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Abstract: Background: Dryopteris fragrans, which is densely covered with glandular trichomes,
is considered to be one of the ferns with the most medicinal potential. The transcriptomes from
selected tissues of D. fragrans were collected and analyzed for functional and comparative genomic
studies. The aim of this study was to determine the transcriptomic characteristics of wild D. fragrans
sporangium in tissues from the SR (root), SL (sporophyll), and TRL (sporophyll with glandular
trichomes removed). Results: Cluster analysis identified genes that were highly expressed in an
organ-specific manner according to read mapping, feature counting, and normalization. The functional
map identified gene clusters that can uniquely describe the function of each tissue. We identified
a group of three tissue-specific transcription factors targeting the SL, SR, and TRL. In addition,
highly expressed transcription factors (TFs) were found in each tissue-specific gene cluster, where ERF
and bHLH transcription factors were the two types showing the most distinct expression patterns
between the three different tissues. The specific expression of transcription factor genes varied
between the different types of tissues. The numbers of transcription factors specifically expressed
in the roots and sporophylls were 60 and 30, respectively, while only seven were found for the
sporophylls with glandular trichomes removed. The expression of genes known to be associated with
the development of glandular trichomes in flowering plants, including MIXTA, ATML1, and MYB106,
were also validated and are discussed. In particular, a unigene encoding MIXTA was identified and
exhibited the highest expression level in SL in D. fragrans. Conclusions: This study is the first report of
global transcriptomic analysis in different tissues of D. fragrans, and the first to discuss these findings
in the context of the development of homologous glandular trichomes. These results set the stage
for further research on the development, stress resistance, and secondary metabolism of D. fragrans
glandular trichomes.

Keywords: transcriptome; Dryopteris fragrans; transcription factors; gene expression

1. Introduction

The regulation of gene expression is one of the most significant and complicated of the various
biological processes, especially in eukaryotic species, due to their large genomes and complexity
in tissue organization [1,2]. Some aspects of fern morphological development have been reported,
but little is known regarding the fern transcriptome. It is well-known that transcription factors
(TFs) regulate gene expression by binding to specific nucleotide sequences of their target genes, and
ultimately control a range of biological pathways.

Dryopteris fragrans is a member of the Dryopteridaceae family that is mainly located in the
temperate regions of North America, Europe, and Asia [3,4]. D. fragrans is a valuable medicinal
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plant resource with extensive biological activities, including anticancer, antioxidative, insect-repellent,
antimicrobial, and anti-inflammatory activities. Phytochemical investigations of the components of
this plant have led to the identification of terpenoids, phloroglucinols, glucosides, and other phenolic
derivatives, such as coumarin. It is characterized by multicellular, glandular trichomes with spherical
head cells. Although the entire plant is densely covered with glandular trichomes, there have so far
been no reports on TF genes involved in regulating their formation in D. fragrans.

Trichomes can be either non-glandular or glandular. Non-glandular trichomes are unable to
synthesize and store secondary metabolites, while the glandular trichomes can synthesize, secrete,
or store a variety of secondary metabolites, such as arteannuin, the main component in the treatment
of malaria [5]. A trichome is a hairy structure that develops from the epidermal cells of plants,
and can protect them against biotic and abiotic stresses, presenting both economic value and medicinal
effects. The presence of trichomes can increase the thickness of the plant epidermis and reduce the
loss of heat and water [5]. In many species, trichomes can hinder the attachment of insects and
pathogens by secreting chemical components or acting as a physical barrier [6]. Many genes directly
involved in glandular trichome development have been discovered and reviewed [7,8]. Moreover,
several transcription factors have been identified as regulators in the development of the glandular
trichomes, such as MYB, bHLH, AP2/ERF, and homeodomain leucine zipper class (HD-Zip) IV
members [9]. However, the precise details of the regulatory network remain far from clear [10].

Previous studies have shown that the trichome initiation MYB–bHLH–WD40 (MBW) complex
(GL3/EGL3–GL1–TTG1) plays a key role in determining the cellular fate of trichome cells. This complex
triggers expression of the GLABRA2 (GL2) gene, which encodes a TF that induces the transition
and differentiation of trichome cells [11–13]; it also functions in the development of cyanobacterial
heterocysts. Besides the MBW complex, a range of genes that promote initiator–complex gene
expression has been found in leaves and flowers, such as GLABROUS INFLORESCENCE STEMS 2
(GIS2) [14], zinc finger protein (ZFP) 5 [15], ZFP6, and ZFP8 [16]. Plant trichomes and cuticles both
originate from the epidermis, and previous studies have shown that mutations in numerous genes,
such as Formate Dehydrogenase (FDH), LACERATA, AtSHN1, AmMIXTA, SlMIXTA-like, and SlCD2
exhibit abnormal cuticles and reduced trichome density, in addition to mutations in GL1 and GL3,
key transcription factors found in the MBW complex. There are also numerous genes involved in the
regulation of trichome development, the expression of which changes the profile of metabolites in the
glandular trichome; the overexpression of AaMIXTAl, AaHDl, or AaHD8 significantly increased the
secretion of artemisinin in the epidermis [16].

