteins [25]. This leads to the insertion of the Gc fusion loop into the
endosomal membrane, the fusion of the latter with the viral envelope, and the subsequent
release of the virion content. Each vRNA segment is flanked by non-coding regions at
the 5′ and 3′ termini, exhibiting complementary sequences that are predicted to form a
so-called panhandle structure, essential for the viral transcription and genome replication
conducted by the viral L protein in the host cell cytoplasm. Based on recent structural
data on the L protein, the formation of the panhandle might also be attributed to the L
protein binding to both RNA ends [26–31]. Following the synthesis of virion components,
the glycoproteins, which are specific for each hantavirus, play a key role in virus assembly
and maturation (reviewed in [32]). In particular, the cytosolic tail of Gn is likely interacting
with N proteins of the ribonucleoprotein complex [19]. Finally, it has been proposed that
the virions being assembled bud into the Golgi apparatus and are released by exocytosis
(Old World hantaviruses) or are released directly at the plasma membrane (New World
hantaviruses), but the details of virion egress are largely unknown.

In this review, we summarize our current understanding of the molecular and struc-
tural biology of the hantavirus replication cycle, focusing on recent insights from structural
virology studies. We discuss somewhat contradictory hypotheses regarding hantavirus
entry, replication, and assembly. Finally, we highlight open questions in the field, which
are not only critical to increase our knowledge on hantavirus–host interactions but to also
develop specific countermeasures against emerging bunyaviruses.
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mography and subvolume averaging (EMD-11236). A model of the prefusion tetrameric Gn/Gc 
spike complex (PDB: 6ZJM), presented as a cartoon, was fitted into the central volume [24]. 
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ized by a β-sheet-rich secondary structure. Gn and Gc form the spike complex, which is 
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virus (TULV), cryo-electron tomography analysis of HTNV, TULV, and PUUV have 
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Gc forms a lattice around the Gn protomers, which together form the spike through Gn:Gn 
interactions, maintaining Gc in a metastable pre-fusion conformation [25,37,38]. The fu-
sion loop of hantavirus Gc is significantly different from related class II fusion proteins in 
that the residues involved in membrane insertion are split between three loops compared 
to all being on a single fusion loop for flaviviruses and alphaviruses (Figure 2b) [25,37]. 
The dissociation of the Gn/Gc complexes at a low pH is thought to make the tripartite 
fusion loop accessible for membrane fusion, although this dissociation does not seem to 
trigger membrane fusion and seems to even be reversible [39]. While Gc is responsible for 
membrane fusion, the role of Gn in viral entry remains unclear. However, it was recently 
shown that Gn can be a target for neutralizing antibodies against HTNV, emphasizing its 
importance for the spike function [40]. The conformational shift between pre- and post-
fusion of Gn/Gc on viral particles is triggered by acidification in the endosome following 
virion uptake [34]. 

Although the cellular receptors in rodents are still unknown, there is evidence that 
the human integrins used are (i) ɑVβ3 in the case of SNV [41], HTNV, the Seoul virus, and 
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gC1qR/p32 [43–48]. So far, only protocadherin-1 has been shown to play a role in the entry 
of all New World hantaviruses (comprehensively reviewed by [19]). The hantaviruses 
ANDV and HTNV additionally depend on membrane cholesterol for host cell entry, most 
likely for endosomal escape and membrane fusion [49–51]. 

Figure 1. The hantavirus virion. A drawing of a hantavirus virion is presented (left) including a top view of the map of the
TULV glycoprotein lattice (right), which was obtained by electron cryo-tomography and subvolume averaging (EMD-11236).
A model of the prefusion tetrameric Gn/Gc spike complex (PDB: 6ZJM), presented as a cartoon, was fitted into the central
volume [24].

2. Literature Review
2.1. Entry into the Host Cell

While bunyaviruses from the Phenuiviridae family have quite regular particles with
T = 12 icosahedral quasi-symmetry and exhibit low plasticity in terms of size and
shape [33–35], hantaviruses are pleomorphic with a diameter of 120–160 nm and vary
from round to elongated [14,36]. The viral envelope is decorated with glycoproteins Gn
and Gc in a grid-like pattern specific to hantaviruses [11–13,25]. However, this grid-like
pattern can be also interrupted, resulting in bare patches of membrane on the virion
surface [14]. Inside, the virion carries three genome segments (L, M, and S) which are
encapsidated by the nucleoprotein N and are associated with the L protein (Figure 1) [15]
(see assembly section).