There are around 12,000 species of fern, which are considered to be a natural family of higher
plants because of their bona fide vascular system, despite propagating and spreading via spores.
Ferns adapted to a land environment during the process of evolution, which has uniquely determined
their special trichome structure. There are few ferns with glandular trichomes, with which D. fragrans is
covered. D. fragrans grows on talcum slopes, gravel slopes, and magmatic fissures around volcanoes at
an altitude of 700–2400 m, and can survive at −20 ◦C. The study of glandular trichome development in
D. fragrans is thus of great interest. We sought to determine the genes involved in trichome development
in D. fragrans in our study by examining the regulation of trichome development genes in model
higher plants as a reference. We then focused on known genes that had been characterized in model
plants, such as Arabidopsis thaliana, in order to determine whether the trichome developmental pathway
involved homologues/orthologues in ferns.

There is limited research on D. fragrans and the deciphering of tissue-specific genes.
Transcription factors are of particular interest among the diverse types of genetic regulatory proteins,
because they represent relatively direct regulatory interactions between proteins and chromosomes,
which may lead to direct alterations in transcriptional activity [17–19]. To investigate the expression of
transcription factor genes related to glandular trichome development in different tissues of D. fragrans,
we collected three different tissue types of D. fragrans grown at 25 ◦C with a 16/8 h photoperiod over
two years. We focused on the genes and transcription factors that were specific to the different tissues.
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Illumina sequencing is the most effective high-throughput platform for next-generation RNA-seq
transcriptome analysis in non-model tissues lacking available genomic data [20]. The objective of
this study was to identify the genes that showed differential expression (Supplementary File 1) in
Root, Sporophyll, Sporophyll removed from glandular trichom and identified the transcription factors
specifically associated with trichome development. The results provide a solid basis for future research
on the development of fern trichomes.

2. Results

2.1. Sequence Analysis and Assembly

We analyzed the RNA-seq libraries for various tissues to obtain a global picture of the diversity
across the tested tissues and their biological replicates (Table 1). After quality control, we obtained
54 gigabases of clean data, and the percentage Q30 (Quality Score 30) in the different samples was
not less than 99.9% (Figures S1 and S2, Table S1). The correlation between the three samples was
determined according to the quantitative FPKM results. In order to explore the relative variation
between a repeated sample and three tissues (Figure S3), we employed hierarchical clustering to
normalize all nine samples using Spearman pairwise correlation. The clustering results show similar
gene expression patterns between SL and TRL. In conclusion, these assessments showed that variability
in gene expression among the replicates for the same tissues was much lower than that among the
three different tissues, indicative of the high quality of the dataset.

Table 1. The species and the tissues.

Species Tissues Abbreviation

D. ragrans
Root SR

Sporophyll SL
Sporophyll removed from

glandular trichome TRL

2.2. Global Analysis Showing Differences between the Three Tissues

To identify the differences between each stage of the SR, SL, and TRL tissue samples, as well as
differences according to tissue, a cluster map was drawn showing the correlations between biological
replicates (Figure S4). A high correlation was indicated by a large correlation coefficient, as was the
significance in the distinction among the different stages. Genes exhibiting significant differential
expression (differentially expressed gene (DEG):−1≤DEG≤ 1f; false discovery rate (FDR)≤ 0.001) were
identified. Hierarchical clustering through priority DEGs revealed that there were 11,595 differentially
expressed genes (Figure 1A). There were 2241 upregulated and 3734 downregulated genes in SL vs. SR,
and 3392 upregulated and 796 downregulated genes in SL vs. TRL (Figure 1B). The Venn diagram of
gene expression in the different tissues in Figure 1C shows that 255 genes in SL vs. SR and SL vs. TRL
were upregulated, 320 in SL vs. SR and SL vs. TRL were downregulated, 21 were upregulated in SL vs.
SR and downregulated in SL vs. TRL, and 70 were upregulated in SL vs. TRL and downregulated in
SL vs. SR.
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Figure 1. Differentially expressed gene (DEG) hierarchical clustering. (A) Heat map showing genes with
differential expression (fold ≥ 1, false discovery rate (FDR) ≤ 0.001) among the three replicates of the SR
(root), SL (sporophyll), and TRL (sporophyll with glandular trichomes removed). Expression values
are log2-transformed and median-centered by gene. Scaled log2 expression values are shown, with red
and blue indicating high and low expression, respectively. (B,C) Differences in gene expression in
three tissues.

2.3. Differentially Expressed Gene Analysis of GO Enrichment

The GO database is a system that integrates the standard biological annotation of all species.
We sought to explore whether tissue-specific gene clusters were enriched according to specific gene
ontologies (GOs) relating to molecular function, cellular components, or biological processes for the
SL, TRL, and SR gene ontology classes (terms with corrected p ≤ 0.01). In this database, the matching
unigenes are divided into several layers, and the lower the level of the node, the more specific the
represented function. In SL vs. SR, the “cell part” (45, 17.4%), “membrane” (73, 28.3%), and “cell”
(45, 17.4%) had the highest numbers of matches in the cellular component. For molecular function,
“catalytic activity” (89, 30.8%) and “binding” (186, 64.4%) were significantly higher than the other
categories. For biological processes, “metabolic process” (414, 39.7%), “cellular process” (310, 29.7%),
and “single-organism process” (236, 22.6%) were the most enriched. In SL vs. TRL, the “membrane” (327,
39.6%), “membrane part” (178, 21.6%), “cell part” (100, 12.1%), and “cell” (100, 12.1%) had the highest
numbers of matches in the cellular component. In terms of molecular function, “catalytic activity”
(164, 57%) and “binding” (282, 33.1%) were remarkably higher than other categories. As for biological
processes, "metabolic processes" (915, 14.1%), “cellular process” (423, 21.2%), and “single-organism
process” (475, 23.8%) exhibited the greatest enrichment (Figure 2).
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Figure 2. Gene ontology (GO) classification: (A) SL vs. SR, (B) SL vs. TRL. The y-axis represents
the next-level GO term of the three major GO categories. The x-axis represents the number of genes
annotated to the term (including the subterm) and proportion of the total number of annotated genes.
The three different GO categories include biological processes, cell components, and molecular functions.