Gc is a class II viral fusion protein with a three-domain architecture that is charac-
terized by a β-sheet-rich secondary structure. Gn and Gc form the spike complex, which
is by itself sufficient for host cell entry [13,37]. Consistent with biochemical data on the
Tula virus (TULV), cryo-electron tomography analysis of HTNV, TULV, and PUUV have
shown that the characteristic squared spike complexes are tetrameric and formed by the
heterodimers of Gn and Gc (Figures 1 and 2a) [12,13,38]. In the assembled fusion protein,
Gc forms a lattice around the Gn protomers, which together form the spike through Gn:Gn
interactions, maintaining Gc in a metastable pre-fusion conformation [25,37,38]. The fusion
loop of hantavirus Gc is significantly different from related class II fusion proteins in
that the residues involved in membrane insertion are split between three loops compared
to all being on a single fusion loop for flaviviruses and alphaviruses (Figure 2b) [25,37].
The dissociation of the Gn/Gc complexes at a low pH is thought to make the tripartite
fusion loop accessible for membrane fusion, although this dissociation does not seem to
trigger membrane fusion and seems to even be reversible [39]. While Gc is responsible for
membrane fusion, the role of Gn in viral entry remains unclear. However, it was recently
shown that Gn can be a target for neutralizing antibodies against HTNV, emphasizing its
importance for the spike function [40]. The conformational shift between pre- and post-
fusion of Gn/Gc on viral particles is triggered by acidification in the endosome following
virion uptake [34].
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the β-sheet stack at the C-terminus of domain III occurs. Upon additional reorganization 
of domain II, the buried key non-polar residues at the tip of the domain, constituting the 
tripartite fusion loop, become exposed on the molecular surface (Figure 2b). In fact, upon 
acidification, there is formation of a carboxylate–carboxylic acid hydrogen bond structur-
ing the membrane-binding region [25,37,58]. Altogether, these conformational changes re-
sult in the assembly of protein monomers into trimers, which are stabilized by a conserved 
N-terminal segment or “N-tail”, which is so far unique to hantavirus Gc, along with mem-
brane fusion, virion uncoating, and the release of the viral genome. Postfusion structures 

Figure 2. The hantavirus spike complex. (a) A pre-fusion spike complex on the virus surface composed of the Gn (teal) and
Gc (yellow) proteins forming a tetrameric assembly (example of ANDV, PDB: 6ZJM) is presented as a cartoon. The viral
envelope (grey membrane) as well as the transmembrane regions (TM) of Gn (cyan cylinder) and Gc (pink cylinder) are
schematically shown. One copy of the Gn cytoplasmic tail (cyan, PDB: 2K9H) and a heptameric RNP-like assembly of the N
protein (blue; PDB: 6I2N) are displayed as a cartoon and surface representation, respectively. An interaction between the
latter is indicated (black arrow). (b) A comparison of pre-fusion ANDV Gc (PDB: 6Y5F), an intermediate state of HTNV
stabilized by an antibody (antibody not shown) (PDB: 5LJY), and the ANDV Gc post-fusion conformation (PDB: 6Y6Q) is
shown. Domains are colored as DI, red; DII, yellow; DIII, orange. Key residues W766, Y745, F900 for ANDV and F250 for
HTNV of the tripartite fusion loop are highlighted in red with the side chains displayed as sticks.

Although the cellular receptors in rodents are still unknown, there is evidence that
the human integrins used are (i) AVβ3 in the case of SNV [41], HTNV, the Seoul virus,
and PUUV [42,43]; (ii) AVβ1 for the Sangassou virus [44]; and (iii) β1 integrins for the
Prospect Hill virus [41,42]. Apart from integrins, other cell surface proteins mediate virus
entry in vitro, including the decay-accelerating factor CD55 and the complement receptor
gC1qR/p32 [43–48]. So far, only protocadherin-1 has been shown to play a role in the entry
of all New World hantaviruses (comprehensively reviewed by [19]). The hantaviruses
ANDV and HTNV additionally depend on membrane cholesterol for host cell entry, most
likely for endosomal escape and membrane fusion [49–51].