2.4. Kyoto Encyclopedia of Genes and Genome (KEGG) classification

KEGG analysis showed that 583 genes were distributed across 33 pathways in SL vs. TRL (Figure 3).
These genes could be divided into five groups according to the KEGG metabolic pathways: cellular
process, environmental information processing, genetic information processing, metabolism, and tissue
system. The major pathways included “signal transduction” (96, 16.47%), followed by “biosynthesis of
other secondary metabolites” (53, 9.09%) and “carbohydrate metabolism” (49, 8.41%). In SL vs. SR,
the KEGG analysis of the unigenes revealed 1928 unigenes. The major pathways were “carbohydrate
metabolism”, (249, 12.91%) followed by “signal transduction” (187, 9.67%) and “amino acid metabolism”
(157, 8.14%).
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification: (A) SL vs. SR, (B) SL vs.
TRL. The y-axis represents the names of the 26 groups of the KEGG. The y-axis represents the ratios of
the number of annotated genes for each group to the total numbers of annotated genes. Different colors
are used to distinguish different enrichments.

2.5. D. fragrans Transcription Factor Expression within Different Tissues

SR appeared to have the highest occurrence of tissue-specific expression (18,516 genes), followed by
SL (9231) and then TRL (1245) (Figure 4A). Apart from 42,518 genes that were shared among the three
tissues, the highest number of shared genes was 15,333 between SR and SL, followed by 2095 between
SR and TRL and then 1724 between SL and TRL. We next inspected the expression patterns of TFs
genes among the three tissues. Using only significantly differentially expressed transcription factors,
hierarchical clustering revealed distinctive expression profiles for each tissue (Figure 4B).
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Figure 4. (A) Three-way Venn diagram showing the numbers of shared and unique expressed
genes across the three tissues. (B) Differentially expressed transcription factors. Heat map showing
transcription factors with differential expression (fold≥ 1, FDR≤ 0.001) among the three replicates of the
SR (root), SL (sporophyll), and TRL (sporophyll with glandular trichomes removed). Expression values
are log2-transformed and median-centered by gene. Scaled log2 expression values are shown, with red
and blue indicating high and low expression, respectively.

After identifying the transcription factors exhibiting significant differential expression (we searched
for transcription factor clusters exhibiting tissue-specific expression. The results show that the
ERF and bHLH transcription factors were the two types showing the most distinct expression
patterns among the three examined tissues (Figure 5A,B). The bHLH transcription factors
mainly include BIM2 (NODE_1423_length_4236), which encodes BES1-INTERACTING MYC-LIKE 2,
a PAR1 (PHYTOCHROME RAPIDLY REGULATED 1)-interacting protein that positively modulates
shade-avoidance syndrome. Specifically, bHLH63 (NODE_22006_length_1227) can trigger flowering
in response to blue light. FAMA-like (NODE_32588_length_881), together with MYB88 and MYB124,
ensures that stomata contain only two guard cells (GCs) by enforcing a single, symmetric precursor
cell division before stomatal maturity. With SPCH and MUTE, FAMA-like (NODE_32588_length_881)
regulates stoma formation. The ERF transcription factors mainly include ethylene-responsive transcription
factor 7-like (NODE_13763_length_1722). Others found included the ethylene-responsive transcription factor
ABR1-like isoform X2 (NODE_5162_length_2827), an ABI1-mediated abscisic acid (ABA) response gene,
and ethylene-responsive transcription factor ERF113-like (NODE_5424_length_2767), which regulates
stomatal closure and antioxidant enzyme activity through the ABI1-mediated abscisic acid (ABA)
signaling pathway. Other members act as transcriptional activators to regulate the components
involved in stress signal transduction pathways and plant development.