Despite the differences observed in the required macropinocytosis-related kinases
ML-7 and ML-9 between HTNV, an Old World hantavirus, and ANDV, a New World
hantavirus, both viruses enter human respiratory epithelial cells using a pathway that
depends on sodium proton exchangers and actin, supporting that the entry process can in-
volve micropinocytosis [52,53]. HTNV and PUUV also use clathrin-dependent endocytosis
for host cell entry [53,54]. Additionally, it has been reported that HTNV, PUUV, and the
Black Creek Canal virus (BCCV) tend to preferentially enter at the apical site of epithelial
and endothelial cells [46,55]. However, more sound evidence is needed to uncover the
intricacies of the hantavirus entry pathway(s). The current lack of relevant in vitro models
is indeed a bottleneck to any study on hantavirus–host interactions in general, given their
narrow host range and diversity [19,56].

After uptake, viral particles are transported to early or late endosomes [19], where
the low pH of the compartment triggers large conformational changes in Gn/Gc and the
Gn:Gc interface gets disrupted [40]. Similar to what has been observed for other class
II fusion proteins [57], the transition of Gc from pre- to post-fusion is associated with
rearrangements of the three domains in their relative orientation. First, a large relocation of
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the β-sheet stack at the C-terminus of domain III occurs. Upon additional reorganization
of domain II, the buried key non-polar residues at the tip of the domain, constituting
the tripartite fusion loop, become exposed on the molecular surface (Figure 2b). In fact,
upon acidification, there is formation of a carboxylate–carboxylic acid hydrogen bond
structuring the membrane-binding region [25,37,58]. Altogether, these conformational
changes result in the assembly of protein monomers into trimers, which are stabilized by a
conserved N-terminal segment or “N-tail”, which is so far unique to hantavirus Gc, along
with membrane fusion, virion uncoating, and the release of the viral genome. Postfusion
structures of class II fusion proteins are commonly trimers [57], which is also the case for
the postfusion structures of ANDV Gc [37] and Gn/Gc [25]. The hantavirus-specific N-
terminal tail of Gc was found to stabilize the Gc trimer [37]. Whether the three protomers of
the fusion-active trimer originate from the same tetrameric prefusion complex or assemble
from different tetrameric complexes during virion entry is still unclear.

2.2. Viral Genome Replication and Transcription

Viral ribonucleoproteins (vRNPs) consisting of the genomic RNA encapsidated by N
protein and associated with the L protein are the functional units of genome replication
and transcription (Figure 3). Both of these functions are catalyzed by the L protein that
harbors the RNA-dependent RNA polymerase (RdRp).

Upon the release of the vRNPs into the cytoplasm, genome replication is initiated
de novo and proceeds via a positive-sense complementary intermediate RNA (antigenome
or cRNA) which is, similarly to the vRNA, encapsidated by N proteins. Interestingly,
although self-initiating polymerases like the L protein typically use purines as initiating
nucleotides, the hantavirus genome commences with a uridine monophosphate, suggesting
initiation via a priming and realigning mechanism with the subsequent cleavage of the
resulting overhang [59,60].

Although the bunyavirus vRNA and cRNA are always associated with N proteins, this
is generally not the case for viral mRNA. However, it was reported that the encapsidation
of the LACV (Peribunyaviridae) S segment mRNA with the N protein can occur, albeit with
much lower affinity than that of vRNA and cRNA. Additionally, encapsidation of the S
segment mRNA by the N protein was shown to prevent its own translation, which may
serve as a negative feedback expression control at high cellular concentrations of N [61].

The bunyavirus genome segments are flanked by non-coding regions (also called
untranslated regions, UTRs) which are highly conserved in each bunyavirus family. Based
on the sequence complementarity of these UTRs, it was hypothesized that they promote
circularization of the genome segments into a so-called panhandle conformation [62,63].
However, more recent structural data on closely related bunya- and orthomyxoviruses
suggests that both RNA ends can be bound by the L protein at specific sites within the
protein [26–30]. Thus, the genome circularization observed in electron microscopy (EM)
(reviewed in [64]) might be the result of the L protein:RNA interaction rather than of
panhandle formation via base-pairing but could also rely on both mechanisms (Figure 3b).

Severson et al. conducted binding studies with either (i) full-length vRNA; (ii) vRNA
deletion mutants lacking either the UTRs or the first twelve 5′ terminal nucleotides; (iii)
using oligonucleotides corresponding to the 3′; or (iv) 5′ termini of the vRNA only [65].
These studies led them to postulate a cis-acting encapsidation signal within the noncoding
region of the HTNV 5′ terminal vRNA that would be recognized by the N protein. Upon
specific recognition of this 5′ terminal signal, genome encapsidation would then be driven
by the specific interactions among N protein monomers as well as proposedly sequence-
unspecific interactions between N proteins and the remaining RNA along the genome or
antigenome, respectively. While for HTNV, the N protein was reported to bind single-
stranded RNA with a higher affinity than double-stranded RNA, the PUUV N protein
has been reported to preferentially bind to double-stranded rather than single-stranded
vRNA [66]. Along this line, SNV N was found to specifically bind to the panhandle
composed of the 3′ and 5′ vRNA in an artificial minipanhandle RNA but not the single-
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stranded region of this RNA [67]. Whether the exact mechanism of RNA encapsidation by
N is based on sequence-recognition and/or secondary structure-specific binding requires
further investigation, including on the essential experimental controls, which were partially
incomplete in the mentioned studies.

Crystal structures of the hantavirus N protein core revealed two lobes clamping a
positively charged RNA binding groove with N- and C-terminal extensions linked to the
respective lobe and mediating N protein oligomerization [68,69]. Recent cryo-EM studies
showed that HTNV N forms a left-handed helical assembly, in which one N contacts
6 other protomers (Figure 3b). The N- and C-terminal arms of an N protomer interact
with the N- and C-terminal lobes of the previous and successive protomers in the helix,
respectively. The C-terminal extension can also rotate to contact the N-terminal arm of
the same subunit, creating a positively charged groove in the helical assembly that is
compatible with viral RNA binding [70]. Helix formation is likely coupled to RNA-binding
since hantavirus N proteins were reported to be mostly trimeric [67] or hexameric [69]
in solution. Indeed, Arragain et al. observed cellular RNA bound to the N protein after
recombinant expression in the absence of viral RNA, suggesting that N protein:RNA
interaction and the formation of the helical assembly may not depend on virus-specific
RNA sequences [70]. It is still unclear how the L protein gains access to the encapsidated
RNA, but interaction of the L protein and the N-terminus of the N protein seems to be
necessary for viral RNA synthesis [71]. In the currently proposed model, this interaction
with N brings the L protein in close proximity to the RNA, and the helical assembly of
the N protomers would only be locally disrupted at the sites where the L protein reads
the encapsidated RNA [70]. Of note, in addition to this compact helical conformation,
a more flexible pearl-necklace-like conformation of the RNA-associated N protein has
been reported [12,68], which would allow for more structural flexibility and may facilitate
genome circularization.

Like other segmented negative-strand RNA viruses, hantaviruses employ a cap-
snatching mechanism in which short, capped primers are cleaved off of host cell mRNAs
and are subsequently used to prime viral mRNA synthesis [59]. The cap-snatching mecha-
nism of the influenza virus (Orthomyxoviridae) has been extensively studied [72–74] and
may occur analogously to that of bunyaviruses with the exception that orthomyxoviruses
carry a heterotrimeric polymerase complex consisting of PA, PB1, and PB2 subunits. Addi-
tionally, orthomyxoviruses replicate and transcribe their genome within the cell nucleus,
whereas bunyavirus genome replication and transcription occur in the cytoplasm [75,76].

The cap-snatching endonuclease of hantaviruses is located at the N-terminus of the
L protein. It is classified as a His+ endonuclease, as it contains a catalytically important
histidine residue upstream of the metal-coordinating PD-D/E-K active site motif. Overall,
this domain is similar to the endonucleases of the influenza A virus PA subunit and the
LACV L, but the hantavirus endonuclease has a significantly higher in vitro activity [77,78],
which seems to limit its own recombinant expression in cells [79]. Sequestration of host
cell mRNA has been postulated to occur at a distinct cap-binding site of the N protein,
which would subsequently interact with the L protein for RNA cleavage and transcription
initiation [80]. However, the structural characterization of the HTNV N protein did not
yield evidence of a canonical cap-binding motif [69,70]. In contrast, recent studies provide
structural and some functional evidence of a cap-binding domain in the C-terminus of
arenavirus, phenuivirus, and peribunyavirus L proteins that are similar to the PB2 subunit
of the influenza virus polymerase complex [27,30,81–83].