Of the 953 TF genes annotated, 12.6% were expressed in at least one tissue and 81.5% in
all three tissues (Figure 6). The SR appeared to have the highest occurrence of tissue-specific
expression (60 transcription factors), followed by the SL (30) and TRL (7), including some
well-studied examples. In the SL, 30 transcription factors, mainly related to plant development,
secondary metabolism, hormone response, and inorganic salt transport, were specifically expressed.
These transcription factor genes included putative constans-like protein (NODE_21731_length_1239),
MADS-domain transcription factor (NODE_22852_length_1190), LOB domain-containing protein 41-like
(NODE_25987_length_1067), NAC domain-containing protein 86-like (NODE_37861_length_765),
transcription factor DUO POLLEN 1 (NODE_64244_length_437), AIG1 (NODE_64255_length_437),
and homeobox protein knotted-1-like 13 isoform X1 (NODE_7223_length_2439), which may participate
in sporangial development; in addition, AP2/ERF (NODE_17285_length_1472) may function as a
negative regulator of D. fragrans growth and development. ARFF_ARATH auxin response factor 6
(NODE_38417_length_754) and ARF-L1 protein (NODE_34396_length_838) are related to auxin response,
and the ethylene-responsive transcription factor RAP2-12-like (NODE_37093_length_779) is related to
ethylene. The ERF78_ARATH ethylene-responsive transcription factor 4 (NODE_53904_length_532)
is involved in the regulation of gene expression by stress factors and components of
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stress signal transduction pathways. It also includes squamosa promoter-binding-like protein 7
(NODE_82760_length_331), acting coordinately with HY5 to regulate miR-408 and its target genes in
response to changes in light and copper conditions. The dehydration-responsive-element-binding protein
2D (NODE_34268_length_841) can mediate high-salinity-induced transcription, transcription factor
Y subunit C-2-like (NODE_30657_length_928) can adjust Ca2+ transport, and DNAJ-class molecular
chaperone with C-terminal Zinc finger (NODE_27104_length_1031) is related to metal binding. In the SR,
60 transcription factors are specifically expressed; 15 of these are hybrid proteins, while the others
are related to plant morphological development, ubiquitination, and the cell cycle. For example,
the PLET2_ARATH AP2-like ethylene-responsive transcription factor PLT2 (NODE_74565_length_371)
is essential for root quiescent center (QC) and columella specification, stem cell activity, and the
establishment of the stem cell niche during embryogenesis. The class III homeodomain-leucine
zipper protein (NODE_64330_length_437), B3 domain-containing transcription factor NGA1-like
(NODE_79315_length_347), B3 domain-containing protein At3g19184 (NODE_11730_length_1890),
BEL1-like homeodomain protein 1 (NODE_3776_length_3170), and ethylene-responsive transcription
factor 2-like (NODE_68637_length_406) can regulate lateral root formation and the meristem.
Trihelix transcription factor ASIL2-like (NODE_11049_length_1955) is related to embryonic development;
calmodulin-binding transcription activator 3-like isoform X2 (NODE_22697_length_1196) may have similar
functions; and baby boom (NODE_42351_length_686) promotes cell proliferation, differentiation,
and morphogenesis, especially during embryogenesis. E3 ubiquitin-protein ligase makorin-2
(NODE_14800_length_1638) and putative transcription factor pbx (NODE_23838_length_1151) are
related to ubiquitination. The class III HD-Zip protein HDZ2 (NODE_87491_length_312) is related
to lipid binding. Cell division cycle 5-like (NODE_71830_length_386) is a component of the MAC
complex that probably regulates defense responses through transcriptional control, and would
thereby be essential for D. fragrans’ innate immunity. Calmodulin-binding transcription activator 3-like
isoform X2 (NODE_22697_length_1196) is possibly related to embryonic organ development. In the
TRL, the homeobox protein knotted-1-like 1 (NODE_53201_length_540) interacts with auxin and AS1,
which results in the promotion of leaf fate, and Dof2 (NODE_8258_length_2282) may transactivate
seed storage protein genes in developing seeds; however, in D. fragrans, Dof2 may instead be
related to spore development. WRKY transcription factor 12 (NODE_12261_length_1843) is involved
in aging, as well as biological and abiotic stress responses by regulating various plant hormone
signaling pathways. Zinc finger protein 36 (NODE_17837_length_1440) can regulate ABA-induced
hydrogen peroxide production and antioxidant defenses. Zinc finger CCCH domain-containing protein 35
(NODE_20185_length_1313) and GATA domain-containing protein (NODE_46526_length_622) play roles
in metal ion binding and zinc ion binding, respectively.

Figure 5. (A) ERF transcription factor thermogram; (B) bHLH transcription factor thermogram. Heat
map showing that the two most significant transcription factors, ERF and bHLH, were expressed with
differential expression (fold≥ 1, FDR≤ 0.001) among the three replicates of the SR (root), SL (sporophyll),
and TRL (sporophyll with glandular trichomes removed). Expression values are log2-transformed and
median-centered by gene. Scaled log2 expression values are shown, with red and blue indicating high
and low expression, respectively. Indicated on the right are the gene IDs.
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Figure 6. Three-way Venn diagram showing the numbers of shared and unique expressed transcription
factors across the three tissues: SR (root), SL (sporophyll), and TRL (sporophyll with glandular trichomes
removed).

2.6. Transcription Factors Related to Trichome Development in D. fragrans

Despite some TF genes being detected in all three tissues, the results imply that these TF genes
and other genes still show a differential expression profile (Figure 7A,B), which may be related to their
function in the regulation of glandular trichome growth and development. Since TF genes are thought
to serve as key gene expression regulators, their patterns may indicate their involvement in various
tissue-specific gene regulatory networks. Although the developmental regulation of fern trichomes
has not been reported, D. fragrans does contain dense trichomes. Current studies have shown that
the development of trichomes in different plants is regulated by transcription factors that are similar
between different plants. We compared the sequence fragments in the transcriptome with those found
to be related to trichogenesis in other species, as shown in Table 2.

Table 2. Homologous sequences related to trichomes in D. fragrans.

Gene
Family Gene Gene ID Species Homologous Sequence

MYB

MYB0(GL1) AT3G27920 Arabidopsis thaliana NODE_10793_length_1982
MYB1
MYB23 AT5G40330 Arabidopsis thaliana NODE_5558_length_2744
MYB2 AY626160 Gossypium arboreum NODE_9201_length_2161
MYB25 AF336283 Gossypium hirsutum NODE_12623_length_1810
MYB1 L04497 Gossypium hirsutum NODE_13457_length_1748
MYB7 AY518319 Gossypium hirsutum NODE_9733_length_2100

MYB106 AT3G01140 Arabidopsis thaliana NODE_11206_LENGTH_1939
MYB109 AJ549758 Gossypium hirsutum NODE_3492_length_3254