While the influenza polymerase complex has been shown to interact with the host cell
polymerase II within the nucleus to gain access to mRNA caps [73,84], the specific cellular
mRNA targets of bunyaviruses remain unclear (reviewed by [85]). Some studies suggest
that hantaviruses snatch caps from non-sense RNA in processing bodies (P bodies), which
are non-membranous cytoplasmic compartments specialized in RNA turnover, including
the decapping machinery enzymes 1a, 1b, and 2 (DCP1a, DCP1b, DCP2) [86]. SNV has
been reported to preferentially steal caps from mRNAs with premature stop codons [87],
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and SNV N was reported to colocalize with DCP1a [86]. Concomitantly, the transcription
of the Rift Valley Fever virus (RVFV, Phenuiviridae) was shown to be restricted by the P
body-associated decapping machinery, suggesting a shared pool of mRNA targets. Notably,
RVFV N protein localization partially overlaps with P body-resident proteins [88]. In
contrast, a recent study found no significant colocalization of TULV N protein and P body
markers but reported significant colocalization of TULV RNA and N protein with stress
granule-resident T-cell restricted intracellular antigen 1 (TIA-1) as well as an increase in the
number of stress granules in TULV-infected cells [89]. Stress granules, similar to P bodies,
are non-membranous compartments but rather serve as storage sites for translation-stalled
mRNAs under cellular stress more than as sites of RNA decay. Stress granules contain
small ribosomal subunits as well as translation initiation factors such as the eukaryotic
initiation factors 4E and 4G (eIF4E, eIF4G). While eIF4E is also a constituent of the P bodies,
eIF4G is restricted to stress granules [90,91]. However, stress granules and P bodies share
some similarities in protein composition and are able to interact with one another and
exchange RNA as well as possibly protein components (Figure 3a) [92–94]. Thus, both may
serve as a site for cap-snatching and more research is required to further elucidate the roles
of specific RNA granules during bunyavirus infection.

After transcription of viral genes via cap-snatching (Figure 3a), translation follows.
For HTNV, it was proposed that the N protein could substitute the function of the eukary-
otic initiation factor 4F complex (eIF4F), resulting in the preferential translation of viral
mRNA [95,96]. However, structural characterization of HTNV N showed similarity to
the tumor suppressor protein Programmed Cell Death 4 (PDCD4) [69], which disturbs
the formation of eIF4F [97,98], and HTNV N may therefore also impede cellular mRNA
translation by structurally mimicking PDCD4.

Another aspect of cytoplasmic replication is the possibility of coupling transcription to
translation, which has been suggested for the Bunyamwera virus (BUNV, Peribunyaviridae)
and may serve to avoid premature transcription termination [99].
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Figure 3. Hantavirus ribonucleoproteins and the location of viral genome replication and transcription. (a) Schematic
representation of cellular RNA granules that have been reported as sites for hantavirus cap snatching: processing (P)
bodies [86] and stress granules (SGs) [89]. Selected marker proteins for both granules are shown as well as eIF4E to
emphasize its presence in both granules. Yellow arrows indicate reported colocalization of P body marker DCP1a and
SNV N [86] or SGs marker TIA-1 and TULV RNA and N [89], and the red barred arrow indicates inhibition of RVFV
transcription by P body-resident protein DCP2 [88]. (b) Schematic representation of a viral ribonucleoprotein (vRNP). The
viral RNA is associated with N and L proteins in a panhandle-like conformation with the complementary genome ends
forming a partially double-stranded region and the termini is most probably bound to the L protein. The close-up represents
a heptameric assembly of N (PDB: 6I2N) into a helical RNP-like structure with tri-nucleotide RNAs (orange) bound to each
N protomer. (c) Overview of possible locations of viral factories for genome transcription and replication in the endoplasmic
reticulum (ER), endoplasmic reticulum–Golgi intermediate compartment (ERGIC) [100], and the Golgi apparatus associated
with SGs [89].
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Apart from the source of mRNA caps, the exact site of hantavirus genome replication
and transcription has yet to be determined. Ramanathan et al. reported the formation
of perinuclear structures by the HTNV N protein and their colocalization with markers
of the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) but only little
colocalization with markers of only the endoplasmic reticulum (ER) or Golgi apparatus.
Therefore, they suggested the formation of viral factories, virus-induced compartments, at
the ERGIC and that the N protein would be quickly assembled into virions as soon as it
reached the Golgi apparatus [100]. Davies et al. also reported perinuclear structures formed
by the TULV N protein. These structures were of tubular nature and stained positive for
Golgi markers and vRNA as well as for cRNA. Furthermore, they observed the recruitment
of stress granules to these structures, suggesting the formation of viral factories within a
structurally remodeled Golgi associated with stress granules (Figure 3c) [89].

2.3. Assembly and Egress of Viral Progeny

In the ER, the maturation of the glycoprotein precursor GPC by co-translational
cleavage happens at the conserved pentapeptide motif WAASA [101]. The Gn and Gc
glycoproteins then travel from the ER to the Golgi apparatus, and they oligomerize to form
heterodimers [25,102–105]. Studies on PUUV revealed that Gn relies on Gc to be transported
from the ER to the Golgi and that this process involves the C-terminal cytoplasmic tail of
Gc [106]. In the full spike complex, the Gn/Gc dimer contains two glycan chains that are
thought to originate from the ER, which stabilize the spike structure [25] and are essential
for viral assembly and entry [103].

Although it is generally considered that Old World hantaviruses assemble in the Golgi
apparatus like other bunyaviruses (e.g., the Uukuniemi Virus [107]), it has been proposed
that the assembly of New World hantaviruses happens at the plasma membrane. This is
based on the fact that the viral particles of the SNV and the BCCV were observed in the
extracellular space close to the plasma membrane by conventional EM [55,108]. However,
SNV virus-like particles were also found in the Golgi in one of these studies [108]. In
addition, SNV glycoproteins could be detected at the plasma membrane at late infection
time points [105]. However, SNV was detected in the perinuclear regions of the pulmonary
endothelial cells in an EM pathogenesis investigation of tissue samples from patients [109]
while analysis of a new hantavirus isolate in Vero cells reported several budding sites [110].
Recent work on the Old World HTNV and New World ANDV made use of high-pressure
freezing and freeze-substitution to better preserve samples for EM and reported fragmenta-
tion and unstacking of the Golgi and herniation of the rough ER but no intracellular viral
particles. At 7 and 9 days of infection, HTNV virions were observed extracellularly, close
to projections of the plasma membrane, supposedly as a consequence of viral budding
directly at the cell surface [111]. More systematic studies of both Old and New World
hantaviruses, especially immunolabeling and 3D analysis of viral assembly and egress are
still lacking to draw any conclusion on the assembly sites.

Gn/Gc octameric spikes serve a vital role in the budding of the virion. The lateral
interactions between Gc proteins at the inter-spike interfaces have been proposed to be
sufficient to induce the membrane curvature that would facilitate viral budding into the
Golgi [13,38]. In fact, expression of the ANDV and PUUV Gn and Gc glycoproteins alone
leads to the formation of virus-like particles released into the extracellular milieu [112].
In addition, there is significant reduction in virion production upon the disruption of the
Gc:Gc inter-spike interfaces [25,38].

Gn and Gc are both type I integral transmembrane proteins with a C-terminal tail
following the hydrophobic anchor domain [39]. The N protein was described to interact
with both the cytoplasmic tail of Gc and Gn in PUUV [39]. Gn contains a 110 amino
acid-long cytoplasmic tail, which interacts with N and might act as a substitute for the lack
of matrix protein. This interaction is thought to be mediated by two zinc finger domains of
the Gn cytoplasmic tail, which form a compact and unique fold [25,39,113,114]. Notably,
the HTNV N protein also associates with RNA [67,70], forming ribonucleoprotein-like
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particles when expressed alone in mammalian cells but does not lead to the production of
virus-like particles. For the recruitment of N into virus-like particles, the co-expression of
Gn and Gc is required [115]. The N protein is essential for the encapsidation of the viral
RNA segments by wrapping around the vRNA in a helical manner with 3.6 subunits per
twist, fitting the negatively charged nucleotides into a positively charged groove within
the helical structure [70] (see Section 2.2). Via interaction with the cytoplasmic tail of Gn,
it confers recruitment of the genomic RNA segments into virions, but the exact sequence
of these assembly steps is not yet clear. Some evidence suggest that the vRNA, the N
protein, and the glycoproteins accumulate at the Golgi [89,116] and that microtubules are
necessary for the correct movement of the viral components to the assembly site [100]. After
budding into the Golgi apparatus, the viral particle is transported to the plasma membrane
where it is then released via exocytosis. The involvement of multivesicular bodies or
recycling endosomes in mature particle egress has been proposed and still remains largely
unknown [117]. The N protein of the BCCV co-localizes with actin in infected cells, but the
link between such association and viral assembly or release remains to be determined [118].