MYB

MYB80 AT5G56110.1 Arabidopsis thaliana NODE_10729_length_1989
MYB9 AT5G67300 Arabidopsis thaliana NODE_88329_length_309

AaMIXTA KP195023.1 Artemisia annua NODE_10723_length_1990
MIXTA AT5G15310.2 Arabidopsis thaliana NODE_10792_LENGTH_1982
MIXTA X79108.1 Antirrhinum majus NODE_11206_length_1939

MYBML8 105961649/LOC105961649 Erythranthe guttata NODE_648_length_5073
MYB16 AT5G15310 Arabidopsis thaliana NODE_64472_length_436

WD40
TTG1 AT5G24520 Arabidopsis thaliana NODE_7598_length_2380

R 100126972/NC_024468.2 Zea mays NODE_2464_length_3629

WRKY
TTG2 AT2G37260 Arabidopsis thaliana NODE_2852_length_3472

WRKY 46 AT2G30590 Arabidopsis thaliana NODE_41105_length_707

bHLH

GL3 AT5G41315 Arabidopsis thaliana NODE_43335_length_670
EGL3 AT1G63650 Arabidopsis thaliana NODE_743_length_4919
MYC4 AT4G17880 Arabidopsis thaliana NODE_12035_length_1864

bHLH46 AFU81789.1 Papaver somniferum NODE_41105_length_707
bHLH49 AT1G68920.3 Arabidopsis thaliana NODE_35465_length_814
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Table 2. Cont.

Gene
Family Gene Gene ID Species Homologous Sequence

HD-Zip

GL2 AT1G79840 Arabidopsis thaliana NODE_20550_length_1294
HOX21 NC_029258.1 Oryza sativa subsp. NODE_7286_length_2427
HOX5 NC_029263.1 Oryza sativa subsp. NODE_8227_length_2288
HOX4 NC_029264.1 Oryza sativa subsp. NODE_30917_length_922

ATML1 AT4G21750 Arabidopsis thaliana NODE_908_length_4702
PDF2 AT4G04890 Arabidopsis thaliana NODE_1662_length_4067

GLOXXY1 LOC542154 Zea mays NODE_11774_length_1887
ANTHOCYANINLESS 2 AT4G00730.1 Arabidopsis thaliana NODE_25007_LENGTH_1104

C2H2 GIS AT3G58070 Arabidopsis thaliana NODE_53584_length_536

ZFP5
ZFP5 AT1G10480 Arabidopsis thaliana NODE_11304_length_1931
ZFP8 AT2G41940 Arabidopsis thaliana NODE_43095_length_674
ZFP6 AT1G67030 Arabidopsis thaliana NODE_53610_length_536

Importin-β SAD2 AT2G31660 Arabidopsis thaliana NODE_3732_length_3180

Figure 7. (A) Overall trend map of numbers of differentially expressed genes; profile analysis of the
union of differential genes. (B) Overall trend map of gene numbers displayed by transcription factors;
trend analysis of differentially expressed genes annotated as transcription factors. At the top of the
graphs are the IDs of the profiles and the numbers of genes in the trends. Graphs with colors show
significant enrichment trends, and different colors distinguish different trends. The graphs without
color show nonsignificant enrichment trends.
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Apart from the 777 transcription factors that were shared among the three tissues, the highest
number of shared transcription factors was 43 between SR and SL, followed by 26 between SR and TRL,
and 10 between SL and TRL. It is worth noting that the 26 transcription factors shared by SR and TRL are
related to trichome development—for example, MYC4 (NODE_12035_length_1864), which is involved
in the regulation of the jasmonic acid (JA) gene. Zinc finger protein 8 (NODE_43095_length_674) regulates
the initiation of trichome growth in Arabidopsis thaliana [21]. MYB80 (NODE_10729_length_1989)
is related to the development of trichomes, and can negatively regulate the overlap and branching
of trichomes. The R2R3–MYB transcription factor MYB2 (NODE_9201_length_2161) regulates the
initiation of cotton fiber growth in Gossypium hirsutum [22]. Some transcription factors confer resistance
to biological stress, such as EPF-type Cis2-His2 zinc finger transcription factor (NODE_36794_length_786)
and WRKY transcription factor 46 (NODE_41105_length_707). The R2R3-MYB transcription factor
MYB9 (NODE_88329_length_309), related to trichome development, is expressed only in SR, so it
may not be related to the development of trichomes in D. fragrans. Among the 10 transcription
factors shared by SL and TRL, the transcription factor bHLH49 (NODE_35465_length_814) is a
transcriptional activator involved in cell elongation. The other genes, such as BEL1-like homeodomain
protein 1 (NODE_48395_length_597) and BEL1-like homeodomain protein 2 (NODE_64557_length_435),
can establish leaf shape. KNAT4_ARATH Homeobox protein knotted-1-like 4 is a homeodomain
protein of the KNOX class I family, which has been shown to play a role in shoot apical meristem
development. Genes related to flower development were also identified, such as transcription
factor PIF4 (NODE_2431_length_3644), light-regulated zinc finger protein 1 (NODE_83844_length_327),
and NFYB6_ARATH Nuclear transcription factor Y subunit B-6 (NODE_23238_length_1174), which play
vital roles in the regulation of seed maturation in Arabidopsis [23].

Most genes expressed only in leaves are related to flower and seed development. These include
BLH1_ARATH BEL1-like homeodomain protein 1 (NODE_3776_length_3170), MAD50_ORYSJ MADS-box
transcription factor 5 (NODE_26719_length_1043), and ARFB_ARATH Auxin response factor 2
(NODE_7811_length_2347). In addition, MYB98 (NODE_17251_length_1474) controls the development
of specific features within the synergid cell during female gametophyte development, and is also
expressed in trichomes and endosperm.

We further analyzed the differentially expressed genes and transcription factor gene expression
trends. The sequence NODE_11206_length_1939 is the MIXTA of MYB transcription factors, which is
related to trichome formation in Anthurium japonicum [24]. In this study, the expression pattern
of MIXTA was relatively high in SL, moderate in roots, and very low in TRL, indicating that
MIXTA might be related to the trichomes of D. fragrans. In addition, its homologous gene MYB106
(NODE_11206_LENGTH_1939) is also associated with the occurrence of trichomes, and the similarity
in expression patterns with those of MIXTA consistently indicates that they may have the same function.
Moreover, MYB106 is involved in the negative regulation of trichome branching. The MIXTA-like
MYBs regulate the biosynthesis of cutin nanoridges and wax accumulation by promoting the
expression of related genes [25]. Notably, some genes that encode the homeodomain leucine zipper
class I (HD-Zip I) HOX21 (NODE_7286_length_2427), HOX5 (NODE_8227_length_2288), and HOX4
(NODE_30917_length_922) transcriptional activators, which are involved in leaf development, have the
same expression pattern, which is relatively high in the SL.

2.7. Gene Regulatory Network Construction

We found several genes and transcription factor genes to be highly expressed in the SL and thus,
conducted transcription factor genes differentially expressed analyses (Figures S5 and S6). The 36 major
unigenes belong to MYB, followed by five unigenes belonging to bHLH, five to C2H2, four to HD-ZIP,
and three to WRKY. The highly expressed prediction interacting proteins in leaves were found to mainly
be comprised of the following genes. First, auxin-responsive genes, such as the auxin response factor
2 colony, include ABI3, which is pertinent to seed maturation (Figure 8) by regulating the transition
between embryo maturation and early seedling development. Second, the putative seed-specific
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transcriptional activator LAC17 likely contributes to lignin biosynthesis, and hence, cell wall biosynthesis.
Third, GATA5 is involved in regulating carbon and nitrogen metabolism. Overall, these genes may
regulate the functions of spore and leaf cell development. The fourth cluster includes proteins involved
in photoresponse, chloroplasts, and cell development, as well as cell-silencing clusters associated with
GLU1, FUG1, EMB25, and GTL1 gene interactions. Gene clusters interacting with the transcription
factor Col1 are related to sporocyst development.

Figure 8. Prediction of protein interactions; red denotes differentially expressed transcription factor
genes is highly expressed in the SL, while light blue denotes transcription factors is highly expressed in
the SL,. Line thickness indicates the strength of support by the data. The thicker the line, the stronger
the possibility of protein interaction.

ARATH Homeobox-leucine zipper protein MERISTEM L1 (NODE_908_length_4702) was highly
expressed in the SL, and encodes a homeobox protein similar to the homeobox–leucine zipper protein
GLABRA 2 in Arabidopsis thaliana. Gene HD-ZIP (NODE_33044_length_869) of the homeodomain
GLABROUS 2 encodes a homeobox–leucine zipper family protein belonging to the HD-ZIP IV
family, similar to ATML1, Mutants have trichomes that appear glass-like under a dissecting
microscope compared to the wild-type trichomes, although interaction may occur in both types.
The homeobox–leucine zipper protein anthocyaninless 2 (NODE_25007_LENGTH_1104) encodes a
homeodomain protein of the HD–GLABRA2 group, involved in the accumulation of anthocyanins,
root development, and regulating tissue polarity in A. thaliana. KAN (NODE_56983_length_501) is
required for abaxial identity in both leaves and carpels, and appears to be involved in the development of
the carpel and outer integument of the ovule. Interaction may also occur between ANTHOCYANINLESS
and KAN.

2.8. Validation of DEGs by qPCR

Eight genes were selected for validation based on the results acquired from the KEGG pathway
enrichment analysis. As shown in Figure S6, the trends of their gene expression levels and FPKM
values tended to be the same.
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3. Materials and Methods

D. fragrans spores were collected from lava rock near Bagua Lake, Wudalianchi, Heilongjiang,
China (48.733334 N, 126.167966 E), within a 30 m radius during July 1–6, 2016, with permission from
the government. To ensure the uniformity of samples, we used D. fragrans that was grown at 25 ◦C
with a 16/8 h photoperiod over 2 years. We subsequently selected three tissues of this D. fragrans to
investigate gene regulation and glandular trichome development. We selected the roots, sporophylls,
and sporophylls with the glandular trichomes of D. fragrans removed; for their removal, the trichomes
were wiped with a brush dipped in liquid nitrogen. A transcriptome database was established using
Illumina sequencing to further elucidate the genes of the fern (Beijing Genomics Institution, Shenzhen,
China).

To characterize the transcriptome, three biological replicates were obtained for each tissue (SR1,
SR2, SR3; SL1, SL2, SL3; and TRL1, TRL2, TRL3). For real-time quantitative PCR (qPCR) analysis,
the same samples originally used for RNA-seq were used with three biological replicates and three
technical replicates for each. All experimental materials were transplanted from the tissue culture,
and the optical microscope pictures were taken in the laboratory.