Of note, although the N protein can be detected in infected cells as early as 4 h
post infection [100], putative viral factories were not perceptible at 36 h post infection, at
which point the N protein was mostly localized in the perinuclear puncta. Larger, tubular
structures of N protein assemblies became apparent at 7 days post infection, although no
further time points between 36 h and 7 days post infection have been tested [89]. This is
in accordance with reports noting the slow growth of hantaviruses [14], and hence, the
assembly of N protein and other components into viral factories and recruitment of cellular
structures as described in Section 2.2 may be a rate-determining step in the hantavirus
replication cycle.

In summary, whether hantavirus assembly occurs at a specific site or at multiple
locations remains unclear [55,108–110] as does the role of the cytoskeleton in viral
component trafficking.

3. Discussion

The Bunyavirales order encompasses a very diverse number of viruses [1]. Members
of the Hantaviridae family exhibit a number of specific features regarding their host range,
also including insectivores and rodents, their direct transmission from persistently infected
reservoirs to humans without using invertebrates as vectors, and their limited ability of
human-to-human transmission, to name a few. Hantaviruses mostly grow very slowly and
produce low titers in cell culture [119,120]. Although this slow viral growth rate seems
rather inefficient, it might just be the reason that viral replication is possible at all, by staying
below the radar of host’s antiviral defenses, but it makes working with these viruses more
tedious. Additionally, there is a lack of relevant in vitro models [19,56], hampering studies
on hantavirus–host interactions. Therefore, many details of the hantavirus replication cycle
are still unknown.

First, the cellular receptor(s) used by hantaviruses to attach to cells as well as the
interaction between the host receptor and the viral glycoprotein complex are not clear.
Structural studies of viral particles by cryo-electron tomography and of isolated glycopro-
teins by X-ray crystallography greatly improved our mechanistic understanding of the
low pH-induced conformational changes involved in membrane fusion [25,37]. Neverthe-
less, receptor-binding studies were unable to find a common determinant for hantavirus
attachment and entry. Several candidates for receptors for attachment and entry have
been described, but only protocadherin-1 could be shown to be relevant in all New World
hantaviruses (comprehensively reviewed by [19]). Although hantaviruses are amplified
in different cell lines, which cell types are initially infected in a natural infection has not
been proven, which is in line with the lack of knowledge on the natural receptors used
by hantaviruses. Second, a multitude of pathways have been proposed for the uptake of
hantaviruses by the cell, including macropinocytosis and endocytosis that is either clathrin-
, calveolin- or cholesterol-dependent [19]. Additional research is required to determine
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which of them is the road that is mainly used and whether this depends on the cell type,
the exact virus species, or both.

Next, the mechanisms of viral replication and transcription also remain poorly under-
stood. Recent structural data show how the hantavirus nucleoproteins can assemble to
RNP-like structures in the absence of viral RNA with an impressive complexity of inter-
actions observed between the N protomers and with a positively charged putative RNA
binding groove buried inside the filamentous structure [70]. However, there is no structural
data on the full-length L protein of hantaviruses, which contains the viral RdRp. The
hantavirus L protein is a difficult target for in vitro expression due to its size of more than
200 kDa and the fact that its endonuclease domain is highly active, presumably digesting
all sorts of RNA within cells, leading to a strong cytopathic effect, hence limiting its own
expression [79] and possibly also general virus growth. Recombinant expression, biochem-
ical characterization, and structure determination of the isolated endonuclease domain
confirmed this hypothesis, as only significantly less active mutants of the domain could be
produced, which were shown to digest a broad spectrum of substrates in vitro [77,78].

There are several structures of the full-length bunyavirus L proteins that have been pub-
lished, such as for arenaviruses [30,121], phenuiviruses [28,83], and peribunyaviruses [26,27,31].
However, it remains unclear if these structures would enable reliable 3D modelling of
the complete hantavirus L protein due to the mentioned diversity among bunyaviruses,
which is also reflected in the L protein sequences and overall domain architecture. Previous
attempts to predict the phenuivirus L protein structure based on the published structures
of single domains of related polymerases did not yield entirely reliable models [122] when
compared to experimentally determined structures [28,82,83]. However, this was before
the game-changing appearance of AlphaFold, a novel structure-prediction tool with great
potential [123].

While the endonuclease has been identified in the N-terminal domain of the full-
length L protein [77,78], the cap-binding domain was hypothesized to be located in the
N protein [80]. The latter is quite unlikely, as neither a canonical cap-binding site in the
structure nor a convincing cap-binding activity have been demonstrated for N [69,80],
which was reviewed by [85]. The current lack of structural information on the hantavirus
L protein hence makes it impossible to propose a conclusive model of hantavirus cap-
snatching. Recently, the expansion of the number of potential proteins expressed by
bunyaviruses was proposed by a mechanism denoted as “start-snatching”. This process is
based on cap-snatching and results from the introduction of a host start codon upstream of
the viral open reading frames [124] but needs to be experimentally tested for hantaviruses.

Additional open questions relate to the exact cellular localization of viral genome
replication and transcription as well as their regulation. Several studies present contra-
dictory results regarding the replication and transcription site with the involvement of
stress granules, P bodies, and different subcellular locations [86,89,100]. Importantly, most
of the current studies used the overexpression of the N protein [71,86,100], which likely
results in artificial distributions of the protein and the induction of cellular stress. As
pointed out above, studies of infected cells are limited by the slow growth rate of han-
taviruses and the low expression levels of the viral proteins [100,119,120]. However, further
research and, in particular, research on the development of more relevant infection models
is needed to answer these questions and to improve our understanding of the key stages of
hantavirus infection.

After viral genome replication and transcription, the newly synthesized proteins and
viral genomes have to be assembled to form new virions. Whether the genome segments
are specifically recruited, as seen in influenza viruses [125], or packaged by statistical
likelihood, as proposed for RVFV [126,127], is currently unknown. The cytoplasmic tail of
Gc seems to be important for the recruitment of viral genomes into budding virions via an
interaction with N [115]. Interestingly, the cytoplasmic tail of Gc (comprising 110 residues)
has a size that is very similar to that of the Z protein specific to arenaviruses [128], which
is not expressed by members of other bunyavirus families. Similar to the zinc-binding
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Z protein, the hantavirus Gc cytoplasmic tail was shown to contain a zinc-coordination
site [113], and both have the same localization within the virion, lining the inner side of the
viral envelope [128].

The cytoskeletal components important for transporting the subunits to the virion
assembly site as well as the localization of the assembly site itself are also a matter of debate.
The diverse scenarios propose assembly in the Golgi apparatus, the ERGIC, and the plasma
membrane [89,100,105,109,110]. Similar to the studies of the N protein, investigation of
the glycoprotein localization that is largely involved in the overexpression of the proteins
and therefore potential artifacts have to be carefully considered. Whereas the sample
preparation procedures for some of the earlier studies were also likely not optimal [55,108],
a more recent study presented the same diversity of potential assembly sites [111], leaving
it open as to if the assembly sites differ between hantaviruses or cell types or if they are
simply dependent on the experimental setup (e.g., overexpression or sample preparation).

4. Conclusions

In summary, despite the enormous progress made in the field over the past years, many
key aspects of the hantavirus replication cycle remain poorly understood. In particular, the
mechanisms at play during genome replication, transcription, and particle assembly are
unclear and are debated in the field. The biggest challenges seem to be the lack of suitable
model systems and the slow viral growth rates in cell cultures, impeding detailed studies
in the natural context of infection. We are confident that technological advances in the
near future will aid in overcoming most of the noted barriers and will provide us with a
comprehensive overview of hantavirus diversity and pathogenesis.
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