3.1. RNA Isolation and Qualification

Total RNA was isolated from the samples using a TIANGEN RNAprep Pure Plant Kit, according to
the manufacturer’s instructions. A NanoDrop 2.0 Spectrophotometer and Agilent 2100 Bioanalyzer
were used to characterize the RNA purity and concentration prior to transcriptomic sequencing.
Transcriptomic data were obtained from nine RNA-seq libraries of three tissue samples with three
biological replicates.

3.2. Library Preparation for Transcriptomic Sequencing

Sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

(#E7530L, NEB, MA, USA). The mRNA was enriched using oligo(dT) magnetic beads. Fragmentation
buffer was then added to randomly fragment the mRNA. Firstly, cDNA was prepared from 1
microgram total RNA with random hexamers, according to the manufacturer’s instructions. Then,
the double-stranded cDNA was end-repaired and purified using AMPure XP beads, and tails and
sequencing linkers were attached. AMPure XP beads were also used to select for the appropriate
fragment sizes, and PCR enrichment was performed to obtain the cDNA libraries. A Qubit 2.0
Fluorometer and Agilent 2100 Bioanalyzer were used to determine the concentrations of the libraries
and inserted fragment size. The effective library concentrations were determined by qPCR. Finally,
the libraries were subjected to high-throughput Illumina sequencing (Illumina HiSeqTM X TEN,
San Diego, CA, USA).

3.3. Transcriptomic Analysis

3.3.1. Read Mapping, Differential Gene Expression, and Clustering Analyses

Illumina reads were checked for quality using FastQC software. Trinity [26] was employed to
assemble the sequences. The BLAST software was applied to compare the Unigene sequence with the
Nr, Swiss-Prot, gene ontology (GO), Clusters of Orthologous Groups (COG)/euKaryotic Orthologous
Groups (KOG), and eggNOG4.5 databases, while the Kyoto Encyclopedia of Genes and Genomes
(KEGG) used Bowtie2 [27]. The software compared the reads of each sample with a unigene library,
and evaluated the expression level by RESM software [28]. The abundance of unigene is expressed
by fragment per kilobase per million mapped reads (FPKM). HTSeq v0.6.1 was used to count the
read numbers mapped to each gene. To identify differential expression between samples and tissues,
we applied both fold-change and false discovery rate (FDR) thresholds. Specifically, we set FDR to
≤0.001 and log2 (fold change) ≥ 2 to declare significance in line with previous recommendations. It is
important to note a log2 (fold change) > 2 equates with a minimum four-fold change.
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3.3.2. Gene Ontology (GO) Enrichment Analysis

Gene ontology (GO) enrichment was performed using the Singular Enrichment Analysis (SEA)
tool of agriGO with the default settings. The significance of the differences in annotation frequencies
was tested for each gene ontology term, at level 4, for biological process, molecular function, and cellular
component, using Fisher’s exact test followed by a p-value adjustment for multiple testing, based on
the Holm–Bonferroni method.

3.3.3. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database Enrichment Analysis

Metabolic pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes
Pathway database (KEGG: http://www.genome.jp/kegg/). We used the KOBAS software to test the
statistical enrichment of differentially expressed genes (DEGs) in the KEGG pathways (p-value < 0.01).
Pathway was significantly enriched in the differentially expressed Unigene.

3.3.4. Gene Regulatory Network Construction Module Detection

Pairwise Pearson correlations of gene expression across all the samples were calculated to generate
a similarity matrix, which served as input for generating stress-specific co-expression networks,
using R/WGCNA version 1.34.

3.4. Trend Analysis of all Differentially Expressed Genes and Transcription Factors

The average FPKM values of the all differentially expressed genes and transcription factors
in the three tissues were used as the starting data for expression pattern analysis. Specifically- or
highly-expressed genes and transcription factors were only identified in leaves. The log2 standardization
of the FPKM values (p < 0.05) was performed. Trend analysis was used to cluster the gene expression
patterns of three groups of tissue samples: SR (root), SL (sporophyll), and TRL (sporophyll with
glandular trichomes removed). The gene sets were then selected from the clustering results according
to certain biological characteristics (e.g., the differentially expressed genes DEGs specific to SR).
We used the STEM Short Time-series Expression Miner (http://www.cs.cmu.edu/~jernst/stem) and set
the maximum number of model profiles to eight to analyze trends.

3.5. Real-Time qPCR Analysis

Ten transcription factor unigenes were chosen for validation by qPCR. The reference gene selected
for normalization in this experiment was 18S rRNA [29]. The primers were designed with Primer
Premier 5.0 (Table S2). The qPCR was performed with a Bio-Rad CFX-96 Real-Time PCR System
(Bio-Rad, Hercules, CA, USA) with a final volume of 20 µL, containing 2 µL cDNA, 10 µL 26SYBR
Premix Ex Taq (Takara Bio, Shiga, Japan), 0.4 µL each of 10 µM forward and reverse primers, and 7.2 µL
RNase-free water. Thermal cycling was performed at 95 ◦C for 5 min, followed by 45 cycles of 95 ◦C
for 5 s for denaturation and 56 ◦C for 25 s for annealing and extension.

This work provides the first comprehensive transcriptomic analysis of D. fragrans in the root
and sporophyll. A total of 90,977 unigenes were identified, including 25,875 transcription factors,
among which 50.65% were aligned to sequences in the Nr database. Although no D. fragrans reference
genome sequence is available, the unigenes were annotated in the database. Eight unigenes were chosen
for validation by qPCR, and the trends were largely in accordance with the transcriptomic data. A total
of 1794 differentially expressed unigenes were found in the SL, SR, and TRL, including key trichome
development genes, such as DfMIXTA and DfAML1. In summary, our results provide important insight
into the complex transcriptional regulation and potential mechanisms underlying glandular trichome
development, stress resistance, and secondary metabolism in D. fragrans. Some basic studies on the
glandular trichomes of ferns were also discussed.

http://www.genome.jp/kegg/
http://www.cs.cmu.edu/~jernst/stem
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4. Discussion

In this study, global gene transcription in three different tissues of D. fragrans was studied using
high-throughput sequencing. Through transcript profiling and comparative transcriptomic analysis,
the gene expression patterns in diverse tissues were determined. The data included 90,977 unigenes,
of which 25,875 were transcription factors. These may include be transcripts unique to each of the
three examined tissues of D. fragrans. The differentially expressed genes shown in the heat mapping
allow us to understand what is occurring in individual tissues. It is worth noting that some of the
poorly repeated data should be studied further, rather than simply discounted.

Identifying genes expressed in different tissues provides baseline information for a broader
understanding of tissue function and physiology. The study classified the collection of genes
expressed in these three tissues and recorded crucial changes according to tissue. Moreover, we found
that for the most abundant transcripts and transcription factor genes that exhibited tissue-specific
expression, the results are consistent with expectations regarding their possible specific roles in
different tissues. In particular, tissue specificity should be considered in the context of the tested
tissue, and additional measurements in diverse tissues could not necessarily be used to confirm the
observations. However, the GO enrichment profile captured from the transcriptome is in line with our
expectations, which implies that this high-quality dataset is suitable for further analysis.

The transcription factors were differentially expressed in the different tissues. The numbers of
transcription factors specifically expressed in the roots and sporophylls were 60 and 30, respectively,
but only 7 in the sporophylls with glandular trichomes removed. This suggests that the regulation
of development and metabolism by transcription factors is more prominent in the roots, while more
transcription factors may be specifically expressed in glandular trichomes. Transcription factors related
to sporangium development—such as putative constans-like protein, MADS domain transcription factor,
lob domain containing protein 41 like, NAC domain containing protein 86 like, transcription factor duo pollen 1,
AIG1, homeobox protein known-1-like 13 isoform x1, and AP2/ERF—were also found in the sporophyll,
and may be expressed in the sporangium. The other transcription factors were mainly related to
plant development, secondary metabolism, hormone response, and inorganic salt transport. In the
SR, except for hybrid proteins, the other TF genes were related to plant morphological development,
ubiquitination, and the cell cycle. In the TRL, the transcription factor genes were mainly associated with
the promotion of leaf fate and spore development, and involved in aging, biological-, and abiotic-stress
responses, hydrogen peroxide production, antioxidant defenses, and ion binding. The transcription
factors specifically expressed in the glandular trichomes of D. fragrans may also be related to plant
development, secondary metabolism, hormone response, and inorganic-salt transport.

We hypothesized that the expression of certain genes and transcription factor genes were affected by
external stimuli, which may further influence multiple downstream genes and some unknown metabolic
pathways [30]. We expect to pay more attention to these genes in the future. It has been documented
that the function of uncharacterized genes can be inferred from their tissue-specific co-expression
with known functional genes [19,31]. For instance, while the gene involved in pteridophyte trichome
development has not yet been reported, it is known that MIXTA determines the occurrence of trichomes
in Antirrhinum majus. In this study, DfMIXTA expression in the SL was significantly higher than that in
the TRL. The trend of DfMIXTA expression was high in the SL and SR but low in the TRL, suggesting
that this gene might be related to the development of trichomes in D. fragrans. MYB106, a gene
homologous to MIXTA, plays the same role in angiosperms, such as Arabidopsis thaliana, and coexists
in D. fragrans; thus, it may perform the same function in both plants. Zinc finger protein 8 is one of the
key transcription factors regulating trichome formation in angiosperms, while zinc finger protein 1-like
regulates the initiation of trichome growth in A. thaliana [32,33]. Both transcription factors were highly
expressed in the SR but not the SL in D. fragrans, suggesting that the regulation of glandular trichomes
in ferns may be different from that in angiosperms. This further indicates that these transcription
factors regulate root hairs or possibly the development of trichomes in D. fragrans. Although these
genes are not expressed in sporophylls, they may play an important role in the early development
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of trichomes. Elucidating the details of the interaction of these genes with each other and how they
function requires further research.

In addition, some genes are related to auxin, spore maturation, and photosynthesis. We predict
that the ARATH homeobox-leucine zipper protein MERISTEM L1 possibly interacts with the HD-ZIP.
Similar to those in Arabidopsis, these complexes may initiate the expression of DfAML1, a gene encoding
transcription factors, and the transformation of cells into trichomes, which is worthy of future study.

5. Conclusions

This work provides the first comprehensive transcriptomic analysis of D. fragrans in Root and
Sporophyll. A total of 90,977 UniGenes were identified, including 25,875 transcription factors,
among which 50.65% were aligned to sequences in the Nr database. Although no D. fragrans reference
genome sequence is available, the UniGenes were annotated in the database. Eight UniGenes were
chosen for validation by qPCR, and the trends were largely in accordance with the transcriptomic
data. A total of 1794 differentially expressed UniGenes were found in SL, SR, and TRL, including
key trichome development genes, such as DfMIXTA and DfAML1. In summary, our results provide
important insight into the complex transcriptional regulation and potential mechanisms underlying
glandular trichome development, stress resistance, and secondary metabolism in D. fragrans. Some
basic studies on the glandular trichomes of ferns were also discussed.
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